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Introduction
At its simplest level, the organization of chromatin in the ge-
nome consists of individual DNA molecules wrapped around 
histone proteins (Kornberg, 1974; Olins and Olins, 1974). To-
gether they form the nucleosome particle, which contains one 
(H3-H4)2 tetramer and two H2A-H2B dimers (Luger et al., 
1997). In recent years, it has become clear that the presence of 
histone modifications and the deployment of histone variants 
underlie specific genomic events, yet we are only beginning to 
understand how these defined chromatin domains are nucleated 
and how defects in their organization affect genome function.

Although we can now determine the composition of chro-
matin genome-wide, our ability to predict the functional output 
of defined regions from their epigenetic profile remains lim-
ited. One striking exception to this is centromeric chromatin, 
in which the presence of the histone H3 variant CENP-A (Earn-
shaw and Rothfield, 1985; also known as CenH3 [Talbert and 
Henikoff, 2013]) is both necessary and sufficient to confer cen-
tromere activity to any genomic region, whether or not it con-
tains centromeric DNA sequences (Saffery et al., 2000; Heun et 
al., 2006; Mendiburo et al., 2011). This remarkable connection 
between a unique type of chromatin and the highly specialized 
function it encodes has fascinated chromosome biologists for 
more than three decades.

Many aspects of the structure and functions of centro-
meric chromatin have been elucidated, but much is still un-
known, particularly concerning how centromeric nucleosomes 
are reorganized during centromere establishment and mainte-
nance. In general terms, the process that leads to nucleosome 
formation consists of steps that are shared between all dif-
ferent types of histone H3-containing nucleosomes. Nucleo-
somes are assembled from H3-H4 dimeric precursors (Tagami 
et al., 2004), which form (H3-H4)2 tetramers. The deposition 
of these tetramers onto DNA is followed by the sequential ad-
dition of two H2A-H2B dimers (Nakagawa et al., 2001). Be-
cause histones are unable to self-assemble into nucleosomes 
under physiological conditions and tend to interact with DNA 
nonspecifically (Wilhelm et al., 1978), histone chaperones (or 
assembly factors) are required to assist in their assembly and 
disassembly by regulating the interactions between histones 
and DNA (Haushalter and Kadonaga, 2003). Assembly factors 
in complex with histone dimers are then recruited to sites of 
chromatin assembly by chromatin-associated proteins, where 
they are deposited. After the formation of new nucleosomes, 
chromatin organization is restored by chromatin remodeling 
complexes, which promote nucleosome spacing. An overview 
of this process is shown in Fig. 1.

In this review, we discuss our current understanding of 
the mechanisms of centromere chromatin assembly and main-
tenance. We focus on the complex centromeres of metazoans, 
drawing functional comparisons with the corresponding mech-
anisms of deposition and maintenance of canonical histone H3 
(H3.1; broadly associated with the entire genome) and the re-
placement variant H3.3 (associated with transcriptionally active 
regions and repetitive DNA; Loyola and Almouzni, 2007). We 
also examine recent advances that have shed light on the dy-
namic chromatin transitions involving transcription and histone 
acetylation that occur during CENP-A deposition.

CENP-A nucleosomes confer 
centromere activity
During mitosis and meiosis, nucleosomes containing CENP-A 
demarcate the genomic location where the kinetochore assem-
bles (McKinley and Cheeseman, 2016). A defective centromere/
kinetochore complex results in the incorrect segregation of chro-
mosomes, which is linked to developmental abnormalities, mis-
carriages, and cancer (Ehrlich et al., 2006; Amato et al., 2009).

All eukaryotic genomes are packaged into basic units of 
DNA wrapped around histone proteins called nucleo-
somes. The ability of histones to specify a variety of epi-
genetic states at defined chromatin domains is essential 
for cell survival. The most distinctive type of chromatin is 
found at centromeres, which are marked by the cen-
tromere-specific histone H3 variant CENP-A. Many of the 
factors that regulate CENP-A chromatin have been iden-
tified; however, our understanding of the mechanisms of 
centromeric nucleosome assembly, maintenance, and  
reorganization remains limited. This review discusses re-
cent insights into these processes and draws parallels 
between centromeric and noncentromeric chromatin as-
sembly mechanisms.
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In plants and animals, centromeric chromatin is not uni-
formly composed of CENP-A nucleosomes, but instead contains 
interspersed domains of CENP-A nucleosomes alternating with 
stretches of H3 nucleosomes (Blower et al., 2002; Greaves et al., 
2007; Yan and Jiang, 2007). The functional significance of this 
arrangement is unknown, but models of how it may contribute 
to the three-dimensional organization of centromeric chromatin 
have been proposed (Blower et al., 2002; Ribeiro et al., 2010).

