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Introduction

Retromer is a highly conserved heterotrimer of VPS29, 
VPS35, and VPS26. Two of these paralogues, VPS26A and 
VPS26B, are expressed in humans (Seaman, 2012; Burd 
and Cullen, 2014). Retromer is associated with the cyto-
solic face of endosomes where it scaffolds a multiprotein 
complex that orchestrates the sorting of integral membrane 
proteins (i.e., cargos) into transport carriers destined for the 
plasma membrane, the trans-Golgi network, and specialized 
organelles (Seaman et al., 1998; Cullen and Korswagen, 
2011; Burd and Cullen, 2014). Defects in retromer are as-
sociated with neurological disease. Retromer expression is 
lowered in brains of patients with Alzheimer’s disease and 
Parkinson’s disease, and retromer mutations are observed in 
familial and sporadic forms of these diseases (Small et al., 
2005; Muhammad et al., 2008; Vilariño-Güell et al., 2011, 
2014; Zimprich et al., 2011; Vardarajan et al., 2012; Mac-
Leod et al., 2013; Shannon et al., 2014; Rovelet-Lecrux et 
al., 2015). For example, the autosomal dominant Parkinson 
disease––linked VPS35 (p.D620N) mutation leads to per-
turbed retromer function by disrupting the association with 
the actin-nucleating Wiskott-Aldrich syndrome and SCAR 

homologue (WASH) complex (McGough et al., 2014a; Za-
vodszky et al., 2014). Further mutations in the VPS26A sub-
unit (VPS26A [p.K93E], VPS26A [p.M112V], and VPS26A 
[p.K297X]) have also been linked to atypical parkinsonism 
(Gustavsson et al., 2015). How these mutations perturb 
retromer function remains unclear. Alterations in retromer 
accessory proteins are observed in neurological disease, 
including the retromer cargo adaptor sorting nexin-27 
(SNX27) in Down’s syndrome and infantile myoclonic epi-
lepsy (Wang et al., 2013; Damseh et al., 2015). Identifying 
retromer accessory proteins and how they assemble to form 
a functional complex is essential in defining the molecular 
details of retromer activity and in providing insight into the 
pathoetiology of retromer-associated disease.

Here, we have applied proteomics to provide the first de-
tailed, quantitative description of the retromer interactome. By 
establishing a comparative proteomic methodology, we iden-
tify how this interactome is perturbed in VPS26A mutants in 
patients with atypical parkinsonism (Gustavsson et al., 2015). 
In particular, we describe the identification of a selective de-
fect in the association of VPS26A (p.K297X) with SNX27. By 
establishing that this leads to perturbed endosomal sorting of 
specific cargo proteins, we reveal a new mechanism for per-
turbed endosomal trafficking in parkinsonism.

The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to vari-
ous cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paral-
ogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative 
disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with 
atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interac-
tome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical 
parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A 
(p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of 
specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in 
atypical parkinsonism.
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Results and discussion

Quantitative identification of interacting 
proteins for individual retromer subunits
Retromer’s role in cargo sorting is mediated, in part, through an 
ability to recruit accessory proteins (Harbour et al., 2010). Lim-
ited information is available regarding the range of retromer- 
interacting proteins. We previously identified VPS35-interacting  
proteins using stable isotope labeling with amino acids in 
cell culture (SIL​AC) proteomics (McGough et al., 2014a,b). 
Here, we extended this procedure using VPS29, VPS26A, and 
VPS26B to validate known interactions, to determine whether 
VPS26A and VPS26B display distinct interactions that may 
distinguish their functions, and to increase the detection power 
of our overall analysis. Previously, proteins not strongly en-
riched in the VPS35 interactome were excluded (McGough et 
al., 2014b). Such proteins may be relevant to retromer function, 
with their low enrichment due to weak interaction or through 
association with a subunit other than VPS35. Comparison of 
the VPS35 interactome with those for VPS29, VPS26A, and 
VPS26B would highlight these proteins, despite them being 
weakly enriched in an individual interactome.

