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Chromatin assembly: Journey to the CENter

of the chromosome
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All eukaryotic genomes are packaged into basic units of
DNA wrapped around histone proteins called nucleo-
somes. The ability of histones to specify a variety of epi-
genetic states at defined chromatin domains is essential
for cell survival. The most distinctive type of chromatin is
found at centromeres, which are marked by the cen-
tromere-specific histone H3 variant CENP-A. Many of the
factors that regulate CENP-A chromatin have been iden-
tified; however, our Understonding of the mechanisms of
centromeric nucleosome assembly, maintenance, and
reorganization remains limited. This review discusses re-
cent insights into these processes and draws parallels
between centromeric and noncentromeric chromatin as-
sembly mechanisms.

Introduction
At its simplest level, the organization of chromatin in the ge-
nome consists of individual DNA molecules wrapped around
histone proteins (Kornberg, 1974; Olins and Olins, 1974). To-
gether they form the nucleosome particle, which contains one
(H3-H4), tetramer and two H2A-H2B dimers (Luger et al.,
1997). In recent years, it has become clear that the presence of
histone modifications and the deployment of histone variants
underlie specific genomic events, yet we are only beginning to
understand how these defined chromatin domains are nucleated
and how defects in their organization affect genome function.
Although we can now determine the composition of chro-
matin genome-wide, our ability to predict the functional output
of defined regions from their epigenetic profile remains lim-
ited. One striking exception to this is centromeric chromatin,
in which the presence of the histone H3 variant CENP-A (Earn-
shaw and Rothfield, 1985; also known as CenH3 [Talbert and
Henikoff, 2013]) is both necessary and sufficient to confer cen-
tromere activity to any genomic region, whether or not it con-
tains centromeric DNA sequences (Saffery et al., 2000; Heun et
al., 2006; Mendiburo et al., 2011). This remarkable connection
between a unique type of chromatin and the highly specialized
function it encodes has fascinated chromosome biologists for
more than three decades.
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Many aspects of the structure and functions of centro-
meric chromatin have been elucidated, but much is still un-
known, particularly concerning how centromeric nucleosomes
are reorganized during centromere establishment and mainte-
nance. In general terms, the process that leads to nucleosome
formation consists of steps that are shared between all dif-
ferent types of histone H3-containing nucleosomes. Nucleo-
somes are assembled from H3-H4 dimeric precursors (Tagami
et al., 2004), which form (H3-H4), tetramers. The deposition
of these tetramers onto DNA is followed by the sequential ad-
dition of two H2A-H2B dimers (Nakagawa et al., 2001). Be-
cause histones are unable to self-assemble into nucleosomes
under physiological conditions and tend to interact with DNA
nonspecifically (Wilhelm et al., 1978), histone chaperones (or
assembly factors) are required to assist in their assembly and
disassembly by regulating the interactions between histones
and DNA (Haushalter and Kadonaga, 2003). Assembly factors
in complex with histone dimers are then recruited to sites of
chromatin assembly by chromatin-associated proteins, where
they are deposited. After the formation of new nucleosomes,
chromatin organization is restored by chromatin remodeling
complexes, which promote nucleosome spacing. An overview
of this process is shown in Fig. 1.

In this review, we discuss our current understanding of
the mechanisms of centromere chromatin assembly and main-
tenance. We focus on the complex centromeres of metazoans,
drawing functional comparisons with the corresponding mech-
anisms of deposition and maintenance of canonical histone H3
(H3.1; broadly associated with the entire genome) and the re-
placement variant H3.3 (associated with transcriptionally active
regions and repetitive DNA; Loyola and Almouzni, 2007). We
also examine recent advances that have shed light on the dy-
namic chromatin transitions involving transcription and histone
acetylation that occur during CENP-A deposition.

CENP-A nucleosomes confer

centromere activity

During mitosis and meiosis, nucleosomes containing CENP-A
demarcate the genomic location where the kinetochore assem-
bles (McKinley and Cheeseman, 2016). A defective centromere/
kinetochore complex results in the incorrect segregation of chro-
mosomes, which is linked to developmental abnormalities, mis-
carriages, and cancer (Ehrlich et al., 2006; Amato et al., 2009).
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Figure 1. Overview of the stepwise assembly
of histone proteins onto chromatin. (A) Nucle-
osomes form from H3-H4 dimer precursors,
which associate with histone chaperones that
prevent nonspecific histone-DNA interactions.
These chaperones hand off histone dimers to
assembly factors, which are specific to the his-
tone they recognize. (B) The H3-H4 assembly
factor is recruited to target chromatin regions
by DNA-bound recruiter proteins, allowing the
deposition of (H3-H4), tetramers. (C) Upon the
incorporation of H2A-H2B dimers, the new
nucleosome forms. (D) The spacing of new
and old particles that might have been altered
during new histone deposition (disorganized
nucleosomes) is restored by the chromatin
remodeling activity of chromatin organizers
(organized nucleosomes).
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In plants and animals, centromeric chromatin is not uni-
formly composed of CENP-A nucleosomes, but instead contains
interspersed domains of CENP-A nucleosomes alternating with
stretches of H3 nucleosomes (Blower et al., 2002; Greaves et al.,
2007; Yan and Jiang, 2007). The functional significance of this
arrangement is unknown, but models of how it may contribute
to the three-dimensional organization of centromeric chromatin
have been proposed (Blower et al., 2002; Ribeiro et al., 2010).