As a histone that marks the centromere, CENP-A must 
confer unique properties to the nucleosomes that contain it, 
enabling it to mediate the specific recruitment of centromere 
and kinetochore proteins. Furthermore, the distinct proper-
ties of CENP-A nucleosomes are likely to be critical for its 
exclusively centromeric deposition and to prevent aberrant 
assembly of CENP-A at noncentromeric locations. Thus, a 
comparative understanding of the biophysical properties of 

CENP-A nucleosomes is of critical importance to understand 
accurate genome inheritance.

Like all histone proteins, the C terminus of CENP-A con-
tains a globular histone fold domain (HFD), which consists of 
three α-helices linked by two loops (Arents et al., 1991). A re-
gion encompassing loop 1 and the α2-helix of CENP-A, known 
as the CENP-A targeting domain (CATD), is required for the 
binding of CENP-A to centromeres and sufficient for conferring 
centromere localization to a histone H3 chimera that contains 
it (Vermaak et al., 2002; Black et al., 2004, 2007b). A compre-
hensive illustration showing the differences and similarities be-
tween histone H3 and CENP-A can be found in a recent review 
(McKinley and Cheeseman, 2016).

The CATD mediates the recognition of CENP-A by its 
specific assembly factor, called HJU​RP (Holliday junction rec-
ognition protein; Dunleavy et al., 2009; Foltz et al., 2009) in 

Figure 1.  Overview of the stepwise assembly 
of histone proteins onto chromatin. (A) Nucle-
osomes form from H3-H4 dimer precursors, 
which associate with histone chaperones that 
prevent nonspecific histone–DNA interactions. 
These chaperones hand off histone dimers to 
assembly factors, which are specific to the his-
tone they recognize. (B) The H3-H4 assembly 
factor is recruited to target chromatin regions 
by DNA-bound recruiter proteins, allowing the 
deposition of (H3-H4)2 tetramers. (C) Upon the 
incorporation of H2A-H2B dimers, the new 
nucleosome forms. (D) The spacing of new 
and old particles that might have been altered 
during new histone deposition (disorganized 
nucleosomes) is restored by the chromatin 
remodeling activity of chromatin organizers 
(organized nucleosomes).

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/214/1/13/1595417/jcb_201605005.pdf by guest on 08 February 2026



Chromatin assembly • Chen and Mellone 15

tetrapods and Scm3 (suppressor of chromosome missegregation 
protein 3; Camahort et al., 2007; Mizuguchi et al., 2007; Stoler 
et al., 2007; Pidoux et al., 2009; Sanchez-Pulido et al., 2009) 
in fungi. Flies use an evolutionarily distinct CENP-A assembly 
factor called CAL1 (chromosome alignment defect 1; Goshima 
et al., 2007; Erhardt et al., 2008; Phansalkar et al., 2012; Chen 
et al., 2014), whereas nematodes, plants, fish, and other arthro-
pods lack clear homologues of any of these CENP-A assembly 
factors (Sanchez-Pulido et al., 2009). For Drosophila melano-
gaster CENP-A, loop 1 has been shown to specify recognition 
by CAL1 (Rosin and Mellone, 2016), whereas a CATD remains 
poorly defined (Moreno-Moreno et al., 2011).

CENP-A harbors several physical features that distin-
guish it from histone H3. In humans, the HFD of CENP-A is 
more than 60% identical to that of canonical H3, whereas the 
N-terminal tail bears no sequence similarity with H3 (Sullivan 
et al., 1994). Additionally, CENP-A nucleosomes harbor looser 
DNA termini (Hasson et al., 2013), form particles that appear 
smaller by atomic force microscopy (Dalal et al., 2007; Miell 
et al., 2013), and display higher rigidity compared with their 
canonical H3 counterparts (Black et al., 2007a).

In recent years, conflicting data have been reported re-
garding the precise composition and handedness of CENP-A 
nucleosomes. Studies in yeast, flies, and humans supported the 
existence of a nonoctameric particle containing one CENP-A- 
H4 and one H2A-H2B dimer (called a hemisome) with DNA 
wrapped right-handedly (Henikoff and Furuyama, 2012; Bui 
et al., 2013). However, a growing number of studies, in vitro 
and in vivo, have challenged that model, strongly favoring an 
octameric CENP-A particle akin to the left-handed histone H3 
in humans and flies (Black and Cleveland, 2011; De Rop et al., 
2012; Dunleavy et al., 2013). The initial proposal that human 
CENP-A nucleosomes experience cell cycle–dependent size 
fluctuations between hemisome and octamer configurations 
(Bui et al., 2012) has also been challenged by data demon-
strating constant histone composition throughout the cell cycle 
(Hasson et al., 2013; Padeganeh et al., 2013). Interestingly, a 
recent study showed that the human centromere contains posi-
tively supercoiled DNA. However, this overwinding of centro-
meric DNA appears to be mediated by topoisomerase I, rather 
than by the presence of right-handed CENP-A particles (Aze et 
al., 2016). A hemisome structure, on the other hand, explains 
both the positive supercoiling and the cleavage mapping of the 
CENP-A nucleosome of budding yeast centromeres in vivo (Fu-
ruyama et al., 2006; Henikoff et al., 2014).