For these SIL​AC experiments,we lentivirally transduced 
human retinal pigment epithelial-1 (RPE-1) cells to generate 
cell populations expressing GFP-tagged VPS26A, VPS26B, or 
VPS29 (Fig. S1, A–F). For the VPS29 interactome, we grew 
GFP-VPS29 expressing cells in amino acids of “medium” mass 
(R6K4), alongside cells expressing GFP grown in unlabeled, 
“light” amino acids (R0K0). We subjected these cells to GFP-
Trap (ChromoTek) immunoprecipitation, resolved the combined 
coimmunoprecipitates by SDS-PAGE and identified proteins 
using liquid chromatography–tandem mass spectrometry. From 
duplicate experiments, a single list of VPS29-interacting pro-
teins was generated by excluding proteins quantified from a sin-
gle unique peptide and any that were less than fourfold enriched 
in the GFP-VPS29 immunoprecipitate (Fig. 1 A and Table S1). 
The two filtered lists were combined by excluding proteins not 
present in both lists, leading to 53 proteins being identified as 
the VPS29 interactome (Fig. 1, A and B; and Table S1).

For VPS26A and VPS26B interactomes, we used triple 
SIL​AC, growing GFP, GFP-VPS26A, and GFP-VPS26B ex-
pressing cells in R0K0, R6K4, and “heavy” (R10K8) labeled 
medium, respectively. From duplicate experiments, we again 
generated a single list of proteins that interacted with each of the 
VPS26 paralogues (Fig. 1 A and Table S1), with the difference 
that we considered both the R6K4/R0K0 ratio and count (for 
VPS26A) and the R10K8/R0K0 ratio and count (for VPS26B) 
when filtering. If a protein met the required criteria for inclusion 
in the filtered list for one VPS26 paralogue but not the other, we 
included that protein to avoid removing proteins that interact 
with only one paralogue. The identified 141 proteins defined the 
VPS26 interactome (Fig. 1, A and B; and Table S1).

To gain insight into potential functional differences be-
tween VPS26 paralogues, we sorted to identify paralogue- 
specific interactomes. Here we examined the mean R10K8/
R6K4 ratio. For the VPS26B-specific interactome, we excluded 
proteins with a mean R10K8/R6K4 ratio less than 10, whereas 
for the VPS26A-specific interactome, we excluded proteins 
with a mean R10K8/R6K4 ratio greater than 0.1. Using these 
criteria, all VPS26 interactors were common to VPS26A and 
VPS26B, with the only exception being VPS26B’s association 
with a heat shock protein, HSPH1 (Fig. 1 B and Table S1).

Identification of the detailed retromer 
interactome
In the same parental RPE-1 cells, we previously generated a 
VPS35 interactome in duplicate (McGough et al., 2014a,b), 
so we combined these data into a single VPS35 interactome 
(Fig. 1 A and Table S1). To identify proteins consistently im-
munoprecipitated by retromer, we identified proteins common 
to the VPS35, VPS29, and VPS26A and VPS26B interactomes. 
To avoid excluding proteins that may have been filtered out of 
the individual interactomes, we cross-referenced each protein 
in the retromer interactome with the unfiltered lists for each 
retromer subunit. If a protein was enriched by at least twofold 
in an unfiltered list, we considered that protein to be present 
in the interactome of that retromer subunit for our comparison 
(Fig. 1 C). Gene ontology analysis (PAN​THER Classification 
System; P < 0.05) revealed the majority of interactors had roles 
in endosomal transport (Fig. 1 D). Network analysis using esyN 
(Fig. 1 E; Bean et al., 2014) revealed known retromer interac-
tors and the WASH complex and its accessory proteins (Gomez 
and Billadeau, 2009; Harbour et al., 2010, 2012), including the 
CCC complex (Phillips-Krawczak et al., 2015) and various other 
proteins including SNX27 (Temkin et al., 2011; Steinberg et al., 
2013), ANK​RD27 (VARP; Hesketh et al., 2014; McGough et 
al., 2014a; Bean et al., 2015), ANK​RD50 and SDC​CAG3 (Mc-
Gough et al., 2014a), TBC1D5 (Seaman et al., 2009), and DNA​
JC13 (Popoff et al., 2007; Shi et al., 2009; Freeman et al., 2014). 
Most of these core retromer accessory proteins were located 
within the central region of the Venn diagram (Fig. 1 C). This 
region contained two proteins not previously shown to interact 
with retromer, the Rab10 guanine-nucleotide exchange factor 
DEN​ND4C (Yoshimura et al., 2010) and the polycystin family 
member PKD2 (Chapin and Caplan, 2010). GFP-nanotrap im-
munoisolation and quantitative Western analysis confirmed as-
sociation of retromer with several interactors including SNX27, 
DEN​ND4C, and PKD2 (Fig. 1 F). DEN​ND4C and PKD2 pro-
teins colocalized with retromer-decorated endosomes (Fig. S2, 
A and B), and the functional relevance of these interactions is 
described in Fig. 3 and the Discussion.