As a histone that marks the centromere, CENP-A must
confer unique properties to the nucleosomes that contain it,
enabling it to mediate the specific recruitment of centromere
and kinetochore proteins. Furthermore, the distinct proper-
ties of CENP-A nucleosomes are likely to be critical for its
exclusively centromeric deposition and to prevent aberrant
assembly of CENP-A at noncentromeric locations. Thus, a
comparative understanding of the biophysical properties of
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CENP-A nucleosomes is of critical importance to understand
accurate genome inheritance.

Like all histone proteins, the C terminus of CENP-A con-
tains a globular histone fold domain (HFD), which consists of
three a-helices linked by two loops (Arents et al., 1991). A re-
gion encompassing loop 1 and the a2-helix of CENP-A, known
as the CENP-A targeting domain (CATD), is required for the
binding of CENP-A to centromeres and sufficient for conferring
centromere localization to a histone H3 chimera that contains
it (Vermaak et al., 2002; Black et al., 2004, 2007b). A compre-
hensive illustration showing the differences and similarities be-
tween histone H3 and CENP-A can be found in a recent review
(McKinley and Cheeseman, 2016).

The CATD mediates the recognition of CENP-A by its
specific assembly factor, called HJURP (Holliday junction rec-
ognition protein; Dunleavy et al., 2009; Foltz et al., 2009) in
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tetrapods and Scm3 (suppressor of chromosome missegregation
protein 3; Camabhort et al., 2007; Mizuguchi et al., 2007; Stoler
et al., 2007; Pidoux et al., 2009; Sanchez-Pulido et al., 2009)
in fungi. Flies use an evolutionarily distinct CENP-A assembly
factor called CAL1 (chromosome alignment defect 1; Goshima
et al., 2007; Erhardt et al., 2008; Phansalkar et al., 2012; Chen
et al., 2014), whereas nematodes, plants, fish, and other arthro-
pods lack clear homologues of any of these CENP-A assembly
factors (Sanchez-Pulido et al., 2009). For Drosophila melano-
gaster CENP-A, loop 1 has been shown to specify recognition
by CALI (Rosin and Mellone, 2016), whereas a CATD remains
poorly defined (Moreno-Moreno et al., 2011).

CENP-A harbors several physical features that distin-
guish it from histone H3. In humans, the HFD of CENP-A is
more than 60% identical to that of canonical H3, whereas the
N-terminal tail bears no sequence similarity with H3 (Sullivan
et al., 1994). Additionally, CENP-A nucleosomes harbor looser
DNA termini (Hasson et al., 2013), form particles that appear
smaller by atomic force microscopy (Dalal et al., 2007; Miell
et al., 2013), and display higher rigidity compared with their
canonical H3 counterparts (Black et al., 2007a).

In recent years, conflicting data have been reported re-
garding the precise composition and handedness of CENP-A
nucleosomes. Studies in yeast, flies, and humans supported the
existence of a nonoctameric particle containing one CENP-A-
H4 and one H2A-H2B dimer (called a hemisome) with DNA
wrapped right-handedly (Henikoff and Furuyama, 2012; Bui
et al., 2013). However, a growing number of studies, in vitro
and in vivo, have challenged that model, strongly favoring an
octameric CENP-A particle akin to the left-handed histone H3
in humans and flies (Black and Cleveland, 2011; De Rop et al.,
2012; Dunleavy et al., 2013). The initial proposal that human
CENP-A nucleosomes experience cell cycle-dependent size
fluctuations between hemisome and octamer configurations
(Bui et al., 2012) has also been challenged by data demon-
strating constant histone composition throughout the cell cycle
(Hasson et al., 2013; Padeganeh et al., 2013). Interestingly, a
recent study showed that the human centromere contains posi-
tively supercoiled DNA. However, this overwinding of centro-
meric DNA appears to be mediated by topoisomerase I, rather
than by the presence of right-handed CENP-A particles (Aze et
al., 2016). A hemisome structure, on the other hand, explains
both the positive supercoiling and the cleavage mapping of the
CENP-A nucleosome of budding yeast centromeres in vivo (Fu-
ruyama et al., 2006; Henikoff et al., 2014).