Additional insights into the properties of the human 
CENP-A particle have emerged from analysis of the crystal 
structure of the CENP-A octamer. The HFD of CENP-A con-
tains a shorter αN-helix compared with histone H3. This might 
be important for the conformation of the DNA at the entrance 
and exit of CENP-A nucleosomes and might have implications 
for allowing DNA-binding proteins, such as CENP-B, to as-
sociate with CENP-A nucleosomes (Earnshaw and Rothfield, 
1985). Furthermore, loop 1 of human CENP-A contains two 
extra amino acids compared with H3, which are critical for the 
stability of the CENP-A nucleosome and might provide a bind-
ing site for regulatory factors (Tachiwana et al., 2011).

An additional CENP-A–specific feature is its unstructured 
C-terminal tail, which, in Xenopus laevis, is specifically rec-
ognized by the inner kinetochore protein CENP-C (Saitoh et 
al., 1992; Guse et al., 2011). The C-terminal tail of CENP-A is 
necessary for maintaining centromere identity, as H3 chimeras  

containing both the CATD and the C-terminal tail of CENP-A 
can sustain long-term centromere function (Fachinetti et al., 
2013). However, the C-terminal tail is not conserved across spe-
cies (for example, it is 6 aa long in humans, 1 aa in Schizosac-
charomyces pombe, and 3 aa in Drosophila). Whether or not the 
C-terminal tail of CENP-A is also recognized by CENP-C in 
these species remains to be determined. Collectively, the distinct 
structural and biophysical properties of CENP-A nucleosomes 
epigenetically specify the unique role of centromeric chroma-
tin, distinguishing it from any other region of the genome.

Parental CENP-A nucleosome retention 
and redistribution in S phase
The repackaging of daughter DNA strands into chromatin during 
replication occurs rapidly (Gasser et al., 1996). Parental (i.e., 
“old”) histone (H3.1-H4)2 tetramers are transferred behind the 
replication fork in a random fashion to either DNA duplex (Sogo 
et al., 1986; Jackson, 1988), and nascent (H3.1-H4)2 tetramers 
are deposited in the gaps left during this process (Jackson and 
Chalkley, 1985). Thus, after DNA replication, canonical nucle-
osomes consist of either entirely new or entirely parental tetra- 
mers (Yamasu and Senshu, 1990). Although the factors that are 
responsible for placing the parental H3.1-H4 histones back into 
chromatin during replication are not fully known, chromatin- 
associated anti-silencing factor 1 (ASF1) and the facilitates 
chromatin transcription (FACT) complex have been found to as-
sociate with parental histones (Groth et al., 2007; Foltman et al., 
2013), and thus might contribute to their retention (Fig. 2 A).

For some genomic loci, parental histones carry specific 
epigenetic information, the retention of which during replica-
tion is essential for specifying various chromatin identities. 
This is particularly important for CENP-A chromatin, the loss 
of which results in the failure to demarcate the point of attach-
ment by spindle microtubules in mitosis and meiosis, leading to 
chromosome loss (McKinley and Cheeseman, 2016).

A photo-bleaching, single-molecule counting method has 
shown CENP-A to be present in two copies in each nucleosome 
throughout the cell cycle, suggesting that CENP-A is retained 
as a tetramer, without dimer intermediates through DNA repli-
cation (Padeganeh et al., 2013; Fig. 2 B). The gaps left by the 
redistribution of parental CENP-A nucleosomes are temporar-
ily occupied by histone H3.1 and H3.3, which are deposited 
during S phase as possible gap-fillers (Dunleavy et al., 2011).

As with the mechanisms of retention of parental 
(H3.1-H4)2 tetramers, very little is known about the mechanism 
of CENP-A maintenance at the centromere. The retention of 
parental CENP-A across cell division (Jansen et al., 2007; Mel-
lone et al., 2011) and the paucity of CENP-A exchange detected 
by FRAP experiments (Hemmerich et al., 2008) suggest that 
CENP-A is actively retained at centromeres during DNA rep-
lication. Indeed, pulse-chase experiments have demonstrated 
that parental CENP-A nucleosomes outlast their histone H3.1 
and H3.3 counterparts, indicating that noncentromeric chroma-
tin experiences higher turnover. Intriguingly, the high stability 
of CENP-A through multiple cell cycles is encoded within the 
CATD, even though it does not require HJU​RP (Bodor et al., 
2013). The physical properties conferred by the CATD, or an 
as-yet-unidentified factor interacting with it, could confer high 
stability and prevent CENP-A nucleosomes from dissociating 
during DNA replication (Fig. 2 B).