Missense VPS26A mutants do not perturb 
heterotrimeric retromer assembly or its 
endosome association
We then turned our attention to how the atypical parkinsonism- 
associated VPS26A mutants affect assembly of the retromer in-
teractome. Using lentiviruses to transduce RPE-1 cells with con-
structs encoding for GFP-VPS26A, GFP-VPS26A (p.K93E), 
GFP-VPS26A (p.M112V), or GFP-VPS26A (p.K297X), we 
titrated the viral load to produce cell lines where expression of 
the GFP-tagged transgene approached endogenous levels and 
was observed to lower the expression of endogenous VPS26A, 
presumably as a result of competition for inclusion of the 
GFP-tagged transgene into the stable heterotrimeric complex 
and resultant destabilization of the noncomplexed endogenous 
VPS26A (Fig. 2 A). Note that truncation of the last 31 amino 
acids of VPS26A leads to the molecular weight of the GFP-
tagged protein being lower (Fig. 2 A). GFP-nanotrap immuno- 
isolation and quantitative Western analysis revealed that each 
VPS26A mutant retained the ability to form a heterotrimeric 
complex (Fig. 2, B and C). Quantitative confocal imaging es-
tablished that each mutant retained association with endosomes 
labeled for retromer (VPS35 positive) and the WASH complex 
(FAM21 positive; Fig. 2, D and E).
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Figure 1.  Identification of the detailed retromer interactome. (A) Schematic describing the filtering of retromer subunit interactomes. (B) Venn diagram 
showing the proteins that interact with VPS29 (green), VPS35 (gray), VPS26A (blue), and VPS26B (orange). (C) Venn diagram showing retromer accessory 
proteins. Color code as in B. (D) Proteins identified in C were subjected to gene ontology analysis using the PAN​THER classification system. (E) Proteins 
identified in C were subjected to esyN analysis generating a network of protein interactions. Each node represents a protein, and each connecting line 
represents an interaction indicated by experimental evidence. (F) RPE-1 cells expressing GFP-tagged VPS26A, VPS26B, VPS29, and VPS35 were subjected 
to GFP-nanotrap immunoisolation followed by quantitative Western analysis for validation of DEN​ND4C, PKD2, and SNX27 association. Data are from a 
single experiment representative of three independent experiments.
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VPS26A (p.K297X) displays a loss of 
association with the cargo adaptor SNX27 
and an enhanced association with PKD2 
and DEN​ND4C
To identify loss-of-function and gain-of-function phenotypes as-
sociated with each VPS26A mutant, we developed an unbiased, 
quantitative, and directly comparative proteomic methodology. 
RPE-1 cells lentivirally transduced with encoding constructs 
for wild-type GFP-VPS26A or GFP-VPS26A mutants were 
grown in light and medium-heavy SIL​AC media. Cells were 
subjected to GFP-Trap, the immunoprecipitates combined and 
the proteins resolved by SDS-PAGE and identified by liquid  

chromatography–tandem mass spectrometry. Data were ex-
pressed as a quantified enrichment ratio of the VPS26A mutant 
over wild-type VPS26A. A ratio for the interacting protein ap-
proaching 1.0 was indicative of unperturbed association, whereas 
a ratio approaching 0.1 or 10.0 was indicative of a reduced or en-
hanced association to the VPS26A mutant, respectively (Fig. 3 A).

Consistent with the data in Fig. 2 (B and C), all VPS26A 
mutants retained an unperturbed enrichment with VPS29 and 
VPS35 as well as with the WASH complex (Fig.  3  A). For 
the VPS26A (p.K93E) and VPS26A (p.M112V) mutants, no 
major alterations were observed with any of the core retromer 
accessory proteins (enrichment ratios between 0.6 and 2.8). In 