Additional insights into the properties of the human
CENP-A particle have emerged from analysis of the crystal
structure of the CENP-A octamer. The HFD of CENP-A con-
tains a shorter aN-helix compared with histone H3. This might
be important for the conformation of the DNA at the entrance
and exit of CENP-A nucleosomes and might have implications
for allowing DNA-binding proteins, such as CENP-B, to as-
sociate with CENP-A nucleosomes (Earnshaw and Rothfield,
1985). Furthermore, loop 1 of human CENP-A contains two
extra amino acids compared with H3, which are critical for the
stability of the CENP-A nucleosome and might provide a bind-
ing site for regulatory factors (Tachiwana et al., 2011).

An additional CENP-A—specific feature is its unstructured
C-terminal tail, which, in Xenopus laevis, is specifically rec-
ognized by the inner kinetochore protein CENP-C (Saitoh et
al., 1992; Guse et al., 2011). The C-terminal tail of CENP-A is
necessary for maintaining centromere identity, as H3 chimeras

containing both the CATD and the C-terminal tail of CENP-A
can sustain long-term centromere function (Fachinetti et al.,
2013). However, the C-terminal tail is not conserved across spe-
cies (for example, it is 6 aa long in humans, 1 aa in Schizosac-
charomyces pombe, and 3 aa in Drosophila). Whether or not the
C-terminal tail of CENP-A is also recognized by CENP-C in
these species remains to be determined. Collectively, the distinct
structural and biophysical properties of CENP-A nucleosomes
epigenetically specify the unique role of centromeric chroma-
tin, distinguishing it from any other region of the genome.

Parental CENP-A nucleosome retention

and redistribution in S phase

The repackaging of daughter DNA strands into chromatin during
replication occurs rapidly (Gasser et al., 1996). Parental (i.e.,
“old”) histone (H3.1-H4), tetramers are transferred behind the
replication fork in a random fashion to either DNA duplex (Sogo
et al., 1986; Jackson, 1988), and nascent (H3.1-H4), tetramers
are deposited in the gaps left during this process (Jackson and
Chalkley, 1985). Thus, after DNA replication, canonical nucle-
osomes consist of either entirely new or entirely parental tetra-
mers (Yamasu and Senshu, 1990). Although the factors that are
responsible for placing the parental H3.1-H4 histones back into
chromatin during replication are not fully known, chromatin-
associated anti-silencing factor 1 (ASF1) and the facilitates
chromatin transcription (FACT) complex have been found to as-
sociate with parental histones (Groth et al., 2007; Foltman et al.,
2013), and thus might contribute to their retention (Fig. 2 A).

For some genomic loci, parental histones carry specific
epigenetic information, the retention of which during replica-
tion is essential for specifying various chromatin identities.
This is particularly important for CENP-A chromatin, the loss
of which results in the failure to demarcate the point of attach-
ment by spindle microtubules in mitosis and meiosis, leading to
chromosome loss (McKinley and Cheeseman, 2016).

A photo-bleaching, single-molecule counting method has
shown CENP-A to be present in two copies in each nucleosome
throughout the cell cycle, suggesting that CENP-A is retained
as a tetramer, without dimer intermediates through DNA repli-
cation (Padeganeh et al., 2013; Fig. 2 B). The gaps left by the
redistribution of parental CENP-A nucleosomes are temporar-
ily occupied by histone H3.1 and H3.3, which are deposited
during S phase as possible gap-fillers (Dunleavy et al., 2011).

As with the mechanisms of retention of parental
(H3.1-H4), tetramers, very little is known about the mechanism
of CENP-A maintenance at the centromere. The retention of
parental CENP-A across cell division (Jansen et al., 2007; Mel-
lone et al., 2011) and the paucity of CENP-A exchange detected
by FRAP experiments (Hemmerich et al., 2008) suggest that
CENP-A is actively retained at centromeres during DNA rep-
lication. Indeed, pulse-chase experiments have demonstrated
that parental CENP-A nucleosomes outlast their histone H3.1
and H3.3 counterparts, indicating that noncentromeric chroma-
tin experiences higher turnover. Intriguingly, the high stability
of CENP-A through multiple cell cycles is encoded within the
CATD, even though it does not require HIURP (Bodor et al.,
2013). The physical properties conferred by the CATD, or an
as-yet-unidentified factor interacting with it, could confer high
stability and prevent CENP-A nucleosomes from dissociating
during DNA replication (Fig. 2 B).