Other properties of centromeric chromatin, or of chroma-
tin in its vicinity, might contribute to the retention and stability 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/214/1/13/1595417/jcb_201605005.pdf by guest on 08 February 2026



JCB • Volume 214 • Number 1 • 201616

of CENP-A through DNA replication. Condensin II has mul-
tiple roles in the regulation of interphase chromatin and was 
found to stabilize Xenopus CENP-A nucleosomes (Bernad et 
al., 2011). Furthermore, interference with normal condensin 
II degradation in Drosophila cells results in the dispersion of 
CENP-A foci (Buster et al., 2013). Whether the role of conden-
sin II in CENP-A stability is specific to S phase remains to be 
established, but clearly, altering chromatin condensation affects 
centromeric chromatin integrity.

CENP-A retention may be enhanced by its interactions 
with binding partners. CENP-C is required for the stability of 

CENP-A nucleosomes (Falk et al., 2015, 2016) and is thus a 
primary candidate for a role in stabilizing CENP-A nucle-
osomes during DNA replication (Fig.  2  B). Furthermore, 
chromatin assembly factor 1 (CAF1) subunits RbAp46/48 in 
humans and p55 in Drosophila mediate chromatin assembly 
during DNA replication (Smith and Stillman, 1989; Fig. 2 A) 
and interact with CENP-A (Foltz et al., 2006; Furuyama et al., 
2006; Dunleavy et al., 2009; Shuaib et al., 2010), suggesting 
that CAF1 might play a role in CENP-A maintenance during S 
phase. So far, this interaction has been detected only in soluble 
(i.e., not yet chromatin incorporated) or cytoplasmic CENP-A; 

Figure 2.  Histone deposition and retention during DNA replication. (A) De novo histone H3.1-H4 deposition is initiated when new H3.1-H4 dimer 
precursors interact with the chaperone ASF1. ASF1 then hands them to the assembly factor CAF1 in complex with Rtt106. The (H3.1-H4)2 tetramer then 
forms and is deposited onto DNA via an interaction between CAF1 and the recruiter protein, proliferating cell nuclear antigen (PCNA). At the replication 
fork, FACT is associated with the minichromosome maintenance (MCM) complex to promote chromatin disassembly. Parental (H3.1-H4)2 tetramers are 
transferred behind the replication fork in a random fashion, possibly aided by FACT and ASF1. (B) During S phase, parental (CENP-A-H4)2 tetramers are 
depicted as being retained as intact molecules, consistent with the observed retention of preexisting CENP-A at replicated centromeres. The stability of 
CENP-A nucleosomes through multiple cell cycles is encoded within the CATD, through either the specific physical characteristics it confers or its interac-
tion with an unknown factor. CENP-C binds to the C-terminal tail of CENP-A, further stabilizing the CENP-A nucleosome, which might be important for its 
retention through S phase.
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therefore, it remains to be established whether this complex 
puts CENP-A back onto DNA during DNA replication, as ob-
served for histone H3.1. Thus, a combination of the regulation 
of chromatin architecture (e.g., condensin II) and the presence 
of interacting partners (e.g., CENP-C, RbAp46/48, and p55) 
could ensure that CENP-A is not lost from parental nucleo-
somes during DNA replication.

Nascent CENP-A deposition is uncoupled 
from replication
Histone H3.1 is deposited in a DNA replication–dependent 
manner (Wu and Bonner, 1981; Jackson, 1988), whereas the 
variant H3.3 is deposited onto chromatin throughout the cell 
cycle, independently of DNA synthesis (Hake and Allis, 
2006; Hake et al., 2006).

Controlling when newly synthesized CENP-A is de-
posited has long been proposed to be a means to distinguish 
centromeric from bulk chromatin composed of histone H3 nu-
cleosomes (Ahmad and Henikoff, 2002). CENP-A is consis-
tently incorporated into chromatin outside of S phase in most 
organisms (McKinley and Cheeseman, 2016), with the ex-
ception of budding yeast (Pearson et al., 2004). The timing of 
CENP-A deposition differs among species; CENP-A is depos-
ited between mitosis and G1 in Drosophila (Schuh et al., 2007; 
Mellone et al., 2011; Dunleavy et al., 2012; Lidsky et al., 2013), 
between G2 and prophase in Dictyostelium discoideum (Dubin 
et al., 2010), and in G2 in Arabidopsis thaliana (Lermontova 
et al., 2006). Fission yeast can deposit CENP-A during both S 
phase and G2 (Takahashi et al., 2005), whereas in human cells 
and Xenopus egg extracts, CENP-A is deposited from late te-
lophase through G1 (Jansen et al., 2007; Bernad et al., 2011).

