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Introduction

Proteins of the secretory pathway are often modified after 
translocation across or insertion into the membrane of the ER 
(Braakman and Bulleid, 2011). A subclass of proteins that 
are to be targeted to the cell surface are attached to a specific 
membrane-embedded glycolipid, the GPI anchor (Mayor and 
Riezman, 2004). After attachment, the GPI anchor is subject to 
a series of remodeling steps on both its lipid and sugar moieties. 
In yeast, remodeling occurs exclusively inside the ER (Fig. 1). 
The sequential actions of the lipid remodeling enzymes Bst1, 
Per1, Gup1, and Cwh43 catalyze the addition of a long unsatu-
rated fatty acid at the sn-2 position of the diacylglycerol (DAG) 
of the GPI anchor or, in most cases, the exchange of the DAG 
for ceramide (Reggiori et al., 1997; Umemura et al., 2007; Fu-
jita and Kinoshita, 2012). In addition, the phosphoethanolamine 
from the second mannose of the GPI anchor is removed by the 
sugar remodeling enzyme Ted1, which promotes binding of 
GPI-anchored proteins (GPI-APs) to the receptor p24 complex 
for vesicular export from the ER (Fujita et al., 2009; Fujita and 
Kinoshita, 2012; Manzano-Lopez et al., 2015). In mammalian 
cells, GPI anchor remodeling inside the ER is catalyzed by 
PGAP1 (Bst1) and PGAP5 (Ted1), the latter of which promotes 

ER export analogous to yeast, whereas additional lipid remod-
eling occurs inside the Golgi (Tashima et al., 2006; Fujita and 
Jigami, 2008; Fujita et al., 2009).

If proteins to be exported from the ER fail to acquire their 
native fold, they are efficiently retained inside the ER by quality 
control mechanisms. Ultimately, they will be retrotranslocated 
and/or extracted from the membrane into the cytosol and tar-
geted to the proteasome for degradation, a process called ER- 
associated degradation (ERAD; Meusser et al., 2005; Vembar and 
Brodsky, 2008). The Hrd1 complex is one of several conserved 
ERAD machineries in the ER and promotes the degradation of 
misfolded ER luminal and membrane proteins (Carvalho et al., 
2006; Gauss et al., 2006; Mehnert et al., 2010). Interestingly, ER 
export can compete with retention mechanisms, as illustrated by 
findings that selected ERAD model substrates leave the ER to 
a significant extent if ER export signals are appended or upon 
overexpression (Haynes et al., 2002; Spear and Ng, 2003; Kin-
caid and Cooper, 2007). The eukaryotic cell possesses additional 
protein quality control mechanisms in the secretory pathway 
downstream of the ER; these mechanisms target substrates to the 
proteasome independently of ERAD or to the vacuole/lysosome 
(Arvan et al., 2002; Wang and Ng, 2010; Zhao et al., 2013).

Because of the roles of GPI-APs in prominent human dis-
eases, including malaria (Davidson and Gowda, 2001) and neu-
rodegenerative prion diseases (Puig et al., 2014; Victoria and 
Zurzolo, 2015), the intracellular quality control of selected GPI-

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degrada-
tion (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD sub-
strates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor 
sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could effi-
ciently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI 
anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by 
canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export 
signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded 
species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically 
relevant.

Limited ER quality control for GPI-anchored proteins

Natalia Sikorska,1* Leticia Lemus,1* Auxiliadora Aguilera‑Romero,4,5 Javier Manzano‑Lopez,2,3 Howard Riezman,4,5 
Manuel Muñiz,2,3 and Veit Goder1

1Department of Genetics and 2Department of Cell Biology, University of Seville, 41012 Seville, Spain
3Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
4National Centre of Competence in Research, Chemical Biology and 5Department of Biochemistry, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland

© 2016 Sikorska et al. This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the 
publication date (see http​://www​.rupress​.org​/terms). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http​://creativecommons​.org​/licenses​/by​-nc​-sa​/3​.0​/).