Figure 2.  Missense VPS26A mutants do not perturb assembly of the retromer heterotrimer or its endosome association. (A) Fluorescence-based Western 
blot showing the expression levels of GFP-VPS26A and GFP-VPS26A mutants compared with endogenous VPS26A. Expression of GFP-VPS26A (p.K297X) 
cannot be seen because of the antibody recognizing the C terminus of VPS26A. (B) Fluorescence-based Western analysis after GFP-Trap immunoprecipi-
tation of GFP-VPS26A and GFP-VPS26A mutants with endogenous VPS35 and VPS29. (C) Quantification of B from three (VPS35) and four (VPS29) inde-
pendent experiments. Data expressed as a percentage of the GFP-VPS26A control. Error bars represent mean ± SEM. No statistically significant difference 
was observed. NS, not significant. (D) Immunofluorescence staining of VPS35, EEA1, LAMP1, and FAM21 in RPE-1 cells expressing GFP-VPS26A or the 
GFP-VPS26A mutants. Bars, 20 µm. (E) Colocalization of GFP-VPS26A or GFP-VPS26A mutants with VPS35, EEA1, LAMP1, or FAM21 from three indepen-
dent experiments. Error bars represent mean ± SEM. No statistically significant difference was found.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/214/4/389/1596039/jcb_201604057.pdf by guest on 08 February 2026



Retromer defects in atypical parkinsonism • McMillan et al. 393

contrast, the VPS26A (p.K297X) mutant showed a dramatic re-
duction in SNX27 association (ratio of 0.01). An increase in 
the enrichment ratio of VPS26A (p.K297X) for PKD2 (ratio 
of 17.172) and DEN​ND4C (ratio of 6.555) was also observed, 
which we confirmed through quantitative Western analysis 
(Fig. 3, B–D). Thus, truncation of the last 31 amino acids of 
VPS26A, as observed in VPS26A (p.K297X), leads to a pro-
nounced loss of and enhancement of VPS26A’s ability to asso-
ciate with specific retromer accessory proteins.

VPS26A (p.K297X) fails to associate with 
SNX27 in direct binding assays
The PDZ domain of SNX27 binds to VPS26 (Gallon et al., 2014). 
Using purified proteins, binding of VPS26A to GST-SNX27 
was readily observed by Coomassie staining and Western blot-
ting (Fig. 4 A). The same was true for VPS26A (p.K93E) and 
VPS26A (p.M112V), but binding to VPS26A (p.K297X) was 
undetectable. Binding of VPS26A to SNX27 enhances SNX27’s 
affinity for PDZ ligands (Gallon et al., 2014; Chan et al., 

Figure 3.  VPS26A (p.K297X) leads to a loss of and enhancement of VPS26A’s association with specific components of its interactome. (A) Logarithmic 
graph showing the interactors identified from comparative SIL​AC proteomics of GFP-VPS26A versus GFP-VPS26A (p.K93E), GFP-VPS26A (p.M112V), or 
GFP-VPS26A (p.K297X). The SIL​AC ratio is the fold-enrichment of proteins in GFP-VPS26A mutant over GFP-VPS26A. Red circles indicate either a pro-
nounced enhancement or loss of association with GFP-VPS26A (K297X). Data is mean of n = 2–3 independent experiments. (B and C) Fluorescence-based 
Western analysis after GFP-Trap immunoprecipitation of GFP-VPS26A, GFP-VPS26A (p.K93E), GFP-VPS26A (p.M112V), and GFP-VPS26A (p.K297X).  
(D) Quantification of data from three independent experiments. Data are expressed as a percentage of the GFP-VPS26A control and analyzed by a one-
way ANO​VA followed by a Dunnett posthoc test. Error bars represent mean ± SEM. NS, not significant; *, P < 0.05; **, P < 0.01.
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2016). In agreement with the pull-down experiments, VPS26A 
(p.K93E) and VPS26A (p.M112V) enhanced binding of SNX27 
to a peptide corresponding to the PDZ ligand of Kir3.3 by more 
than 10-fold, whereas VPS26A (p.K297X) displayed no ability 
to enhance this binding affinity (Fig. 4, B and C).

Structurally, the β-hairpin in the SNX27 PDZ domain binds 
to a groove in the arrestin-like structure of VPS26A (Gallon  

et al., 2014). Within this structure, Lys93 and Met112 of 
VPS26A reside in close proximity to the SNX27 interacting 
surface, but they do not form direct contacts (Fig. 4 D). Lys297 
also does not directly contact SNX27. However, this residue 
and adjacent C-terminal sequences are important for stabilizing 
the linker (residues 152–164) between the N- and C-terminal 
domains. Therefore, the deletion of these C-terminal sequences 

