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Mitotic noncoding RNA processing promotes
kinetochore and spindle assembly in Xenopus

Andrew W. Grenfell, Rebecca Heald, and Magdalena Strzelecka

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720

Transcription at the centromere of chromosomes plays an important role in kinetochore assembly in many eukaryotes,

and noncoding RNAs contribute to activation of the mitotic kinase Aurora B. However, little is known about how mitotic

RNA processing contributes to spindle assembly. We found that inhibition of transcription initiation or RNA splicing, but

not translation, leads to spindle defects in Xenopus egg extracts. Spliceosome inhibition resulted in the accumulation of

high molecular weight centromeric transcripts, concomitant with decreased recruitment of the centromere and kineto-

chore proteins CENP-A, CENP-C, and NDCB80 to mitotic chromosomes. In addition, blocking transcript synthesis or

processing during mitosis caused accumulation of MCAK, a microtubule depolymerase, on the spindle, indicating mis-

regulation of Aurora B. These findings suggest that co-transcriptional recruitment of the RNA processing machinery to

nascent mitotic transcripts is an important step in kinetochore and spindle assembly and challenge the idea that RNA

processing is globally repressed during mitosis.

Introduction

Chromosome segregation requires that chromosomes attach
to the spindle through kinetochores, complexes that assem-
ble on specialized centromeric chromatin. Multiple cellular
mechanisms contribute to this process, and mounting evidence
suggests that components of the spliceosome, the dynamic
RNP complex that removes introns from RNA polymerase
II (Pol II) transcripts (Wahl et al., 2009), are also involved.
Genome-wide screens in cultured cells identified splicing fac-
tors as important for cell division (Goshima et al., 2007; Kittler
et al., 2007; Somma et al., 2008; Neumann et al., 2010), and
microtubule- and mitotic chromatin-interacting proteins bio-
chemically copurified with the catalytically active spliceosome
isolated from HeLa cell nuclear extracts (Makarov et al., 2002).
Recently, a role for the Prp19 splicing complex in Xenopus lae-
vis egg extract spindle assembly was demonstrated (Hofmann
et al., 2013); however, its specific function is unclear. Over-
all, mitotic functions for the RNA processing machinery have
been largely unexplored.

Work in a variety of systems including plants, fission
yeast, and cultured mammalian cells showed that Pol II tran-
scription at the centromere during mitosis is important for ki-
netochore assembly (Chan and Wong, 2012; Gent and Dawe,
2012). Because splicing factors are co-transcriptionally re-
cruited to Pol II transcripts (Listerman et al., 2006; David et
al., 2011), involvement of the RNA processing machinery in
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centromeric noncoding RNA (ncRNA) biogenesis could ex-
plain its mitotic relevance. Support for this idea comes from
the observation that the splicing factor Prp4 is kinetochore-
localized during mitosis (Montembault et al., 2007) and that
splicing factors interact with centromeric transcripts in mouse
cells (Maison et al., 2011). Although little is known about the
RNA biogenesis pathway at centromeres, centromeric transcrip-
tion is important for centromere protein A (CENP-A) loading
across eukaryotic species (Saffery et al., 2003; Nakano et al.,
2008; Cardinale et al., 2009; Chueh et al., 2009; Bergmann et
al., 2012; Quénet and Dalal, 2014; Chen et al., 2015). Further-
more, RNA binding by the inner kinetochore protein CENP-C
promotes its association with centromeric DNA in plants and
animals (Wong et al., 2007; Du et al., 2010; Rosi¢ et al., 2014),
which is a prerequisite for kinetochore assembly (Gascoigne
et al., 2011; Rago et al., 2015). Studies in mouse cells and in
X. laevis egg extracts have revealed that centromeric ncRNAs
are also important for Aurora B kinase activation (Ferri et al.,
2009; Blower, 2016), and RNA binding may be a general mech-
anism for regulating Aurora B activity (Jambhekar et al., 2014).
Among its many roles (Carmena et al., 2012), centromere-
associated Aurora B regulates the localization and activity of
MCAK, a microtubule depolymerase that controls kinetochore
fiber attachment to chromosomes as well as overall microtubule
distribution (Andrews et al., 2004; Lan et al., 2004; Sampath et
al., 2004; Zhang et al., 2007; Tanenbaum and Medema, 2011;
Ems-McClung et al., 2013).
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To investigate the mitotic functions of the RNA processing
machinery, we used metaphase-arrested Xenopus egg extracts,
which do not require global transcription and translation for
spindle assembly (Newport and Kirschner, 1982a,b; Maresca
and Heald, 2006; Blower et al., 2007), to identify two mitotic
roles for splicing factors. First, we found that recruitment of
the RNA processing machinery to nascent centromere-derived
ncRNAs during mitosis enhances localization of CENP-A,
CENP-C, and NDC80 to chromosomes. Second, ncRNA elon-
gation and processing are required to properly regulate Aurora
B kinase and maintain spindle integrity, at least in part by mod-
ulating MCAK localization. Our results indicate that multiple
RNA biogenesis-dependent events contribute to kinetochore
and spindle assembly, and that splicing is not globally inhibited
during mitosis (Shin and Manley, 2002).