Other properties of centromeric chromatin, or of chroma-
tin in its vicinity, might contribute to the retention and stability
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Figure 2. Histone deposition and retention during DNA replication. (A) De novo histone H3.1-H4 deposition is initiated when new H3.1-H4 dimer
precursors interact with the chaperone ASF1. ASF1 then hands them to the assembly factor CAF1 in complex with Rit106. The (H3.1-H4), tetramer then
forms and is deposited onto DNA via an interaction between CAF1 and the recruiter protein, proliferating cell nuclear antigen (PCNA). At the replication
fork, FACT is associated with the minichromosome maintenance (MCM) complex to promote chromatin disassembly. Parental (H3.1-H4), tetramers are
transferred behind the replication fork in a random fashion, possibly aided by FACT and ASF1. (B) During S phase, parental (CENP-A-H4), tetramers are
depicted as being retained as intact molecules, consistent with the observed retention of preexisting CENP-A at replicated centromeres. The stability of
CENP-A nucleosomes through multiple cell cycles is encoded within the CATD, through either the specific physical characteristics it confers or its interac-
tion with an unknown factor. CENP-C binds to the C-terminal tail of CENP-A, further stabilizing the CENP-A nucleosome, which might be important for its

retention through S phase.

of CENP-A through DNA replication. Condensin II has mul-
tiple roles in the regulation of interphase chromatin and was
found to stabilize Xenopus CENP-A nucleosomes (Bernad et
al., 2011). Furthermore, interference with normal condensin
II degradation in Drosophila cells results in the dispersion of
CENP-A foci (Buster et al., 2013). Whether the role of conden-
sin IT in CENP-A stability is specific to S phase remains to be
established, but clearly, altering chromatin condensation affects
centromeric chromatin integrity.

CENP-A retention may be enhanced by its interactions
with binding partners. CENP-C is required for the stability of

JCB » VOLUME 214 « NUMBER 1 » 2016

CENP-A nucleosomes (Falk et al., 2015, 2016) and is thus a
primary candidate for a role in stabilizing CENP-A nucle-
osomes during DNA replication (Fig. 2 B). Furthermore,
chromatin assembly factor 1 (CAF1) subunits RbAp46/48 in
humans and p55 in Drosophila mediate chromatin assembly
during DNA replication (Smith and Stillman, 1989; Fig. 2 A)
and interact with CENP-A (Foltz et al., 2006; Furuyama et al.,
2006; Dunleavy et al., 2009; Shuaib et al., 2010), suggesting
that CAF1 might play a role in CENP-A maintenance during S
phase. So far, this interaction has been detected only in soluble
(i.e., not yet chromatin incorporated) or cytoplasmic CENP-A;

920z Ateniga g0 uo 1senb Aq Jpd°50050910Z A9l/L L ¥S6S L/ L/ LIV LE/Pd-81one/qol/Bio ssaidny//:dny wouy pepeojumoq



therefore, it remains to be established whether this complex
puts CENP-A back onto DNA during DNA replication, as ob-
served for histone H3.1. Thus, a combination of the regulation
of chromatin architecture (e.g., condensin II) and the presence
of interacting partners (e.g., CENP-C, RbAp46/48, and p55)
could ensure that CENP-A is not lost from parental nucleo-
somes during DNA replication.

Nascent CENP-A deposition is uncoupled
from replication

Histone H3.1 is deposited in a DNA replication—dependent
manner (Wu and Bonner, 1981; Jackson, 1988), whereas the
variant H3.3 is deposited onto chromatin throughout the cell
cycle, independently of DNA synthesis (Hake and Allis,
2006; Hake et al., 20006).

Controlling when newly synthesized CENP-A is de-
posited has long been proposed to be a means to distinguish
centromeric from bulk chromatin composed of histone H3 nu-
cleosomes (Ahmad and Henikoff, 2002). CENP-A is consis-
tently incorporated into chromatin outside of S phase in most
organisms (McKinley and Cheeseman, 2016), with the ex-
ception of budding yeast (Pearson et al., 2004). The timing of
CENP-A deposition differs among species; CENP-A is depos-
ited between mitosis and G1 in Drosophila (Schuh et al., 2007;
Mellone et al., 2011; Dunleavy et al., 2012; Lidsky et al., 2013),
between G2 and prophase in Dictyostelium discoideum (Dubin
et al., 2010), and in G2 in Arabidopsis thaliana (Lermontova
et al., 2006). Fission yeast can deposit CENP-A during both S
phase and G2 (Takahashi et al., 2005), whereas in human cells
and Xenopus egg extracts, CENP-A is deposited from late te-
lophase through G1 (Jansen et al., 2007; Bernad et al., 2011).