Figure 4.  VPS26A (p.K297X) mutation directly impairs SNX27 interaction. (A) Binding of GST-SNX27 PDZ domain to purified His-tagged VPS26A mutants 
as detected by Coomassie staining (top) or Western blotting with anti-His antibody (bottom). (B) Binding of the Kir3.3 peptide to the SNX27 PDZ domain 
was measured by ITC either to SNX27 alone (black circles) or in the presence of wild-type VPS26A (blue circles) or the VPS26A mutants (green through to 
red circles). Top shows raw data and bottom shows integrated and normalized data. (C) Binding affinities of the Kir3.3 peptide (PPE​SES​KV) to the SNX27 
PDZ domain. (D) Structure of VPS26A (gold ribbon) in complex with SNX27 (blue ribbon and surface; Gallon et al., 2014), indicating the sites of VPS26A 
mutants (colored spheres). The site of Kir3.3 interaction is modeled based on the SNX27-Kir3.3 structure (yellow sticks; Balana et al., 2011).
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likely prevents SNX27 interaction by destabilizing the linker 
region and preventing its binding to the SNX27 β-hairpin.

Loss of VPS26A (p.K297X) association 
to SNX27 leads to defective sorting of 
SNX27 cargo
More than 100 cell surface integral proteins require SNX27 to 
prevent their lysosomal degradation and maintain their cell- 
surface levels (Steinberg et al., 2013). Essential to this sorting 
is the interaction of VPS26 with SNX27 (Gallon et al., 2014). 
One cargo is the glucose transporter, GLUT1. Suppression of 
retromer or SNX27 leads to rerouting of endocytosed GLUT1 
to LAMP1-labeled late endosomes/lysosomes (Steinberg et 
al., 2013). To establish whether the VPS26A mutations rescue 

the GLUT1 sorting defect observed upon RNAi-mediated sup-
pression of VPS26 expression (Fig. 5 A; Gallon et al., 2014), 
siRNA-resistant, GFP-tagged VPS26A or mutant VPS26A 
was expressed in VPS26A- and VPS26B-suppressed RPE-1 
cells. Expression of siRNA-resistant GFP-VPS26A, GFP-
VPS26A (p.K93E) or GFP-VPS26A (p.M112V) fully res-
cued the knockdown phenotype (Fig. 5, B and C). In contrast, 
GFP-VPS26A (p.K297X) failed to rescue the sorting defect 
(Fig. 5, B and C). This mirrors the GLUT1 sorting defect upon 
uncoupling of SNX27’s association with retromer (Steinberg 
et al., 2013) and is consistent with the loss of SNX27 bind-
ing to VPS26A (p.K297X).

Under these conditions, immunofluorescence staining es-
tablished that steady-state distribution of the cation-independent  

Figure 5.  Loss of VPS26A (p.K297X) associ-
ation with SNX27 leads to the mis-trafficking 
of SNX27-dependent cargo. (A) Immunoflu-
orescence costaining of GLUT1 with LAMP1 
after RNAi-mediated suppression of VPS26 
expression. A nontargeting RNAi was used 
as a control. (B) Immunofluorescence costain-
ing of GLUT1 with LAMP1 in RPE-1 cells sta-
bly expressing GFP-VPS26 or GFP-VPS26A 
mutants after RNAi-mediated suppression 
of VPS26 expression. (C) Quantification of 
colocalization of GLUT1, CI-MPR, and α5-in-
tegrin with LAMP1 from three independent 
experiments. Data were analyzed by a one-
way ANO​VA followed by a Dunnett posthoc 
test compared with the GFP-VPS26A control. 
Error bars represent mean ± SEM. *, P < 
0.05; **, P < 0.01. (D) Immunofluorescence 
costaining of GLUT1 and LAMP1 in RPE-1 
cells overexpressing GFP-VPS26A or the GFP-
VPS26A mutants. Bars, 10 µm.
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mannose 6-phosphate receptor (CI-MPR) was unaltered (Fig. 
S2 C). Perturbed retromer function is characterized by an al-
teration in CI-MPR distribution from a normal localization at 
the trans-Golgi network to peripherally dispersed endosomes 
(Arighi et al., 2004; Seaman, 2004). Also unaltered by expres-
sion of the VPS26A mutants was the steady-state distribution 
of α5β1-integrin, a cargo that undergoes endosome sorting to 
the plasma membrane through a retromer-independent pathway 
(Steinberg et al., 2012; Fig. S2 D). Finally, as each VPS26A 
mutant was able to assemble into the retromer heterotrimer at 
the expense of endogenous VPS26A (Fig. 2 A), we considered 
their potential as function-blocking dominant negatives. In 
RPE-1 cells, GLUT1 steady-state distribution was significantly 
perturbed upon overexpression of GFP-VPS26A (p.K297X), 
whereas a similar phenotype was not observed with wild-type 
GFP-VPS26A, or GFP-VPS26A (p.K93E) or GFP-VPS26A 
(p.M112V; Fig. 5 D). Overall, these functional data are consis-
tent with the unperturbed interactomes of VPS26A (p.K93E) and 
VPS26A (p.M112V) and establish that the inability of VPS26A 
(p.K297X) to associate with SNX27 manifests as a clear and 
specific defect in endosomal sorting of SNX27–retromer cargo.