The cell cycle timing of CENP-A deposition results from 
an interplay between cell cycle regulators and the CENP-A 
loading machinery. CENP-A deposition is antagonized by the 
activity of cyclin dependent kinase 1 (Cdk1) in human and 
Drosophila cells (Mellone et al., 2011; Silva et al., 2012; Yu et 
al., 2015). After its specific loading window, CENP-A is con-
stantly maintained at the centromere (Bodor et al., 2013). A 
GTPase-activating protein, male germ cell RacGap, is required 
for this maintenance (Lagana et al., 2010).

Prenucleosomal CENP-A is in complex with histone 
H4 (Foltz et al., 2009), and in human cells, newly synthesized 
CENP-A and H4 are detected at centromeres in G1, suggest-
ing that their deposition occurs in the form of an intact nascent 
complex (Bodor et al., 2013). HJU​RP and Scm3 bind CENP-A- 
H4 dimers, preventing the formation of (CENP-A-H4)2 te-
tramers (Cho and Harrison, 2011; Feng et al., 2011; Hu et al., 
2011). Therefore, (CENP-A-H4)2 tetramers are thought to form 
via the self-dimerization of the HJU​RP/CENP-A/H4 complex, 
followed by their deposition (Zasadzińska et al., 2013). How-
ever, how the final octameric structure of CENP-A nucleosomes 
forms remains elusive. Fig.  3 outlines two possible models. 
In one model, parental (H3-H4)2 tetramers are replaced with 
new (CENP-A-H4)2 tetramers within intact nucleosomes that 
contain old H2A-H2B dimers. In the other, preexisting H3- 
containing centromeric nucleosomes are disassembled and re-
assembled by incorporating new (CENP-A-H4)2 tetramers and 
a mix of old and new H2A-H2B dimers. The fact that nascent 
H2B at the centromeres incorporates at a rate that is indistin-
guishable from that of the rest of the genome (Bodor et al., 2013) 
is consistent with either model. Regardless of the specific mech-
anism of nucleosome assembly, these new CENP-A particles 

must replenish the halved CENP-A complement of replicated 
sister chromosomes (Jansen et al., 2007; Mellone et al., 2011).

Although two recent imaging-based quantitative studies 
seem to differ on whether sister centromeres contain consis-
tently similar or different amounts of CENP-A in metaphase 
(Bodor et al., 2014; Ross et al., 2016), which has implications 
for our understanding of the mechanisms of CENP-A redistri-
bution during S phase, it is clear that, in G1, new CENP-A is 
deposited within preexisting CENP-A domains, whereas inter-
spersed histone H3 stretches do not experience CENP-A ex-
change (Ross et al., 2016).

CENP-A hand-off and recruitment
Before being assembled into nucleosomes, histones need to 
be delivered to the assembly factor that will deposit them at 
their designated chromatin regions (Fig. 1). Nascent H3.1-H4 
dimers are associated with ASF1 and, after nuclear import, are 
handed off to CAF1 (Tyler et al., 2001; Fig.  2 A). Likewise, 
newly synthesized H3.3-H4 dimers are handed off by ASF1 to 
the H3.3-specific chaperones histone regulatory homologue A  
(HIRA; Daniel Ricketts et al., 2015) or death domain–associated 
protein (DAXX; Elsässer et al., 2012) for their recruitment at 
transcribed regions or at the telomeres and heterochromatin, 
respectively (Drané et al., 2010; Goldberg et al., 2010; Lewis 
et al., 2010). However, the factors that hand off CENP-A to its 
specific chaperones, HJU​RP/Scm3 and CAL1, are unknown, 
and human CENP-A does not appear to associate with ASF1 
(Dunleavy et al., 2009). CAF1 is recruited to DNA through 
an interaction with proliferating cell nuclear antigen close to 
the replication fork (Shibahara and Stillman, 1999) and medi-
ates the deposition of nascent (H3.1-H4)2 tetramers through-
out the genome (Fig. 2 A).

Several factors recruit the H3.3 chaperone HIRA to chro-
matin, including the GAGA factor, which targets HIRA to GAGA 
factor binding sites in Drosophila (Nakayama et al., 2007). 
Conversely, for the H3.3 chaperone, DAXX, the only known 
recruiting complex is the chromatin remodeler α-thalassemia/ 
mental retardation syndrome protein (ATRX), which tar-
gets DAXX to heterochromatic regions in mouse embryonic 
stem cells (Lewis et al., 2010; Voon and Wong, 2016). Thus, 
the assembly factors for histone H3.1 and H3.3 are recruited 
to specific chromatin domains through their interaction 
with distinct partners.