*N. Sikorska and L. Lemus contributed equally to this paper.
Correspondence to Veit Goder: vgoder@us.es
N. Sikorska’s present address is Institut de Biologie Moléculaire des Plantes du 
Centre National de la Recherche Scientifique, University of Strasbourg, 67081 
Strasbourg, France.
Abbreviations used in this paper: CHX, cycloheximide; coIP, coimmunopreci- 
pitation; DAG, diacylglycerol; ERAD, ER-associated degradation; ERES, ER exit 
site; GPI-AP, GPI-anchored protein; PI-PLC, phosphoinositol-specific phospholi-
pase C; TAP, tandem affinity purification; TMD, transmembrane domain; UPR, 
unfolded protein response.

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/213/6/693/1595204/jcb_201602010.pdf by guest on 08 February 2026

http://crossmark.crossref.org/dialog/?doi=10.1083/jcb.201602010&domain=pdf
http://www.rupress.org/terms
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:


JCB • Volume 213 • Number 6 • 2016694

APs has been studied extensively. Various misfolded GPI-APs 
accumulate in the presence of proteasome inhibitors, suggest-
ing that ERAD is involved in their turnover (Ma and Lindquist, 
2001; Yedidia et al., 2001; Petris et al., 2014; Wang et al., 2014). 
However, this view was challenged by the observation that the 
proteasome also degrades nontranslocated species, and recent 
studies suggested that ER-localized misfolded GPI-APs are pre-
dominantly routed to lysosomes for degradation (Drisaldi et al., 
2003; Ashok and Hegde, 2008; Satpute-Krishnan et al., 2014).

Recent work with yeast to study the quality control of 
misfolded GPI-APs centered on Gas1*, a mutant version of the 
β-1,3-glucanosyltransferase Gas1, which normally functions 
in cell wall assembly. Gas1* contains a single point mutation 
(G291R) that renders the protein unstable and leads to its deg-
radation (Fujita et al., 2006). Subsequent work showed that, like 
degradation of misfolded GPI-APs in mammalian cells, only a 
minor fraction of Gas1* was routed to ERAD, whereas most of 
its degradation depended on ER export and probably occurred 
inside the vacuole, although evidence for vacuolar degradation 
of Gas1* is still lacking (Fujita et al., 2006; Hirayama et al., 
2008; Goder and Melero, 2011).

Altogether, these data suggest that misfolded GPI-APs are 
generally rather poor ERAD substrates, but the reasons for this 
phenomenon are unclear. Interestingly, misfolded mutant ver-
sions of the prion protein could be efficiently routed to ERAD 
when GPI anchor attachment was prevented (Ashok and Hegde, 
2008). In combination with a more recent study, this result led 
to the postulation that the presence of a GPI anchor might 
generally obstruct ERAD for sterical reasons (Satpute-Krish-
nan et al., 2014). However, this would be in conflict with the 
observation that at least a minor fraction of Gas1* in yeast is 
a substrate for Hrd1-dependent ERAD (Goder and Melero, 
2011). To address these uncertainties and the mechanisms that 
determine the degradation pathways of misfolded GPI-APs, we 
performed a detailed analysis of the degradation of the mis-
folded GPI-AP Gas1* in yeast.

Results

We have previously shown that Gas1* can be degraded by sev-
eral cellular pathways in parallel, including Hrd1-dependent 
ERAD and post-ER degradation involving ER export that is  

dependent on the p24 protein complex component Emp24 
(Goder and Melero, 2011). Although Δhrd1Δemp24 cells 
showed stronger stabilization of Gas1* than individual single 
mutants, suggesting that ER-exported Gas1* was not rerouted 
to the ER for ERAD, it was not clear whether Gas1* was ulti-
mately targeted to the vacuole (Goder and Melero, 2011). In-
deed, earlier results showed that Gas1* was not stabilized in 
a Δpep4 mutant, in which vacuolar proteases are inactive (Fu-
jita et al., 2006). When we expressed HA-tagged Gas1* (HA-
Gas1*) and measured protein turnover using the translation 
elongation inhibitor cycloheximide (CHX) in wild-type cells 
and Δpep4 cells, we obtained similar results, with no visible 
protein stabilization in the Δpep4 mutant (Fig. 2, A [lanes 1–9] 
and B). However, when we measured the effect of Δpep4 dele-
tion in the Δhrd1 background, which on its own showed only 
marginal Gas1* stabilization, we found a significant increase in 
protein stability compared with the individual single mutants, 
showing that a fraction of Gas1* is routed to the vacuole for 
degradation (Fig.  2, A [lanes 10–18] and B). These data re-
inforce the idea that Gas1* can be degraded dynamically by 
several simultaneously operating degradation pathways, one of 
them being ERAD and another depending on ER export and 
leading to the vacuole (Fig.  2  C). These results also explain 
why blockage of only one of these pathways in single mutants 
might not (necessarily) be sufficient to significantly reduce the 
global degradation rate.