Cargoes for SNX27-mediated sorting include neuronal 
receptors such as β2-adrenergic receptor, G protein–activated 
inward rectifying potassium type 2 receptor, serotonin receptor,  
and parathyroid hormone receptor, as well as N-methyl-d- 
aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid receptors (Joubert et al., 2004; Lauffer et al., 2010; 
Balana et al., 2011; Cai et al., 2011; Temkin et al., 2011; Wang 
et al., 2013; Chan et al., 2016). Loss of VPS26A (p.K297X) 
association to SNX27 therefore provides further evidence of 
the importance of the SNX27-retromer-WASH sorting path-
way for neuronal health and provides mechanistic insight into 
how retromer function is perturbed in this form of atypical 
parkinsonism. In developing an unbiased and comparative pro-
teomic methodology, we provide a powerful tool for defining 
disease-associated loss-of-function and gain-of-function phe-
notypes as typified by the enhancement of VPS26A (p.K297X) 
binding to two newly identified retromer interacting proteins—
PKD2 and DEN​ND4C. Although the role of these proteins in 
retromer-mediated sorting are unclear, our study highlights a 
novel regulatory feature of the C-terminal tail of VPS26A in 
the scaffolding function of retromer.

Materials and methods

Antibodies
Antibodies used in this study were rabbit monoclonal α5 integrin 
(ab150361; Abcam), mouse monoclonal β–actin (A1978; Sigma- 
Aldrich), rabbit monoclonal CI-MPR (ab124767; Abcam), rabbit 
polyclonal DEN​ND4C (HPA014917; Sigma-Aldrich), rabbit mono-
clonal EEA1 (C45B10; Cell Signaling Technology), mouse monoclo-
nal GFP (11814460001; Roche), rabbit monoclonal GLUT1 (115730; 
Abcam), mouse monoclonal LAMP1 (H4A3; Developmental Studies 
Hybridoma Bank), rabbit polyclonal PKD2 (sc-25749; Santa Cruz 
Biotechnology, Inc.), mouse monoclonal SNX27 (ab77799; Abcam), 
rabbit polyclonal Strumpellin (87442; Santa Cruz Biotechnology, 
Inc.), rabbit polyclonal VPS35 (97545; Abcam), rabbit monoclonal 
VPS35 (157220; Abcam), rabbit polyclonal VPS26A (ab137447; 
Abcam), rabbit polyclonal VPS29 (ab98929; Abcam), and rabbit 
polyclonal WASH1 and FAM21 (gifts from D.D.  Billadeau, Mayo 
Clinic, Rochester, MN).

Generation of GFP-VPS26A and GFP-VPS26A mutant lentiviral 
vectors
VPS26A was subcloned from an original plasmid, which was a gift 
from R. Teasdale (University of Queensland, St. Lucia, Australia; Kerr 
et al., 2005), into the lentiviral vector pXLG3. To produce siRNA- 
resistant VPS26A six silent base mismatches (C187T, A189G, 
A192G, C195T, A198G, and A201G) were introduced into the ORF, 
generating resistance to VPS26A siRNA oligonucleotide 1 from the 
ON-TAR​GET plus human SMA​RT pool (GE Healthcare). To pro-
duce siRNA-resistant VPS26B seven silent base mismatches (G795A, 
C798T, T799A, C800G, G804A, C805A, and C807G) were introduced 
into the ORF, generating resistance to VPS26B siRNA oligonucleotide 
2 from the ON-TAR​GET plus human SMA​RT pool (GE Healthcare; 
Gallon et al., 2014). The VPS26A (p.K93E), VPS26A (p.M112V), and 
VPS26A (p.K297X) mutations were generated using site-directed mu-
tagenesis using the following primers: VPS26A (p.K93E): 5′-GTT​CTC​ 
CAG​GTA​AGG​CTA​GTT​CCT​CCA​CTA​GGT​TTA​CAA​ATT​CAT​GA-3′;  
VPS26A (p.M112V): 5′-GAC​TCA​GAG​CAG​AAG​TTA​TGA​TTT​TGA​
ATT​TGT​GCA​AGT​TGA​AAA​GCC-3′; VPS26A (p.K297X): 5′-GAA​
GTC​CGG​AGT​TCA​CTA​AGC​ATA​TTA​GAA​GCA​TGT​TTT​AG-3′.