Unlike global histone H3 deposition, targeting of CENP-A 
by its specific assembly factors features both spatial and tempo-
ral control, which strictly govern its deposition at centromeres 
to prevent the formation of spurious kinetochore attachments 
(Valente et al., 2012). In human cells, HJU​RP is recruited to 
centromeric chromatin by the Mis18 complex, composed of 
hMis18α, hMis18β, and Mis18BP1, during mitotic exit (Fu-
jita et al., 2007; Barnhart et al., 2011). The Mis18 complex is 
recruited to centromeres via an interaction with centromere- 
bound CENP-C (Moree et al., 2011; Dambacher et al., 2012). 
The formation of an hMis18α-hMis18β heterotetramer (and a 
Mis18 homotetramer in S. pombe) is required for centromere 
binding of the Mis18 complex. Upon HJU​RP binding, the het-
erotetramer is disrupted, causing the Mis18 complex to dissoci-
ate from the centromere, thereby limiting CENP-A loading to a 
one-time event per cell cycle (Nardi et al., 2016; Subramanian 
et al., 2016). Additional regulation occurs through Cdk1/Cdk2 
activity, which inhibits the assembly of the Mis18 complex until 
anaphase onset, and phosphorylation of Mis18BP1 by Polo-like 
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kinase 1 promotes its association with CENP-C, resulting in 
centromere recruitment (McKinley and Cheeseman, 2014).

The recruitment machinery for the CENP-A/H4-chaperone  
complex is conserved in fission yeast and Caenorhabditis ele-
gans (Hayashi et al., 2004; Maddox et al., 2007). However, the 
Mis18 complex is absent in Drosophila, where the centromeric 
localization of the CENP-A assembly factor CAL1 depends 
solely on CENP-C (Chen et al., 2014).

Chromatin reorganization during  
CENP-A replacement
The recruitment of histone H3 and its variants at the site des-
ignated for assembly must be coupled with the reorganization 
of local chromatin to (a) displace unwanted histones or nucleo-
somes; (b) make room for new nucleosomes; and/or (c) respace 
nucleosomes that have shifted during new nucleosome assem-
bly (Fig. 1 C). How chromatin is remodeled during CENP-A 
deposition is poorly understood. The chaperones HJU​RP, 
Scm3, and CAL1 have been shown in vitro to harbor selective 
affinity for CENP-A over histone H3 and to mediate CENP-A 
nucleosome formation on naked DNA plasmids (Barnhart et 
al., 2011; Cho and Harrison, 2011; Chen et al., 2014). How-
ever, it is unclear whether these assembly factors can reorganize 
preexisting H3.1/H3.3-containing nucleosomes to make room 
for CENP-A. DNA–histone interactions need to be altered for 
this purpose, and several mechanisms have been identified 

that can perform these changes, such as the deployment of 
ATP-dependent histone remodelers and histone chaperones and 
the passage of DNA replication and transcription machineries 
(Gruss et al., 1993; De Koning et al., 2007; Liu et al., 2010; 
Ransom et al., 2010; Kharchenko et al., 2011).

For histone H3.3 deposition during Drosophila embryo-
genesis, HIRA relies on the ATP-dependent remodeler protein 
chromodomain helicase DNA binding protein 1 (CHD1) for 
global chromatin reorganization (Konev et al., 2007), whereas 
in murine embryonic stem cells, DAXX cooperates with the 
chromatin-remodeling factor ATRX to incorporate H3.3-H4 di-
mers at repetitive chromatin regions (Lewis et al., 2010). Thus, 
the cooperation between H3.3 assembly factors and ATP re-
modelers suggests that nucleosome reorganization is necessary 
for histone replacement. Consistent with this idea, the remod-
eler CHD1 has been shown to localize to the centromere and 
to be required for the localization of CENP-A in fission yeast 
and chicken cells (Walfridsson et al., 2005; Okada et al., 2009), 
suggesting that this ATPase/helicase contributes to CENP-A 
chromatin formation (Fig. 4). CHD1 is apparently not required 
for proper CENP-A localization in flies (Podhraski et al., 2010), 
suggesting that other chromatin remodelers might be used in 
different species for this purpose.