To investigate mitotic roles of the RNA processing machinery,
we interfered with its function in both X. laevis and Xenopus
tropicalis egg extracts. Abnormal spindle morphology was ob-
served (Fig. 1 and Fig. S1), with defects including loss of spin-
dle microtubule density, measured as median rhodamine tubulin
fluorescence intensity, as well as disorganized structures with
microtubules that projected off of the spindle, which manifested
as changes in spindle solidity (Fig. S1 A). Multiple inhibition
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Figure 1. ncRNA biogenesis is important for
mitofic spindle assembly. (A) Example images
and quantification of spindle microtubule (MT)
density and solidity affer RNase H-based
knockdown of the U2 snRNA (U2KD, n =
) | 3,018) or treatment with a scrambled oligo
: Y (n=1,454) in X. laevis egg extracts. Median
I microtubule density decreased 18.0% in U2
knockdown extract. (B) Example images and
quantification of spindle microtubule density
and solidity for X. tropicalis spindles formed
after splicing factor immunodepletion with an
antibody against the trimethylguanosine cap
of snRNAs («TMG, n = 581) compared with
mock depletion (IgG, n = 325). Median micro-
tubule density decreased 24.5% in splicing fac-
tor-depleted extract. (C) Example images and
quantification of spindle microtubule density
and solidity in X. laevis exiracts treated with
splicing inhibitor (ISGN, n = 518), transcrip-
tion inhibitor (TRIP, n = 417), or solvent con-
trol (DMSO, n = 483). Inhibitors were added
immediately before spindle assembly. Median
microtubule density decreased 14.9% in ISGN-
treated extract and 24.1% in TRIPtreated ex-
tract. Bars, 10 pm. Box plot horizontal lines
correspond fo median values. Bottom and
top of the boxes are first and third quartiles,
respectively; whiskers show highest and low-
est values within 1.5 times the interquartile
range and outliers are plotted as single points.
* P <103 **, P < 10710, *** P < 10-15
(Kolmogorov-Smirnov test). AU, arbitrary units.
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approaches were used, including RNase H-based knockdown
of the U2 snRNA (Pan and Prives, 1988; Figs. 1 A and S1 B),
immunodepletion of core spliceosomal snRNPs (Fig. 1 B and
Fig. S1, C-E), and treatment with the splicing inhibitor isogink-
getin (ISGN; O’Brien et al., 2008) during mitosis (Fig. 1 C) or
throughout the entire cell cycle (Fig. S1, F and G). Blocking Pol
II transcription initiation with triptolide (Titov et al., 2011) re-
sulted in similar spindle defects (Figs. 1 C and S1 H). These ef-
fects were not caused by aberrant expression of protein-coding
RNAs, as blocking translation with cycloheximide did not re-
sult in detectable spindle defects (Fig. S1 I). These data suggest
that the RNA processing machinery is involved in the mitotic
regulation of one or more RNAs that are not acting in a protein
coding capacity, hereafter referred to as ncRNAs, and that this
regulation is important for spindle assembly.