Important for resolving whether a GPI anchor obstructs 
ERAD is to determine whether Gas1* routed to this pathway 
contains a GPI anchor or still a transmembrane domain (TMD; 
Fig.  2  C, dashed arrows). To address this, we were initially 
looking for mutants in which the routing of Gas1* to the vac-
uole is reduced in favor of increased ERAD. We expressed a 
GFP-tagged version of Gas1* for a comparative analysis of 
protein targeting to the vacuole by live cell fluorescence mi-
croscopy (Fig.  3, A and B). Wild-type cells showed a strong 
vacuolar signal, in agreement with a significant fraction of 
Gas1* being routed to the vacuole despite ERAD being fully 
operational (Fig. 3 B, wild type). The faint perivacuolar puncta 
could be post-ER trafficking intermediates (Fig. 3 B, wild type). 
In the absence of the p24 complex component Emp24, when 
GPI-AP–specific ER export is impaired and Gas1* degradation 
is reduced (Muñiz et al., 2000; Goder and Melero, 2011), the 
vacuolar signal was decreased and the perinuclear and cortical 

Figure 1.  GPI anchor remodeling in the yeast ER. After translocation into the ER, the C-terminal TMD is removed and the luminal part of the protein is 
attached to a GPI anchor via a phosphoethanolamine (PEtN). After attachment, the sugar and lipid moieties of the GPI anchor undergo remodeling. Bst1 
removes the acyl chain from the inositol (open circle), a step required for downstream lipid remodeling. Cwh43 exchanges the diacylglycerol for ceramide, 
the major lipid on remodeled GPI anchors in yeast. For simplicity, Per1 and Gup1, which catalyze intermediate lipid remodeling steps, are not shown. Ted1 
removes a PEtN on the second mannose (closed circles), enabling efficient binding to the p24 complex for ER export.
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ER was stained more strongly, suggesting a reduction in ER 
export of GFP-Gas1* (Fig. 3 B, Δemp24). A similar phenotype 
was seen in the absence of the GPI anchor remodeling enzyme 
Ted1, which acts immediately upstream of Emp24 (Fig. 3 B, 
Δted1). The fact that Δted1 cells phenocopied Δemp24 cells 
suggests that the GPI anchor of Gas1* undergoes sugar remod-
eling. Remaining vacuolar staining likely arises from the ER 
export of GPI-APs by bulk-flow mechanisms (Manzano-Lopez 
et al., 2015). Cells with deleted Hrd1, lacking Hrd1-dependent 
ERAD, showed vacuolar staining similar to that of wild-type 
cells (Fig.  3  B, Δhrd1). Increased staining of the perinuclear 
ER in Δhrd1 cells compared with wild-type cells might reflect 
elevated nonspecific ER retention of misfolded proteins by the 
up-regulated unfolded protein response (UPR) in this ERAD 
mutant (Jonikas et al., 2009). However, UPR activation does not 
cause the major differences in Gas1* ER export in the distinct 
mutants, because the UPR is less elevated in Δted1 cells than in 
Δhrd1 cells (Jonikas et al., 2009). To quantify the differences 
in GFP-Gas1* targeting to the vacuole in the distinct mutants, 
we measured free GFP that resisted vacuolar proteolysis as a 
remnant of GFP-Gas1*. Free GFP was reduced up to 50% in 
Δemp24 and in Δted1 cells compared with wild-type and Δhrd1 
cells (Fig. 3, C and D).