The cell cycle timing of CENP-A deposition results from
an interplay between cell cycle regulators and the CENP-A
loading machinery. CENP-A deposition is antagonized by the
activity of cyclin dependent kinase 1 (Cdkl) in human and
Drosophila cells (Mellone et al., 2011; Silva et al., 2012; Yu et
al., 2015). After its specific loading window, CENP-A is con-
stantly maintained at the centromere (Bodor et al., 2013). A
GTPase-activating protein, male germ cell RacGap, is required
for this maintenance (Lagana et al., 2010).

Prenucleosomal CENP-A is in complex with histone
H4 (Foltz et al., 2009), and in human cells, newly synthesized
CENP-A and H4 are detected at centromeres in G1, suggest-
ing that their deposition occurs in the form of an intact nascent
complex (Bodor et al., 2013). HIURP and Scm3 bind CENP-A-
H4 dimers, preventing the formation of (CENP-A-H4), te-
tramers (Cho and Harrison, 2011; Feng et al., 2011; Hu et al.,
2011). Therefore, (CENP-A-H4), tetramers are thought to form
via the self-dimerization of the HHURP/CENP-A/H4 complex,
followed by their deposition (Zasadziriska et al., 2013). How-
ever, how the final octameric structure of CENP-A nucleosomes
forms remains elusive. Fig. 3 outlines two possible models.
In one model, parental (H3-H4), tetramers are replaced with
new (CENP-A-H4), tetramers within intact nucleosomes that
contain old H2A-H2B dimers. In the other, preexisting H3-
containing centromeric nucleosomes are disassembled and re-
assembled by incorporating new (CENP-A-H4), tetramers and
a mix of old and new H2A-H2B dimers. The fact that nascent
H2B at the centromeres incorporates at a rate that is indistin-
guishable from that of the rest of the genome (Bodor et al., 2013)
is consistent with either model. Regardless of the specific mech-
anism of nucleosome assembly, these new CENP-A particles

must replenish the halved CENP-A complement of replicated
sister chromosomes (Jansen et al., 2007; Mellone et al., 2011).

Although two recent imaging-based quantitative studies
seem to differ on whether sister centromeres contain consis-
tently similar or different amounts of CENP-A in metaphase
(Bodor et al., 2014; Ross et al., 2016), which has implications
for our understanding of the mechanisms of CENP-A redistri-
bution during S phase, it is clear that, in G1, new CENP-A is
deposited within preexisting CENP-A domains, whereas inter-
spersed histone H3 stretches do not experience CENP-A ex-
change (Ross et al., 2016).

CENP-A hand-off and recruitment

Before being assembled into nucleosomes, histones need to
be delivered to the assembly factor that will deposit them at
their designated chromatin regions (Fig. 1). Nascent H3.1-H4
dimers are associated with ASF1 and, after nuclear import, are
handed off to CAF1 (Tyler et al., 2001; Fig. 2 A). Likewise,
newly synthesized H3.3-H4 dimers are handed off by ASFI to
the H3.3-specific chaperones histone regulatory homologue A
(HIRA; Daniel Ricketts et al., 2015) or death domain—associated
protein (DAXX; Elsésser et al., 2012) for their recruitment at
transcribed regions or at the telomeres and heterochromatin,
respectively (Dran€ et al., 2010; Goldberg et al., 2010; Lewis
et al., 2010). However, the factors that hand off CENP-A to its
specific chaperones, HITURP/Scm3 and CALI1, are unknown,
and human CENP-A does not appear to associate with ASF1
(Dunleavy et al., 2009). CAF1 is recruited to DNA through
an interaction with proliferating cell nuclear antigen close to
the replication fork (Shibahara and Stillman, 1999) and medi-
ates the deposition of nascent (H3.1-H4), tetramers through-
out the genome (Fig. 2 A).

Several factors recruit the H3.3 chaperone HIRA to chro-
matin, including the GAGA factor, which targets HIRA to GAGA
factor binding sites in Drosophila (Nakayama et al., 2007).
Conversely, for the H3.3 chaperone, DAXX, the only known
recruiting complex is the chromatin remodeler o-thalassemia/
mental retardation syndrome protein (ATRX), which tar-
gets DAXX to heterochromatic regions in mouse embryonic
stem cells (Lewis et al., 2010; Voon and Wong, 2016). Thus,
the assembly factors for histone H3.1 and H3.3 are recruited
to specific chromatin domains through their interaction
with distinct partners.