Given the growing number of studies showing a role for cen-
tromeric transcription (Chan and Wong, 2012; Gent and Dawe,
2012; Scott, 2013), we examined whether the RNA processing
machinery was also involved in centromeric ncRNA biogenesis.
Replicated, interphase nuclei were incubated in RNA-depleted,
metaphase-arrested extract. After spindle assembly, RNAs
were isolated and analyzed by RT-PCR with primers specific
to the 174-bp ferl repeat (Edwards and Murray, 2005), the only
known centromere sequence in X. laevis (Fig. 2 A). Whereas
nuclei formed in mock-depleted extract produced amplification
products that were 500 bp or less, nuclei formed in splicing

9z0z Arenigad g0 uo 1senb Aq 4pd'6Z070910Z Al/rSESESLIEE L/Z/v 1 Z/HPd-aonie/qol/Bio ssaidnu//:dny woyy papeojumoq


http://www.jcb.org/cgi/content/full/jcb.201604029/DC1

RNase A RNaselN

Blocked

Mitotic Extract Cytoplasmic RNAs

Degraded
B Exp1 Exp2 Exp3 C

RNase Activity —\» : N

Figure 2. The RNA processing machinery contributes
to centromeric ncRNA biogenesis during mitosis. (A)
Schematic of the centromere RNA biogenesis assay
in X. laevis egg extract. Nuclei containing replicated
sperm chromosomes were added to RNA-depleted
extract, and nascent centromeric ncRNAs were as-
sessed by RT-PCR. (B) Centromeric RNAs appeared in
a laddered pattern after splicing factor depletion with
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an antibody specific to the trimethylguanosine cap of
core spliceosomal RNAs (ID), whereas mock deple-
tion (IgG) resulted in one or a few centromeric RNA
products. The fcr1 repeat is 174 bp. Primers used to
amplify this sequence were 106 bp apart. (C) Cen-
tromeric RNAs appeared in a laddered pattern after
splicing inhibition with ISGN and were not detected
after transcription inhibition with triptolide. (D) RT-PCR
analysis of centromeric fer1 ncRNAs in immunoprecip-
itates using nonspecific IgG antibodies (IgG Beads)
or antibodies specific to the trimethylguanosine cap
of core spliceosomal RNAs (TMG Beads), compared
with extract supernatants (Sup.). (E) RT-PCR analysis of
centromeric fcrl ncRNAs in CENP-C immunoprecipi-
tates (Beads) or exiract supernatants (Sup.). An ampli-
fication product from a potentially processed transcript
appears at ~150 bp. Note that PCR-amplified centro-
meric RNAs varied in size, likely because predicted

IgG ID IgG ID IgG ID DMSO  ISGN
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TRIP splice sites present in the degenerate fcrl RNA se-
quence could lead to a variety of splice products be-
cause of heterogeneity of centromeric sequences.
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factor—depleted extract produced a laddered pattern matching
that observed when genomic DNA was amplified (Fig. 2 B
and Fig. S2 C), indicating that tandem repeat—containing cen-
tromeric fcrl RNAs were produced as large transcripts up to
six repeat units in length in the absence of processing. Similar
products were obtained in reactions treated with the splicing
inhibitor ISGN, and no amplification was observed in extracts
treated with triptolide, demonstrating that the Pol II products
were not derived from RNA already present in the reaction
(Fig. 2 C and Fig. S2, A-C). These products were derived from
RNA, as no amplification was observed when reverse transcrip-
tion was omitted (Fig. S2, A, D, and E), and products were syn-
thesized from the added nuclei because no amplification was
observed in their absence (Fig. S2 F).

Supporting association of centromeric transcripts with
the spliceosome, we found that fcrl transcripts coimmuno-
precipitated with the core splicing machinery (Fig. 2 D). Ferl
transcripts, including potentially processed transcripts, also co-
immunoprecipitated with the inner centromere protein CENP-C
(Figs. 2 E and S2 G). Centromeric RNA amplicons varied in
size, likely reflecting underlying repeat sequence heterogeneity
(Miga et al., 2014) that could lead to variation in splice site
selection. These results indicate that centromeric RNAs such as
ferl are transcribed and processed during mitosis.

The RNA processing machinery promotes
kinetochore assembly

CENP-A and CENP-C depend in part on centromeric tran-
scription for their localization (Chueh et al., 2009; Du et al.,

2010). We therefore examined them by immunofluorescence
after perturbation of RNA biogenesis and observed a decrease
in staining density between 22.4% and 59.6% after inhibition
of splicing or transcription initiation (Fig. 3, A and B). NDCS80
staining intensity also decreased 10-19.9% under these con-
ditions (Fig. 3 C), suggesting that centromere and inner kine-
tochore defects were propagated to the microtubule-binding
interface of the outer kinetochore.