Cell culture and generation of lentiviral vector-expressing stable  
RPE-1 cell lines
Lentiviral particles were produced in HEK293T cells before being 
added to RPE-1 cells at near endogenous levels to produce stably 
expressing cell lines. RPE-1 and HEK293T cells were maintained in 
DMEM (D5796; Sigma-Aldrich) supplemented with 10% (vol/vol) 
fetal bovine serum (F7524; Sigma-Aldrich) and penicillin/streptomy-
cin (BRL 15140122; Gibco) under standard conditions.

Immunoprecipitation and Western blot analysis
RPE-1 cell lines stably transduced with the desired GFP-tagged con-
structs were lysed in Tris-based immunoprecipitation buffer (50 mM 
Tris-HCl, 0.5% NP-40, and Roche protease inhibitor cocktail) and the 
GFP immunoprecipitated with GFP-Trap beads (ChromoTek). Immu-
noblotting was performed using standard procedures. Detection was 
performed on an Odyssey infrared scanning system (LI-COR Biosci-
ences) using fluorescently labeled secondary antibodies.

SIL​AC
RPE-1 cell lines stably transduced with the desired GFP-tagged con-
structs were grown in SIL​AC DMEM (89985; Thermo Fisher Sci-
entific) supplemented with 10% (vol/vol) dialyzed FBS (F0392; 
Sigma-Aldrich). Cells were grown in light (R0K0), medium (R6K4), or 
heavy (R10K8) labeling for at least six passages to achieve full labeling 
(amino acids were obtained from Sigma-Aldrich, apart from K4, which 
was from Thermo Fisher Scientific). Cells were lysed in immunopre-
cipitation buffer (50 mM Tris-HCl, 0.5% NP-40, and Roche protease 
inhibitor cocktail) and GFP was immunoprecipitated with GFP-trap 
beads (ChromoTek) for 1  h.  Samples were pooled and separated on 
Nupage 4–12% precast gels (Invitrogen) and subjected to liquid chro-
matography–tandem mass spectrometry analysis on an Orbitrap Velos 
mass spectrometer (Thermo Fisher Scientific).

ITC
The rat SNX27 PDZ domain and human VPS26A proteins were purified 
as described previously (Gallon et al., 2014; Chan et al., 2016). In brief, 
SNX27 PDZ domain was purified as a GST fusion protein followed by 
thrombin cleavage to remove the GST tag, and VPS26A was purified 
via an N-terminal His tag. Proteins were then gel filtered into ITC buf-
fer (50 mM Tris, pH 8, and 100 mM NaCl) using a Superose 200 col-
umn. The synthetic Kir3.3 peptide was purchased from GenScript. ITC 
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experiments were performed on a MicroCal iTC200 instrument in ITC 
buffer. Peptides were titrated into 40 µM SNX27 PDZ domain solutions 
at 25°C (supplemented with 40 µM hVPS26A proteins when required). 
Data were processed using ORI​GIN to extract the thermodynamic 
parameters ΔH, Ka (1/Kd) and the stoichiometry n. ΔG and ΔS were 
derived from the relationships: ΔG = −RTlnKa and ΔG = ΔH − TΔS.

GST pull-down experiments
GST-tagged SNX27 PDZ domain (1 nmol) was mixed with VPS26A 
proteins (1 nmol) in 500  µl 25  mM Tris, pH 8, 300  mM NaCl, and 
1 mM DTT and bound to 25 µl glutathione Sepharose resin. After 2-h 
incubation at 4°C, the resin was washed four times with pull-down 
buffer and bound proteins eluted in SDS-PAGE sample buffer. West-
ern blot analysis was done using a nitrocellulose membrane and the 
iBlot semi-dry transfer system (Thermo Fisher Scientific). His-tagged 
proteins were detected by ECL on photographic film, using a primary 
mouse anti-penta-His antibody (34660; QIA​GEN) and goat anti-mouse 
HRP-coupled secondary antibody (A16072; Thermo Fisher Scientific).