Next we tested whether more Gas1* was routed to ERAD 
in Δemp24 and Δted1 cells compared with wild-type cells. 
We expressed HA-tagged Gas1* and measured protein turn-
over using CHX. Deletion of HRD1 in the Δted1 or Δemp24 
background showed a much stronger stabilizing effect than the 
HRD1 deletion in wild-type cells (Fig. 3, E–G). Quantification 

revealed that ERAD is the major degradation pathway for 
Gas1* in Δemp24 and in Δted1 cells, with more than 50% of 
protein turnover being dependent on Hrd1 (Fig. S1).

Next, we measured the amount of cellular Gas1* that con-
tained a GPI anchor under these conditions. We used phospho-
inositol-specific phospholipase C (PI-PLC), which cleaves the 
phosphate diester of the GPI anchor at the sn-3 position, thereby 
removing the lipophilic DAG or ceramide and rendering a 
GPI-AP water soluble. In combination with Triton X-114 phase 
separation, we found that more than 90% of HA-Gas1* was 
recovered in the aqueous phase after treatment of lysates with 
PI-PLC, irrespective of the tested strain (Fig. 4, A and B, HA-
Gas1*). As a control, we expressed HA-Gas1*TMD in Δemp24 
cells, a construct in which the exchange of the TM domain for 
the GPI anchor is prevented by a specific mutation (N528Q), 
therefore rendering HA-Gas1*TMD a type I TM protein. As 
expected, HA-Gas1*TMD was not recovered in the aqueous 
phase after PI-PLC treatment, validating the functionality of 
the assay (Fig. 4, A and B, HA-Gas1*TMD). This result shows 
that Gas1* is efficiently attached to a GPI anchor in all tested 
strains, including those in which >50% of Gas1* is routed to 
Hrd1-dependent ERAD. Therefore, the Hrd1-machinery can 
mediate ERAD of a misfolded GPI-AP.

Because our data ruled out that sterical obstructions limit 
ERAD of a misfolded GPI-AP, the question remained as to why 
misfolded GPI-APs are often exported from the ER and pre-
dominantly degraded inside the vacuole/lysosome. In striking 
resemblance to results obtained in mammalian cells with mu-
tant prion proteins lacking the GPI anchor (Ashok and Hegde, 

Figure 2.  Dynamic routing of the misfolded GPI-AP 
Gas1* to ERAD and/or the vacuole for degradation. 
(A) Wild-type cells and the indicated single and dou-
ble mutant cells expressing HA-Gas1* were subjected 
to CHX shut-off experiments. Cells were lysed, and the 
remaining HA-Gas1* was measured by SDS-PAGE 
and Western blotting (WB) with antibodies against 
HA. Accumulation of higher-molecular-weight species 
during chase periods is caused by protein O-manno-
sylation (Goder and Melero, 2011). A lower part of 
the gel was separately stained with Coomassie as 
loading control. (B) Quantifications of results from ex-
periments shown in A. Mean values and SDs from at 
least three individual experiments are shown. (C) Sche-
matic representation of the degradation pathways of 
Gas1* in wild-type cells. (1) A fraction of Gas1* is 
routed to the Hrd1-dependent ERAD machinery, retro-
translocated, and degraded by the proteasome (not 
shown). It is unclear whether Gas1* can be routed to 
ERAD only before or also after attachment to the GPI 
anchor (dashed lines). (2) A larger fraction of Gas1* 
is exported from the ER and routed to the vacuole for 
degradation. ER export of Gas1* depends in part on 
the p24 complex, but it is unknown whether and to 
what extent the GPI anchor of Gas1* is remodeled.
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2008), we found that significantly less GFP-Gas1*TMD 
was targeted to the vacuole and more retained inside the ER 
compared with GFP-Gas1* in wild-type cells, as shown by 

fluorescence microscopy (Fig.  5  A). Similar results were ob-
tained with GFP-Gas1*ΔTMD, in which the C-terminal TMD 
was deleted, rendering the construct a soluble ER luminal  