In contrast to results obtained with triptolide, we did
not observe a decrease in CENP-A or NDC80 staining when
transcription elongation was blocked with a-amanitin, which
does not interfere with splicing catalysis (Bird et al., 2004)
and leaves the nascent transcript associated with its chromo-
somal locus (Rudd and Luse, 1996). Interestingly, centromeric
CENP-C staining increased significantly in a-amanitin—treated
extract (Fig. S3 A), suggesting that increasing the residence
time of nascent centromeric RNAs leads to greater CENP-C ac-
cumulation. Thus, although CENP-C RNA binding reinforces
its centromeric localization (Du et al., 2010), our results suggest
that splicing factor recruitment, but not transcript elongation or
persistence of an RNA, plays a role in kinetochore assembly.
Because recent measurements suggest that CENP-A is distrib-
uted throughout the genome (Bodor et al., 2014), centromere
RNA biogenesis during mitosis could provide a second signal
that helps mark the site of kinetochore assembly.

Our results are in contrast to previous studies reporting
that a-amanitin treatment decreased CENP-C and CENP-A
centromere localization (Chan et al., 2012; Quénet and Dalal,
2014). However, the long time course required in cell culture

RNA processing contributes to spindle assembly « Grenfell et al.
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Figure 3. Perturbation of RNA biogenesis
leads to centromere and kinetochore defects.
1 (A) Example images of CENP-A staining and
2 y quantification of median fluorescence intensity
| within antibody marked foci after inhibition

of splicing (ISGN, n = 9,544) or transcrip-

tion (TRIP, n = 9,613) compared with DMSO

controls (n = 5,203). Median CENP-A stain-

ing density decreased 25.4% in ISGN-reated

extract and 37.8% in TRIPtreated extract.

(B) Example images of CENP-C staining and

quantification of median fluorescence intensity
TRIP within antibody marked foci after inhibition
of splicing (ISGN, n = 1,214) or transcrip-
tion (TRIP, n = 1,160) compared with DMSO
controls (n = 2,411). Median CENP-C stain-
ing density decreased 22.4% in ISGN-reated
extract and 59.6% in TRIPtreated extract.
(C) Example images of NDC80 staining and
quantification of median fluorescence intensity
within antibody marked foci after inhibition
of spicing (ISGN, n = 1,499) or transcription
(TRIP, n = 1,623) compared with DMSO con-
trols (n = 1,515). Median NDC80 staining
density decreased 10.0% in ISGN-reated ex-

*%

DMSO ISGN TRIP
NDC80 Staining Intensity (AU)
0.12 s
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tract and 19.9% in TRIP-treated extract. Bars,
10 pm. **, P < 10-1° (Kolmogorov-Smirnov
test). In the merged image, microtubules are
red, cenfromere proteins are green, and DNA
is cyan. AU, arbitrary units.
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could result in a-amanitin dependent degradation of the Pol II
large subunit (Nguyen et al., 1996), which would prevent splic-
ing factor recruitment. In addition, our data are at odds with ex-
periments in which RNAi depletion of centromeric transcripts
led to centromere and Kinetochore defects (Chueh et al., 2009;
Quénet and Dalal, 2014). However, the RNAi machinery has
been shown to trigger transcriptional gene silencing in verte-
brates through siRNA-guided H3K9 di- and trimethylation,
leading to the recruitment of HP1 proteins (All6 et al., 2009;
Ameyar-Zazoua et al., 2012), which abolished the function of a
human artificial chromosome centromere (Nakano et al., 2008).
Thus, using RNAI to interrogate centromere RNA function
could induce epigenetic centromere inactivation.

Because spindle defects observed upon inhibition of tran-
scription or RNA processing were significant, we investigated
whether ncRNA-dependent pathways in addition to kineto-
chore assembly contributed to spindle integrity. Aurora B ki-
nase activity is stimulated by RNA binding (Ferri et al., 2009;
Jambhekar et al., 2014), and centromere-localized Aurora B
produces a phosphorylation gradient (Wang et al., 2011) that
regulates the activity, localization, and microtubule binding of
the microtubule depolymerase MCAK (Andrews et al., 2004;