RNAi-mediated suppression of endogenous VPS26A and VPS26B
RPE-1 cells stably expressing GFP, wild-type or mutant VPS26A were 
transfected either with a ON-TAR​GET plus nontargeting control pool 
(GE Healthcare; sequences: 5′-UGG​UUU​ACA​UGU​CGA​CUAA-3′, 
5′-UGG​UUU​ACA​UGU​UGU​GUGA-3′, 5′-UGG​UUU​ACA​UGU​UUU​
CUGA-3′, and 5′-UGG​UUU​ACA​UGU​UUU​CCUA-3′) or with the 
VPS26A suppression oligonucleotide 1 (sequence 5′-GCU​AGA​ACA​
CCA​AGG​AAUU[DTDT]-3′) and VPS26B suppression oligonucle-
otide 2 (sequence 5′-GAA​GUU​CUC​UGU​GCG​CUAU[DTDT]-3′) of 
the ON-TAR​GET plus human SMA​RT pool (GE Healthcare) to sup-
press endogenous VPS26A and VPS26B. Cells were reverse-trans-
fected using DharmaFECT (GE Healthcare), then transfected again 
12 h later according to manufacturer’s instructions. 48 h after the sec-
ond transfection, cells were fixed and stained.

Immunofluorescence staining
Cells were fixed in 4% (vol/vol) paraformaldehyde in PBS for 20 min 
before being permeabilized with either 0.1% (vol/vol) Triton X-100 or 
0.1% (wt/vol) saponin for 5 min. Cells were incubated with 1% (wt/
vol) BSA for 10 min followed by incubation for 1 h in the indicated 
primary antibody. The cells were then incubated with the appropriate 
Alexa Fluor secondary antibody (405, 488, and 568; Invitrogen) for 
1 h with DAPI being used as a nuclear stain before being mounted on 
coverslips with Fluoromount-G (00–4958-02; eBioscience).

Image acquisition
Microscopy images were recorded at room temperature on a confocal 
laser-scanning microscope (SP5 AOBS; Leica Biosystems) attached to 
an inverted epifluorescence microscope (DMI6000; Thermo Fisher Sci-
entific). A 63×, NA 1.4, oil immersion objective (Plan Apochromat BL; 
Leica Biosystems), and the standard SP5 system acquisition software 
and detector were used. Images were analyzed with the Volocity soft-
ware package (PerkinElmer). To filter noise, thresholds were applied 
uniformly across conditions. The colocalization tool on the Volocity 
software was used to calculate the Pearson’s correlation and colocal-
ization coefficient. Analysis is based on the quantification of over 100 
cells from three independent experiments.

Statistical analysis
All quantified Western blot and confocal colocalization data are the 
mean of at least three independent experiments. The raw data from the 
immunoprecipitation Western blotting were first normalized to the GFP 
to account for differences in amount of protein and then to the VPS26A 

control. Results are expressed as a percentage of the VPS26A control. 
Mean and standard error were calculated, followed by a one-way anal-
ysis of variance (ANO​VA) and posthoc Dunnett test to determine statis-
tical significance. Colocalization data were averaged across individual 
experiments and the mean and standard error calculated across the three 
experiments. A one-way ANO​VA followed by a posthoc Dunnett test 
was then used to analyze statistical significance. For all statistical tests, 
P < 0.05 was considered significant and is indicated by an asterisk.

Plasmids
VPS29 was subcloned from an original plasmid, which was a gift from 
R. Teasdale. VPS26B and DEN​ND4C were cloned from HeLa cDNA 
into a pEGF​PC1 vector (Takara Bio Inc.) and then subcloned into the 
XLG lentiviral vector. Full-length mouse PKD2 was a gift from J. Zhou 
(Harvard Medical School, Boston, MA). The 1–703 PKD2 truncation 
was cloned from HeLa cDNA into a pEGF​PN1 vector (Takara Bio Inc.).

Online supplemental material
Fig. S1 shows the protein expression levels of GFP-tagged 
VPS26A, VPS26B, and VPS29 in RPE-1 cells as well as GFP-Trap 
immunoprecipitation and immunofluorescence showing that the GFP-
tagged retromer components can still associate into the retromer 
heterotrimer. Fig. S2 shows that PKD2 and DEN​ND4C can associate 
with retromer on endosomes by immunofluorescence and that the 
missense VPS26A mutants do not perturb trafficking of the CI-MPR or 
α5 integrin. Table S1 contains the SIL​AC quantified interactomes of the 
different retromer subunits in RPE-1 cells. Online supplemental material 
is available at http​://www​.jcb​.org​/cgi​/content​/full​/jcb​.201604057​/DC1.
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