Another chromatin remodeler, the remodeling and spacing 
factor (RSF) complex, is also implicated in centromere chroma-
tin function, specifically in the process of CENP-A nucleosome 

Figure 3.  Possible mechanisms for the for-
mation of CENP-A nucleosomes. (A) CENP-A 
is deposited in its tetrameric (CENP-A-H4)2 
form onto DNA. The CENP-A octamer might 
form via the eviction of the placeholder (H3.1/
H3.3-H4)2 tetramers, within intact nucleo-
somes containing old H2A-H2B dimers. (B) Al-
ternatively, preexisting H3.1/H3.3-containing 
nucleosomes could be entirely disassembled 
from DNA, with new (CENP-A-H4)2 tetramers 
deposited, followed by the assembly of H2A-
H2B dimers from a pool of old and new ones.
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incorporation and in nucleosome spacing. In human cells, 
CENP-A nucleosomes display specific positioning, binding to 
α-satellite DNA, such that the CENP-B box is adjacent to the 
proximal edge of the nucleosome (Hasson et al., 2013). This 
positioning enhances the binding of CENP-B, which stabilizes 
the CENP-A nucleosomes (Fujita et al., 2015). How this posi-
tioning is accomplished is unknown, but it could involve the 
ATP-dependent spacing activity of RSF, given its ability to 
space CENP-A nucleosomes in vitro and its interaction with 
CENP-B (Perpelescu et al., 2009; Fig. 4 C).

The two RSF subunits, RSF1 and SNF2h, associate 
with human CENP-A (Obuse et al., 2004; Izuta et al., 2006; 
Perpelescu et al., 2009), are enriched at centromeres in inter-
phase, and are required for CENP-A chromatin incorporation in 
vivo and for assembly of CENP-A nucleosomes in vitro (Per-
pelescu et al., 2009). RSF was recently shown to be recruited 
to centromeres by a novel mechanism involving the transient 
acetylation of centromeric chromatin by the lysine acetyl trans-
ferase KAT7, which is recruited by Mis18BP1 during G1. Re-
cruitment of KAT7 also stimulates transcription (Ohzeki et al., 
2016; Fig. 4 B), a process that has been gaining attention as an 
additional mechanism by which chromatin can be reorganized 
during centromeric chromatin assembly.

Transcription-mediated chromatin 
reorganization
During transcription, the passage of RNA polymerases along the 
DNA increases histone exchange (Jackson, 1990). Consistent  

with this model is that the association between HIRA and tran-
scriptional elongation factors promotes the replacement of H3.1 
with H3.3 (Nakayama et al., 2007; Ray-Gallet et al., 2011; Sarai 
et al., 2013), suggesting that HIRA-mediated H3.3 deposition 
might replenish histone H3-H4 complexes that were lost during 
transcription, thereby maintaining chromatin integrity. The role 
of transcription in promoting centromere integrity is emerging 
as an important and potentially conserved mechanism of cen-
tromere regulation (Fig.  4; Chan and Wong, 2012; Gent and 
Dawe, 2012; Hall et al., 2012; Rošić and Erhardt, 2016).

Intriguingly, the active form of RNA polymerase II has 
been found to be enriched at the centromeres of several organ-
isms (Chan et al., 2012; Rošić et al., 2014; Catania et al., 2015) 
and, in flies, it was shown to physically interact with CAL1, 
suggesting that CENP-A delivery to centromeric chromatin is 
coupled with the recruitment of the transcriptional machinery 
(Chen et al., 2015). In human and fly cells, CENP-A has been 
shown to associate with the histone chaperone, FACT, which has 
been implicated in promoting transcription through chromatin 
by all three RNA polymerases (Belotserkovskaya and Reinberg, 
2004; Obuse et al., 2004; Foltz et al., 2006; Okada et al., 2009; 
Chen et al., 2015). FACT is enriched at the centromeres of fly, 
chicken, human, and mouse cells, and in flies and chickens, this 
complex has been shown to be required for CENP-A localization 
(Okada et al., 2009; Chan et al., 2012; Chen et al., 2015). Given 
the ability of FACT to invade the nucleosome, breaking strong 
DNA/octamer contacts (Hondele et al., 2013), one model is that 
FACT destabilizes the nucleosome, facilitating the passage of 

Figure 4.  Chromatin reorganization during 
CENP-A assembly in humans. (A) Newly syn-
thesized CENP-A-H4 dimers in complex with 
an as-yet-unidentified chaperone are handed 
off to the assembly factor HJU​RP, which is 
recruited to the centromere by the Mis18 
complex–CENP-C pathway (not depicted). 
(B) After the recruitment of CHD1, FACT, and 
RNA polymerase II, the placeholder (H3.1/
H3.3-H4)2 tetramers (or entire nucleosomes) 
are disassembled and (CENP-A-H4)2 tetramers 
are deposited onto DNA. Mis18 transiently 
recruits the lysine acetyltransferase KAT7 to 
centromeres, which acetylates H3-containing 
nucleosomes and facilitates RSF binding. (C) 
After their formation, new CENP-A nucleo-
somesare spaced by the RSF complex, which 
promotes CENP-B binding.
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the transcriptional machinery (Hondele and Ladurner, 2013), 
which in turn could evict placeholder (H3-H4)2 tetramers to 
make room for the assembly of new (CENP-A-H4)2 tetramers 
(Chen et al., 2015). In fungi, however, FACT does not appear to 
be directly required for proper CENP-A deposition, but instead 
is involved in preventing the ectopic incorporation of CENP-A 
(Choi et al., 2012; Deyter and Biggins, 2014). Thus, it is possi-
ble that the direct involvement of FACT in CENP-A deposition 
is shared only among complex organisms.