—

DMSO ISGN TRIP

l

=

Lan et al., 2004; Zhang et al., 2007; Tanenbaum and Medema,
2011; Ems-McClung et al., 2013). RNase A treatment of egg
extract reduced Aurora B activity and caused spindle assem-
bly defects that could be partially rescued by inhibiting MCAK
(Jambhekar et al., 2014). Furthermore, a reduction in Aurora B
staining at the inner centromere upon inhibition of transcrip-
tion was recently observed (Blower, 2016). We therefore tested
whether interfering with ncRNA biogenesis affected MCAK,
and we observed increased staining density within the spindle
upon inhibition of transcription initiation or RNA processing
(Figs. 4 A and S3 C). Although we have not assayed Aurora
B activity directly, these results indicate that RNA biogenesis-
dependent regulation of Aurora B and MCAK promotes spindle
microtubule stability.

To determine whether the ncRNA-dependent Aurora B
and centromere/kinetochore regulation we observed were sep-
arable processes, and together sufficient to explain the RNA
biogenesis spindle phenotype, we developed an approach to
inhibit them individually and in combination. We found that
blocking transcription elongation with a-amanitin resulted in
accumulation of MCAK on the spindle (Fig. 4 B), consistent
with misregulation of Aurora B (Tanenbaum and Medema,
2011; Ems-McClung et al., 2013), but that centromere or ki-
netochore assembly was unaffected (Fig. S3 A). We combined
this treatment with direct inhibition of kinetochore fiber for-
mation with an inhibitory NDC80 antibody (McCleland et al.,
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2003) and found that inhibition of both processes simultane-
ously caused spindle defects similar to those produced by in-
terfering with RNA biogenesis, whereas individual inhibitions
did not (Fig. 4, B-E). Directly blocking Aurora B activity with
the small molecule ZM447439 (Gadea and Ruderman, 2005)
resulted in MCAK localization defects similar to a-amanitin
treatment and gave additive effects with NDC80 inhibition, but
it did not increase the severity of ISGN-induced spindle defects
(Fig. S3, B and D). Thus, the mitotic function of the RNA pro-
cessing machinery is largely accounted for by its involvement
in Aurora B kinase activation and assembly of the centromere
and kinetochore. However, there is likely cross talk between
these two pathways in egg extracts because Aurora B inhibi-
tion interferes with outer kinetochore assembly (Emanuele et
al., 2008), and centromeric transcription is required for Aurora
B enrichment at centromeres and normal bipolar attachment of
kinetochores (Blower, 2016).

Figure 4. ncRNA-dependent MCAK regu-
lation contributes to spindle integrity. (A) Ex-
ample images and quantification of MCAK
staining density after inhibition of splicing
(ISGN, n = 100) or transcription (TRIP,
n = 127) compared with the control (DMSO,
n = 89). In the merged image, microtubules
are red, MCAK is green, and DNA is blue.
Median MCAK  staining density increased
41.9% in ISGN+reated extract and 39.7%
in TRIPtreated extract. (B) Quantification of

MCAK Density (AU)
*x *k

Lk

DMSO ISGN TR.|P MCAK staining density after treatment with

buffer control (n = 466), aNDC80 antibodies

. (n = 477), a=amanitin (n = 350), or «cNDC80
Tubulin Merge

antibodies + o-amanitin (n = 262). Median
MCAK staining density increased 9.8% in
aNDC80-reated extract, 39.6% in o-aman-
itin-treated extract, and 43.8% in aNDC80
+ oaamanitin—treated extract. (C) Example
images of spindles formed under each of the
conditions in B. Bar, 10 pm. (D) Quantification
of spindle solidity under each of the conditions
in C. (E) Quantification of spindle microtubule
(MT) density under each of the conditions in
C. Median microtubule density decreased
22.5% in oNDC80+reated extract, 33.4%
in a-amanitin-treated extract, and 38.2%
in aNDC80 + a-amanitin-treated extract.
Bars, 10 pm. **, P < 10°19; *** P < 1015
(Kolmogorov—Smirnov test). AU, arbitrary units.