Figure 3.  Increased targeting of Gas1* to 
ERAD in Δemp24 and Δted1 cells. (A) Sche-
matic representation of the fusion construct 
GFP-Gas1*. The GFP moiety was fused to the 
N-terminus domain of Gas1*, downstream 
of the signal sequence. The C-terminal GPI 
anchor extends into the luminal leaflet of the 
ER membrane. (B) Wild-type and indicated 
mutant cells expressing GFP-Gas1* were an-
alyzed by live cell fluorescence microscopy.  
DIC = Nomarski image. Bar, 2 µm. (C) 
GFP-cleavage assay. Cells used for micros-
copy in B were lysed in equal amounts and 
analyzed by SDS-PAGE in combination with 
Western blotting (WB) with antibodies against 
GFP. The hashtag indicates a minor fraction 
of the fusion protein that likely has not been 
translocated into the ER. (D) Quantification 
and statistical analysis of results from exper-
iments shown in C.  Mean values and SDs 
from at least three individual experiments are 
shown. ns, not significant. *, P < 0.05; **, P 
< 0.01 (unpaired two-tailed Student’s t test). 
(E) Wild-type cells and the indicated single 
and double mutant cells expressing HA-Gas1* 
were subjected to CHX shut-off experiments. A 
lower part of the gel was separately stained 
with Coomassie as loading control. (F and 
G) Quantifications of results from experiments 
shown in E. Mean values and SDs from at least 
three individual experiments are shown.

Figure 4.  Gas1* is efficiently attached to the GPI 
anchor. (A) Triton X-114 extracts from wild-type cells 
and the indicated single mutant cells expressing HA-
Gas1* or HA-Gas1*TMD were treated with PI-PLC 
or mock-treated. Detergent (Det) and aqueous (Aqu) 
phases were separated and analyzed by SDS-PAGE 
and Western blotting (WB) with antibodies against 
HA. (B) Quantification of the relative amounts of HA-
Gas1* and HA-Gas1*TMD recovered in the aque-
ous phase compared with total signal after treatment 
with PLC from experiments shown in A. Mean values 
and SDs from two to five individual experiments are 
shown. ns, not significant. ***, P < 0.001 (unpaired 
two-tailed Student’s t test).
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misfolded protein (Fig. 5 A). In addition, the stabilizing effect 
of the Hrd1 deletion was significantly larger for the HA-tagged 
versions of both constructs lacking the GPI anchor compared 
with HA-Gas1* (Fig. 5, B and C, versus Fig. 3, E and F). In 
light of these data, it appears that a GPI anchor reduces the rout-
ing of misfolded proteins to ERAD by limiting ER retention or 
by promoting ER export.

Recent data suggested that GPI-APs would mix with free 
ceramides inside the ER and promote the cotransport of free 
ceramides in vesicles from the ER to the Golgi (Loizides-Man-
gold et al., 2012). We considered the possibility that Gas1*, 
albeit misfolded, would function in ceramide cotransport by 
virtue of its GPI anchor. Such a function could bypass ER- 
retention mechanisms and explain the universally observed 
reduction in ERAD. However, a combination of experiments, 
including lipid analysis in which we determined the ceramide 
and sphingolipid profiles of Δgas1 cells expressing HA-Gas1 or 
HA-Gas1* or the anchorless versions HA-Gas1TMD and HA-

Gas1*TMD, did not provide any evidence for a role of Gas1* in 
ceramide cotransport (Fig. S2).