Unlike global histone H3 deposition, targeting of CENP-A
by its specific assembly factors features both spatial and tempo-
ral control, which strictly govern its deposition at centromeres
to prevent the formation of spurious kinetochore attachments
(Valente et al., 2012). In human cells, HJURP is recruited to
centromeric chromatin by the Mis18 complex, composed of
hMis18a, hMis18p, and Mis18BP1, during mitotic exit (Fu-
jita et al., 2007; Barnhart et al., 2011). The Mis18 complex is
recruited to centromeres via an interaction with centromere-
bound CENP-C (Moree et al., 2011; Dambacher et al., 2012).
The formation of an hMis18a-hMis18p heterotetramer (and a
Mis18 homotetramer in S. pombe) is required for centromere
binding of the Mis18 complex. Upon HJURP binding, the het-
erotetramer is disrupted, causing the Mis18 complex to dissoci-
ate from the centromere, thereby limiting CENP-A loading to a
one-time event per cell cycle (Nardi et al., 2016; Subramanian
et al., 2016). Additional regulation occurs through Cdk1/Cdk2
activity, which inhibits the assembly of the Mis18 complex until
anaphase onset, and phosphorylation of Mis18BP1 by Polo-like
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kinase 1 promotes its association with CENP-C, resulting in
centromere recruitment (McKinley and Cheeseman, 2014).

The recruitment machinery for the CENP-A/H4-chaperone
complex is conserved in fission yeast and Caenorhabditis ele-
gans (Hayashi et al., 2004; Maddox et al., 2007). However, the
Mis18 complex is absent in Drosophila, where the centromeric
localization of the CENP-A assembly factor CAL1 depends
solely on CENP-C (Chen et al., 2014).

Chromatin reorganization during

CENP-A replacement

The recruitment of histone H3 and its variants at the site des-
ignated for assembly must be coupled with the reorganization
of local chromatin to (a) displace unwanted histones or nucleo-
somes; (b) make room for new nucleosomes; and/or (c) respace
nucleosomes that have shifted during new nucleosome assem-
bly (Fig. 1 C). How chromatin is remodeled during CENP-A
deposition is poorly understood. The chaperones HJURP,
Scm3, and CAL1 have been shown in vitro to harbor selective
affinity for CENP-A over histone H3 and to mediate CENP-A
nucleosome formation on naked DNA plasmids (Barnhart et
al., 2011; Cho and Harrison, 2011; Chen et al., 2014). How-
ever, it is unclear whether these assembly factors can reorganize
preexisting H3.1/H3.3-containing nucleosomes to make room
for CENP-A. DNA-histone interactions need to be altered for
this purpose, and several mechanisms have been identified
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Figure 3. Possible mechanisms for the for-
mation of CENP-A nucleosomes. (A) CENP-A
is deposited in its teframeric (CENP-A-H4),
form onto DNA. The CENP-A octamer might
form via the eviction of the placeholder (H3.1/
H3.3-H4), tetramers, within intact nucleo-
somes containing old H2A-H2B dimers. (B) Al-
ternatively, preexisting H3.1/H3.3-containing
nucleosomes could be entirely disassembled
from DNA, with new (CENP-A-H4), tetramers
deposited, followed by the assembly of H2A-
H2B dimers from a pool of old and new ones.

old H2A-H2B dimer

new H2A-H2B dimer

that can perform these changes, such as the deployment of
ATP-dependent histone remodelers and histone chaperones and
the passage of DNA replication and transcription machineries
(Gruss et al., 1993; De Koning et al., 2007; Liu et al., 2010;
Ransom et al., 2010; Kharchenko et al., 2011).

For histone H3.3 deposition during Drosophila embryo-
genesis, HIRA relies on the ATP-dependent remodeler protein
chromodomain helicase DNA binding protein 1 (CHD1) for
global chromatin reorganization (Konev et al., 2007), whereas
in murine embryonic stem cells, DAXX cooperates with the
chromatin-remodeling factor ATRX to incorporate H3.3-H4 di-
mers at repetitive chromatin regions (Lewis et al., 2010). Thus,
the cooperation between H3.3 assembly factors and ATP re-
modelers suggests that nucleosome reorganization is necessary
for histone replacement. Consistent with this idea, the remod-
eler CHDI has been shown to localize to the centromere and
to be required for the localization of CENP-A in fission yeast
and chicken cells (Walfridsson et al., 2005; Okada et al., 2009),
suggesting that this ATPase/helicase contributes to CENP-A
chromatin formation (Fig. 4). CHD1 is apparently not required
for proper CENP-A localization in flies (Podhraski et al., 2010),
suggesting that other chromatin remodelers might be used in
different species for this purpose.

Another chromatin remodeler, the remodeling and spacing
factor (RSF) complex, is also implicated in centromere chroma-
tin function, specifically in the process of CENP-A nucleosome

920z Ateniga g0 uo 1senb Aq Jpd°50050910Z A9l/L L ¥S6S L/ L/ LIV LE/Pd-81one/qol/Bio ssaidny//:dny wouy pepeojumoq



A Histone
hand-off

—>

BN

B I.‘*

H3-H4
eviction

<

c Y
SOSONEHENGEE)

N

C
&S

Figure 4. Chromatin reorganization during

| CENP-A assembly in humans. (A) Newly syn-

. thesized CENP-A-H4 dimers in complex with

an as-yetunidentified chaperone are handed

off to the assembly factor HJURP, which is

recruited to the centromere by the Mis18

complex-CENP-C  pathway (not depicted).