/ﬁ"

MT Density (AU)

*kk kK

Buffer + a-amanitin o-amanitin
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To begin to investigate the downstream function of RNA
biogenesis in spindle assembly, we examined TPX2, a spindle
assembly factor involved in kinetochore fiber formation (Ma et
al., 2011) and microtubule branching nucleation (Petry et al.,
2013), which has been shown to interact with the spliceosome
in human cells (Makarov et al., 2002). We observed decreased
levels of TPX2 on spindle microtubules upon treatment with
transcription initiation or splicing inhibitors (Fig. 5, A and B)
and found that addition of excess TPX2, but not the micro-
tubule-stabilizing agent DMSO, rescued the spindle defects
(Fig. 5, C and D; and Fig. S3 E). These results suggest that
specific pathways affecting microtubule dynamics and organi-
zation are downstream of mitotic ncRNA biogenesis and act
to stabilize the spindle. Given the known functions of TPX2,
we propose that inhibition of RNA processing reduces ampli-
fication of spindle microtubules by interfering with nucleation
from kinetochore fibers. However, it is also possible that excess

RNA processing contributes to spindle assembly
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Figure 5. Addition of TPX2 partially rescues

e spindle defects caused by perturbing ncRNA
: biogenesis. (A) Example images of TPX2 stain-
ing in control and inhibitor-treated reactions. In
the merged image, microtubules are red, TPX2
is green, and DNA is cyan. Bar, 10 pm. (B)
Plot showing the ratio of TPX2/tubulin inten-
sity in spindles in control (n = 242) and in-
hibitortreated reactions (ISGN n = 234, TRIP

0.5

DMSO  ISGN TRIP

DMSO + MBP ISGN + MBP TRIP + MBP
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= 120). The TPX2/tubulin ratio decreased
I 13.9% in ISGN-reated extract and 45.9%
in TRIP+reated extract. (C) Example images

of spindles assembled in extract after treat-
ment with DMSO + 200 nM MBP (n = 193),
ISGN + 200 nM MBP (n = 235), TRIP + 200
nM MBP (n = 199), ISGN + 200 nM TPX2
265), or TRIP + 200 nM TPX2 (n =

TRIP + TPX2

(n = .

126). Bar, 10 pm. (D) Quantification of spin-
dle microtubule density and spindle solidity
under each of the conditions in C. Median
microtubule density decreased 50.6% in
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TPX2 rescues spindle defects at least in part through the direct
activation of Aurora B (Iyer and Tsai, 2012).

In summary, our results show that splicing factors are
required for proper spindle assembly in Xenopus egg extracts
in the absence of global gene expression caused by at least
two RNA-dependent processes. The first is the involvement
of RNA biogenesis at the centromere in kinetochore assem-
bly, and the second is RNA-dependent activation of Aurora
B kinase. Given the conservation of centromeric transcription
across organisms (Chan and Wong, 2012), arole for the splicing
machinery is likely to be conserved and could explain mitotic
phenotypes observed upon splicing factor knockdown in cul-
tured cells (Goshima et al., 2007; Kittler et al., 2007; Somma
et al., 2008; Neumann et al., 2010). Although our analysis
focused on a known centromeric transcript, other transcripts
may be produced and function in mitosis. Importantly, our re-
sults show that RNA processing is not completely repressed
during mitosis as previously thought (Shin and Manley, 2002).
Further characterization of the RNAs and their downstream
impact on cell division promises to be an interesting ave-
nue for future research.

Xenopus egg exiracts, spindle assembly reactions, and drug treatments

X. laevis and X. tropicalis egg extracts were prepared and spindle
assembly reactions performed according to established protocols
(Maresca and Heald, 2006; Brown et al., 2007). In brief, meta-
phase-arrested extract was induced to enter interphase by the addition

DMSOISGN TRIP ISGN TRIP

MBP + ISGN-treated extract, 51.0% in MBP
+ TRIP—treated extract, 24.0% in TPX2 +
ISGN-treated extract, and increased 26.9%
in TPX2 + TRIP-treated extract. +, P < 0.05;
* P <105 **, P < 10710, *** P < 10-15
(Kolmogorov-Smirnov test).