It has been shown that ER export of (correctly folded) 
GPI-APs is directly coupled to GPI anchor remodeling (Castil-
lon et al., 2009, 2011; Fujita et al., 2009; Manzano-Lopez et al., 
2015). In fact, the remodeled GPI anchor is the major, if not the 
only, ER export signal of GPI-APs. GPI anchor lipid remodel-
ing promotes the concentration of GPI-APs in specific ER exit 
sites (ERESs) where binding to the p24 complex is thought to 
occur (Castillon et al., 2009). p24 proteins can bind to synthetic 
remodeled but not unremodeled glycostructures of the GPI 
anchor and to specific sphingolipids that contain ceramide, a 
lipid also present in remodeled GPI anchors (Contreras et al., 
2012; Manzano-Lopez et al., 2015). The observed reduction in 
ER export of Gas1* in Δted1 cells indicates that its GPI anchor 
undergoes sugar remodeling (Fig. 3, E and F). To test whether 
the GPI anchor of Gas1* undergoes lipid remodeling as well, 
we used a flotation assay (Castillon et al., 2011). HA-Gas1* 

Figure 5.  Preventing GPI anchor attachment increases ER 
retention and routing of Gas1* to ERAD. (A) Live cell fluores-
cence microscopy of wild-type cells expressing the indicated 
GFP-Gas1* fusion constructs. Schematic illustrations of the 
various constructs are shown above the microscopy images. 
DIC = Nomarski image. Bar, 2 µm. (B–E) Wild-type cells and 
Δhrd1 cells expressing HA-Gas1*TMD and HA-Gas1*ΔTMD 
were subjected to CHX shut-off experiments. A lower part 
of the gel was separately stained with Coomassie as load-
ing control. The graphs illustrate the obtained degradation 
rates and show the mean values and SDs from at least three 
individual experiments.
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and Gas1, but not the control TM protein Wbp1, were recovered 
in the top gradient fractions (fraction 1), indicating the pres-
ence of a long-chain fatty acid that promotes association with 
membrane rafts (Fig.  6, A and B, wild type). The amount of 
HA-Gas1* and Gas1 in the top gradient fractions was strongly 
reduced in Δbst1 cells, in which lipid remodeling of the GPI 
anchor is blocked genetically, indicating that the GPI anchor 
of Gas1* was lipid-remodeled in wild-type cells (Fig. 6, A and 
B, Δbst1). Thus, Gas1*, like Gas1, undergoes sugar and lipid 
remodeling. This scenario could explain why Gas1*, despite 
being misfolded, is efficiently exported from the ER although 
being a substrate for ERAD.

To investigate this further, we tested whether inhibition of 
GPI anchor remodeling would increase the routing of Gas1* to 
ERAD. This was true for Δted1 cells, where sugar remodeling 
is blocked (Fig. 3, E and F). We extended this test and measured 
the degradation of Gas1* in the lipid-remodeling mutants Δbst1 
and Δcwh43. The global degradation rate of HA-Gas1* was not 
affected in the single mutants (Fig. 7, A and D). However, ex-
pression of GFP-Gas1* revealed that less protein was routed to 
the vacuole and more was retained inside the ER in both mutants 
compared with wild-type cells (Fig.  7  B). At the same time, 
more Gas1* was now degraded by ERAD, because Δhrd1Δbst1 
and Δhrd1Δcwh43 double mutants showed a marked increase 
in protein stability compared with the individual single mu-
tants (Fig.  7, C and D). Conversely, Gas1* degradation was 
not affected when Emp24-dependent export was blocked in 
the same mutants, consistent with the predominant routing of 
Gas1* to ERAD (Fig. 7, E and F). Interestingly, Δemp24Δbst1 
and Δemp24Δcwh43 mutants showed faster Gas1* turnover 
than Δemp24 cells (Fig. 7 E). This could indicate that routing 
of GPI-APs to ERAD is more efficient for GPI-APs that are 
not yet lipid-remodeled compared with lipid-remodeled species 
that accumulate in Δemp24 cells. It is known that lipid-remod-
eled species tend to localize to membrane rafts and to GPI-AP– 
specific ERESs (Castillon et al., 2011), which might be less ac-
cessible for the ERAD machinery. This could explain why the 
global degradation rate of Gas1* is decreased in Δemp24 and, 
analogously, in Δted1 cells, compared with Δbst1 or Δcwh43 
cells (compare Fig. 7 A with Fig. 3 E). Future studies will ad-
dress these questions in detail.