(B) After the recruitment of CHD1, FACT, and

\ RNA polymerase Il, the placeholder (H3.1/

H3.3-H4), tetramers (or entire nucleosomes)

are disassembled and (CENP-A-H4), tetramers

are deposited onto DNA. Mis18 transiently

recruits the lysine acetyltransferase KAT7 to

centromeres, which acetylates H3-containing

nucleosomes and facilitates RSF binding. (C)

After their formation, new CENP-A nucleo-

somesare spaced by the RSF complex, which
promotes CENP-B binding.

(&

_A- -
giEnr:JsrA H4 ’ zg@merase Unknown factor FACT
+ CENP-A-H4 H3-H4
tetramer tetramer - HJURP ‘ RSF
( t* CENP-A TR
S nucleosome Q_)\/ nuceosome 0 cHo CENP-B
KAT7 . Ac

incorporation and in nucleosome spacing. In human cells,
CENP-A nucleosomes display specific positioning, binding to
a-satellite DNA, such that the CENP-B box is adjacent to the
proximal edge of the nucleosome (Hasson et al., 2013). This
positioning enhances the binding of CENP-B, which stabilizes
the CENP-A nucleosomes (Fujita et al., 2015). How this posi-
tioning is accomplished is unknown, but it could involve the
ATP-dependent spacing activity of RSF, given its ability to
space CENP-A nucleosomes in vitro and its interaction with
CENP-B (Perpelescu et al., 2009; Fig. 4 C).

The two RSF subunits, RSF1 and SNF2h, associate
with human CENP-A (Obuse et al., 2004; Izuta et al., 2006;
Perpelescu et al., 2009), are enriched at centromeres in inter-
phase, and are required for CENP-A chromatin incorporation in
vivo and for assembly of CENP-A nucleosomes in vitro (Per-
pelescu et al., 2009). RSF was recently shown to be recruited
to centromeres by a novel mechanism involving the transient
acetylation of centromeric chromatin by the lysine acetyl trans-
ferase KAT7, which is recruited by Mis18BP1 during G1. Re-
cruitment of KAT7 also stimulates transcription (Ohzeki et al.,
2016; Fig. 4 B), a process that has been gaining attention as an
additional mechanism by which chromatin can be reorganized
during centromeric chromatin assembly.

Transcription-mediated chromatin
reorganization

During transcription, the passage of RNA polymerases along the
DNA increases histone exchange (Jackson, 1990). Consistent

with this model is that the association between HIRA and tran-
scriptional elongation factors promotes the replacement of H3.1
with H3.3 (Nakayama et al., 2007; Ray-Gallet et al., 2011; Sarai
et al., 2013), suggesting that HIRA-mediated H3.3 deposition
might replenish histone H3-H4 complexes that were lost during
transcription, thereby maintaining chromatin integrity. The role
of transcription in promoting centromere integrity is emerging
as an important and potentially conserved mechanism of cen-
tromere regulation (Fig. 4; Chan and Wong, 2012; Gent and
Dawe, 2012; Hall et al., 2012; Rosi¢ and Erhardt, 2016).
Intriguingly, the active form of RNA polymerase II has
been found to be enriched at the centromeres of several organ-
isms (Chan et al., 2012; Rosi¢ et al., 2014; Catania et al., 2015)
and, in flies, it was shown to physically interact with CALL,
suggesting that CENP-A delivery to centromeric chromatin is
coupled with the recruitment of the transcriptional machinery
(Chen et al., 2015). In human and fly cells, CENP-A has been
shown to associate with the histone chaperone, FACT, which has
been implicated in promoting transcription through chromatin
by all three RNA polymerases (Belotserkovskaya and Reinberg,
2004; Obuse et al., 2004; Foltz et al., 2006; Okada et al., 2009;
Chen et al., 2015). FACT is enriched at the centromeres of fly,
chicken, human, and mouse cells, and in flies and chickens, this
complex has been shown to be required for CENP-A localization
(Okada et al., 2009; Chan et al., 2012; Chen et al., 2015). Given
the ability of FACT to invade the nucleosome, breaking strong
DNA/octamer contacts (Hondele et al., 2013), one model is that
FACT destabilizes the nucleosome, facilitating the passage of
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the transcriptional machinery (Hondele and Ladurner, 2013),
which in turn could evict placeholder (H3-H4), tetramers to
make room for the assembly of new (CENP-A-H4), tetramers
(Chen et al., 2015). In fungi, however, FACT does not appear to
be directly required for proper CENP-A deposition, but instead
is involved in preventing the ectopic incorporation of CENP-A
(Choi et al., 2012; Deyter and Biggins, 2014). Thus, it is possi-
ble that the direct involvement of FACT in CENP-A deposition
is shared only among complex organisms.