of 0.5 mM CaCl,, and subsequently induced to enter mitosis by the
addition of one volume of metaphase-arrested extract after nuclei
had completed DNA replication. Interphase nuclei for mitotic in-
hibition experiments were flash frozen in 25 pl aliquots of extract
containing 8% (vol/vol) glycerol and stored at —80°C. Nuclei
were thawed by the addition of 1 ml egg lysis buffer (250 mM
sucrose, S0 mM KCl, 2.5 mM MgCl,, and 10 mM Hepes, pH 7.8)
and pelleted at 1,600 g for 5 min at room temperature, then resus-
pended in fresh metaphase-arrested extract as described (Helmke
and Heald, 2014). For mitotic inhibition experiments, fresh ex-
tract containing resuspended, cycled nuclei was split into sepa-
rate reactions to which a final concentration of 100 uM ISGN (gift
from D. Stanek, Institute of Molecular Genetics, Prague, Czech
Republic; EMD Millipore) or 25 uM triptolide (TRIP; Sigma-
Aldrich) was added. a-Amanitin (Sigma Aldrich) was used at a
concentration of 50 ug/ml, ZM447439 at 5 uM, and cycloheximide
(Sigma-Aldrich) at 100 and 1,000 pg/ml. Inhibitors were added
and resuspended rapidly in mitotic extract, as lag times >60 s led
to a significant decrease in phenotype severity and penetrance.
Additionally, all egg lysis buffer was aspirated from pelleted
nuclei as residual sucrose from the buffer masked the observed
phenotypes. Great care was also taken during fixation of spindle
reactions, as physical manipulation affected the recovery of frag-
ile spindles resulting from inhibitor treatment. Centromere and
kinetochore immunostaining experiments were performed in ex-
tracts treated throughout the entire cell cycle.

RNA-depleted extracts for centromere biogenesis assays were
generated by treating cytostatic factor-arrested extract with 20 ng/ul
RNase A for 30 min, then 1.5 U/ul RNasin (Promega) for 15 min before
addition of nuclei and inhibitor.
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Immunofluorescence, microscopy, and image analysis

All experiments were performed in at least biological triplicate. Im-
munofluorescence was performed as described (Maresca and Heald,
2006), except that all primary antibodies were used at 1:1000 dilution
and allowed to reach equilibrium for at least 12 h at 4°C. Secondary
antibody staining (Alexa Fluor 488-labeled anti-rabbit; Invitrogen)
was performed concomitant with Hoechst staining at final concentra-
tions of 1 pg/ml and 2 pg/ml, respectively, for 60 min at 21°C. Xen-
opus CENP-A and CENP-C antibodies were a gift from the Straight
Lab (Stanford University, Palo Alto, CA), Xenopus NDC80 antibody
was a gift from the Stukenberg Lab (University of Virginia, Charlottes-
ville, VA), and Xenopus MCAK antibody was a gift from C. Walczak
(Indiana University, Bloomington, IN). Images were obtained on an
epifluorescence microscope (BX51; Olympus) under 40x magnifica-
tion (0.75 NA; UPlanFl N; Olympus) with TRITC, DAPI, and FITC
filters (Chroma Technology Corp.) by an Orca-ER cooled CCD cam-
era (Hamamatsu Photonics).

Images were analyzed using a custom CellProfiler pipeline
(Grenfell et al., 2016), which scales image intensities between 0 and 1
based on image bit depth. Spindle phenotypes were evaluated using mi-
crotubule density (median rhodamine tubulin fluorescence value within
the segmented spindle structure) and solidity (area of spindle/area of
the convex hull of the spindle; Fig. S1), and kinetochore phenotypes
quantified by measuring the median FITC fluorescence intensity per
antibody labeled focus. Analysis of centromeric (CENP-A, CENP-C,
and NDC80) foci was performed on maximum intensity z-projected
images assembled using FIJI from seven successive focal planes at
2-um spacing. The fractional change in fluorescence intensity was cal-
culated by subtracting the treatment median from the control median
and dividing by the control median.

snRNA knockdown and immunodepletion

For U2 snRNA knockdown experiments, U2b DNA or scrambled con-
trol DNA oligonucleotides (Integrated DNA Technology; Black et al.,
1985; Pan and Prives, 1988, 1989; Pan et al., 1989) were heated at
80°C for 8 min, cooled on ice, and added to metaphase-arrested extract
to a final concentration of 2 mM and incubated at 19°C for 30 min to
allow for antisense oligo—targeted degradation by endogenous RNase
H. After incubation, 10 ul of extract was reserved for RNA isolation
and the remaining extract was split and half was driven through in-
terphase by the addition of 0.5 mM CaCl, (final concentration) after
addition of sperm nuclei. The other half was reserved on ice to drive the
extract back into mitosis after DNA replication was complete.