The transcriptional machinery associated with cen-
tromeres can produce transcripts that either are stable or can 
be detected in genetic backgrounds that prevent their rapid 
processing (Nagaki et al., 2004; Choi et al., 2011; Ohkuni and 
Kitagawa, 2011; Chan et al., 2012). Centromeric transcripts 
have now been detected in a myriad of systems ranging from 
species as diverse as maize and frogs. In some instances, cen-
tromere-derived RNAs have been shown to play a structural 
role in centromere or kinetochore integrity (Topp et al., 2004; 
Ferri et al., 2009; Chan et al., 2012; Carone et al., 2013; Quénet 
and Dalal, 2014; Rošić et al., 2014; Blower, 2016).

Transcription could contribute to CENP-A chromatin 
function by promoting histone H3/CENP-A exchange or by 
generating transcripts that interact with the CENP-A assembly 
machinery, aiding in its function. Whether or not the primary 
role of centromeric transcription is to contribute to CENP-A 
deposition, as opposed to producing functional RNAs, is unclear.

Knockdown of specific centromere-derived RNAs causes 
defects in centromeric chromatin function (Carone et al., 2013; 
Quénet and Dalal, 2014); on the other hand, transcripts are also 
produced from noncentromeric genomic locations that have ac-
quired CENP-A, such as naturally occurring neocentromeres in 
humans (Chueh et al., 2009), de novo centromeres on human 
artificial chromosomes (Bergmann et al., 2011), and synthetic 
centromeres in Drosophila (Chen et al., 2015). These findings 
suggest that transcription-mediated chromatin reorganization is 
associated with centromere chromatin establishment and main-
tenance regardless of the genomic location. Given that these 
nonnative centromeres appear to function reasonably well, ei-
ther any RNA (centromeric or not) produced during CENP-A 
deposition can perform structural functions or specific cen-
tromere-derived RNAs play a secondary role. Alternatively, 
endogenous centromeric RNAs could supply critical structural 
functions in trans to kinetochores assembled at artificial cen-
tromeres or to neocentromeres. The observation that centro-
meric RNAs derived from specific chromosomes localize and 
affect the kinetochore function of other chromosomes in both 
Xenopus and Drosophila (Rošić et al., 2014; Blower, 2016) is 
consistent with this model.

Experiments in fission yeast suggest that the critical prop-
erty of centromeric DNA lies in the particular transcriptional 
environment it provides for CENP-A loading. The central do-
main of the fission yeast centromere contains several transcrip-
tional start sites and cryptic promoters from which low levels of 
transcripts are produced despite high levels of RNA polymerase 
II, consistent with transcriptional stalling. Mutants that increase 
stalling of RNA polymerase II augment CENP-A deposition, 
suggesting that the quality of transcription provides an optimal 
transcriptional environment for the correct amount of CENP-A 
to be deposited (Catania et al., 2015). Collectively, much of 
these recent findings, together with the notion that centro-
meric DNA evolves rapidly, raise the possibility that the main 
evolutionary constraint at centromeres is their amenability to 

moderate levels of transcription (Jiang et al., 2003; O’Neill and 
Carone, 2009; Chan and Wong, 2012; Catania et al., 2015). Sep-
arating the role of transcription itself from that of the resulting 
centromere-derived RNAs will be an exciting future challenge 
for the centromere biology field.

Conclusions and future directions
Since the discovery of CENP-A more than 30 years ago, our 
understanding of the mechanisms of its faithful deposition at 
centromeres has increased significantly. Major advances in-
clude the high-resolution imaging of chromatin fibers and intact 
nuclei with labeled histones, which has provided unprecedented 
spatial and temporal resolution of CENP-A dynamics through 
the cell cycle; the biochemical and structural studies that clar-
ified the mechanics of (CENP-A-H4)2 tetramer formation; and 
the dissection of the complex interplay between the CENP-A 
recruitment machinery involving Mis18 and the cell cycle. Yet, 
many key questions remain unanswered, for example, how tran-
scription contributes to CENP-A chromatin establishment.

The CENP-A nucleosome assembly pathway harnesses 
the functions of histone chaperones, remodeling factors, tran-
scription factors, and histone-modifying enzymes that play crit-
ical roles in maintaining chromatin integrity at noncentromeric 
regions. Thus, determining how the multiple roles of these fac-
tors do not conflict with one another (e.g., by promoting H3.3 
instead of CENP-A incorporation at the centromere in G1) will 
be another important future direction of research.
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