The transcriptional machinery associated with cen-
tromeres can produce transcripts that either are stable or can
be detected in genetic backgrounds that prevent their rapid
processing (Nagaki et al., 2004; Choi et al., 2011; Ohkuni and
Kitagawa, 2011; Chan et al., 2012). Centromeric transcripts
have now been detected in a myriad of systems ranging from
species as diverse as maize and frogs. In some instances, cen-
tromere-derived RNAs have been shown to play a structural
role in centromere or kinetochore integrity (Topp et al., 2004;
Ferri et al., 2009; Chan et al., 2012; Carone et al., 2013; Quénet
and Dalal, 2014; Rosi¢ et al., 2014; Blower, 2016).

Transcription could contribute to CENP-A chromatin
function by promoting histone H3/CENP-A exchange or by
generating transcripts that interact with the CENP-A assembly
machinery, aiding in its function. Whether or not the primary
role of centromeric transcription is to contribute to CENP-A
deposition, as opposed to producing functional RNAs, is unclear.

Knockdown of specific centromere-derived RNAs causes
defects in centromeric chromatin function (Carone et al., 2013;
Quénet and Dalal, 2014); on the other hand, transcripts are also
produced from noncentromeric genomic locations that have ac-
quired CENP-A, such as naturally occurring neocentromeres in
humans (Chueh et al., 2009), de novo centromeres on human
artificial chromosomes (Bergmann et al., 2011), and synthetic
centromeres in Drosophila (Chen et al., 2015). These findings
suggest that transcription-mediated chromatin reorganization is
associated with centromere chromatin establishment and main-
tenance regardless of the genomic location. Given that these
nonnative centromeres appear to function reasonably well, ei-
ther any RNA (centromeric or not) produced during CENP-A
deposition can perform structural functions or specific cen-
tromere-derived RNAs play a secondary role. Alternatively,
endogenous centromeric RNAs could supply critical structural
functions in trans to kinetochores assembled at artificial cen-
tromeres or to neocentromeres. The observation that centro-
meric RNAs derived from specific chromosomes localize and
affect the kinetochore function of other chromosomes in both
Xenopus and Drosophila (Rosic¢ et al., 2014; Blower, 2016) is
consistent with this model.

Experiments in fission yeast suggest that the critical prop-
erty of centromeric DNA lies in the particular transcriptional
environment it provides for CENP-A loading. The central do-
main of the fission yeast centromere contains several transcrip-
tional start sites and cryptic promoters from which low levels of
transcripts are produced despite high levels of RNA polymerase
11, consistent with transcriptional stalling. Mutants that increase
stalling of RNA polymerase II augment CENP-A deposition,
suggesting that the quality of transcription provides an optimal
transcriptional environment for the correct amount of CENP-A
to be deposited (Catania et al., 2015). Collectively, much of
these recent findings, together with the notion that centro-
meric DNA evolves rapidly, raise the possibility that the main
evolutionary constraint at centromeres is their amenability to
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moderate levels of transcription (Jiang et al., 2003; O’Neill and
Carone, 2009; Chan and Wong, 2012; Catania et al., 2015). Sep-
arating the role of transcription itself from that of the resulting
centromere-derived RNAs will be an exciting future challenge
for the centromere biology field.

Conclusions and future directions

Since the discovery of CENP-A more than 30 years ago, our
understanding of the mechanisms of its faithful deposition at
centromeres has increased significantly. Major advances in-
clude the high-resolution imaging of chromatin fibers and intact
nuclei with labeled histones, which has provided unprecedented
spatial and temporal resolution of CENP-A dynamics through
the cell cycle; the biochemical and structural studies that clar-
ified the mechanics of (CENP-A-H4), tetramer formation; and
the dissection of the complex interplay between the CENP-A
recruitment machinery involving Mis18 and the cell cycle. Yet,
many key questions remain unanswered, for example, how tran-
scription contributes to CENP-A chromatin establishment.

The CENP-A nucleosome assembly pathway harnesses
the functions of histone chaperones, remodeling factors, tran-
scription factors, and histone-modifying enzymes that play crit-
ical roles in maintaining chromatin integrity at noncentromeric
regions. Thus, determining how the multiple roles of these fac-
tors do not conflict with one another (e.g., by promoting H3.3
instead of CENP-A incorporation at the centromere in G1) will
be another important future direction of research.
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