For immunodepletion, 72.5 ul Protein G beads (Invitrogen) was
used to couple 16 pg anti-TMG (trimethylguonosine; EMD Chemicals;
Krimer et al., 1984) or nonimmune IgG (Sigma-Aldrich) antibodies
in a PBS solution containing 0.2 pg/ul yeast tRNA (Sigma-Aldrich),
0.05% normal goat serum (Jackson ImmunoResearch), and 0.4 U/ul
RNasin (Promega). Coupling was performed at room temperature for
1 h. 40 pl of extract was subjected to two rounds of immunodepletion
(2 x 45 min on ice for X. laevis and 2 x 20 min at room temperature
for X. tropicalis). After each round, 2 pl of extract was set aside to
evaluate depletion efficiency by quantitative PCR (qPCR). After im-
munodepletion, extract was driven through interphase and analyzed for
spindle assembly. RNPs associated with bead-coupled antibodies were
analyzed as described previously (Stanék and Neugebauer, 2004), with
minor modifications. In brief, beads containing antibody-bound RNP
complexes were washed six times with NET-2 buffer (50 mM Tris-Cl,
pH 7.5, 150 mM NacCl, and 0.05% Nonidet P-40) and kept on ice. After
washing, beads were resuspended in NET-2 buffer containing 0.5%
SDS and mixed in 1:1 (vol/vol) ratio with 5:1 acidic phenol chloroform
(Sigma-Aldrich). After 1 h incubation at 37°C, they were centrifuged

at 10,000 g and RNA was precipitated from the aqueous phase by
acidic ethanol precipitation (300 mM sodium acetate, pH 5.5, and 70%
ethanol). Isolated RNA was resolved on a 10% polyacrylamide urea
gel and detected by silver staining or analyzed by RT-PCR (described
in the next section). CENP-C immunoprecipitations were performed
using the same protocol.

RNA isolation, RT-PCR, and qPCR analysis

RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific)
and 5:1 acidic phenol chloroform (Sigma-Aldrich) using the manufac-
turer’s protocol with minor modification. In brief, sample was homog-
enized in TRIzol and the protocol was followed through isopropanol
precipitation. After precipitation, RNA was resuspended in Diethyl-
pyrocarbonate-treated water and treated with RNase-free DNase |
(Roche) for 30 min at 37°C or DNA Removal kit (Ambion) then ex-
tracted twice with acidic phenol chloroform before reverse transcrip-
tion with Superscript III (Thermo Fisher Scientific) according to the
manufacturer’s protocols using random nonamers (qQPCR), oligo dT18
(qPCR), or ferl gene-specific primers (centromeric ncRNA analysis).
RNA integrity was assessed by running 1 pg of extracted RNA on an
agarose gel and staining with ethidium bromide.

qPCR was performed on cDNA generated with random nona-
mers (U2 snRNA knockdown experiments) or oligo-dT18 (immuno-
depletion experiments) and SuperScript III (Invitrogen), using SYBR
Green qPCR SuperMix on an ABI Thermalcycler. Analysis was per-
formed using the AAC; method with H3, 5S, or 18S as the reference
transcripts (Table S1).

RT-PCR analysis of centromeric ncRNAs was performed with
Phusion High Fidelity DNA Polymerase (New England Biolabs, Inc.)
on cDNA generated using gene specific primers. Primers (Integrated
DNA Technologies) were used at 0.5 uM final concentration and cDNA
at 2 ng/ul in standard reaction buffer. Touchdown PCR (Don et al.,
1991) was performed using 10 touchdown cycles with annealing tem-
peratures starting at 69°C and ending at 59°C followed by 30 cycles
with an annealing temperature of 59°C. Extension times were constant
throughout at 120 s. Negative controls were processed in parallel using
the same protocol except that reverse transcription was omitted.

Online supplemental material

Fig. S1 shows the validation of our knockdown and immunodepletion
experiments as well as phenotypes associated with splicing and
transcription inhibition in Xenopus egg extract. Fig. S2 shows
replicates of the experiments shown in Fig. 2 as well as isolated RNA
used for our PCR assay. Fig. S3 shows centromere and kinetochore
staining after transcription elongation inhibition; spindle phenotypes
associated with Aurora B, NDC80, and Aurora B plus splicing
inhibition; MCAK linescan after transcription or splicing inhibition;
and partial rescue of the splicing spindle phenotype after microtubule
stabilization. Table S1 contains primer sequences used in this study.
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.201604029/DC1.
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