To address the mechanism of ER export of Gas1*, we as-
sayed its binding to the p24 complex component Emp24. Bind-
ing of a GPI-AP to Emp24 was previously shown to depend 
on anchor remodeling (Castillon et al., 2011; Manzano-Lopez 
et al., 2015). Using tandem affinity purification (TAP)-tagged 
Emp24, we could efficiently coimmunoprecipitate (coIP) the 
ER form of HA-Gas1* (Fig. 8 A, lane 12). Importantly, the ef-
ficiency of coIP was comparable to that of Gas1, supporting the 
conclusion that the GPI anchor was remodeled independently of 
protein folding (Fig. 8 A, compare lanes 10 and 12). The binding 
to the anchorless mutants HA-Gas1*TMD and HA-Gas1TMD 
was strongly reduced, confirming that the interaction between 
Gas1 or Gas1* and Emp24 was mainly GPI anchor dependent 
(Fig. 8 A, lanes 14 and 16; Castillon et al., 2011). Interestingly, 
higher-molecular-weight versions of Gas1* and Gas1 con-
structs, which correspond to forms that have undergone further 
glycosylation in the Golgi, were also immunoprecipitated with 
Emp24-TAP in a manner that was independent of the presence 
of the GPI anchor (Fig. 8, [post-]Golgi forms). This is in agree-
ment with a proposed function of the p24 complex in retrieval 
of misfolded or incompletely remodeled GPI-APs from the 
Golgi to the ER by a mechanism that does not depend on anchor 
remodeling (Castillon et al., 2011).

Because a conserved mechanism for the ER export of GPI-
APs in yeast and mammals consists of Ted1/PGAP5-mediated 
sugar remodeling of the GPI anchor, we tested whether binding 
of Gas1* to Emp24 was dependent on Ted1. Indeed, binding 
of the ER form of HA-Gas1* to Emp24-TAP was strongly re-
duced in Δted1 cells, supporting the idea that ER exit of Gas1* 
is mediated by canonical GPI anchor remodeling that seemingly 
occurs irrespective of the state of protein folding (Fig. 8 B).

To generalize these findings, we performed additional ex-
periments with an entirely distinct misfolded protein. We used 
CPY*, a mutant version of the soluble vacuolar carboxypepti-
dase Y and classic Hrd1-dependent ERAD substrate (Bordallo 
et al., 1998). To directly evaluate whether a GPI anchor would 
induce the targeting of CPY* to the vacuole, we generated the 
fusion proteins GFP-CPY*TMD and GFP-CPY*GPI, which 
differ only in the nature of their membrane anchors. Live cell 
fluorescence microscopy revealed that GFP-CPY*TMD, which 
lacks a GPI anchor, was retained rather efficiently inside the 

Figure 6.  The GPI anchor of Gas1* undergoes lipid remodel-
ing. (A) Lysates of wild-type cells and Δbst1 cells with or with-
out expression of HA-Gas1* were subjected to flotation in an 
Optiprep gradient. The three top fractions of the gradient as 
well as the total (T) were analyzed by SDS-PAGE and Western 
blotting (WB) with the indicated antibodies. (B) Graphical dis-
play of the results shown in A. The relative distribution of each 
individually analyzed protein in the three top fractions is plot-
ted after quantifying protein bands from the WBs shown in A.
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ER, with only weak vacuolar signal, indicating minor traffick-
ing to the vacuole (Fig. 9 A, GFP-CPY*TMD). In contrast, the 
attachment of the GPI anchor resulted in a prominent vacuo-
lar signal and reduced ER membrane staining, indicating in-
creased targeting to the vacuole of this construct (Fig.  9  A, 
GFP-CPY*GPI). Moreover, the GFP cleavage assay revealed 
a significant increase in the production of free GFP with GFP-
CPY*GPI in comparison to GFP-CPY*TMD, showing that the 
presence of the GPI anchor led to a global increase in vacuolar 
degradation of the CPY* fusion protein (Fig.  9, B [compare 
lanes 1 and 3] and C). The near-absence of free GFP when the 
same constructs were expressed in the Δpep4 strain confirmed 
that free GFP produced in wild-type cells originated from the 
vacuole (Fig. 9, B [compare lanes 1 and 3 with lanes 2 and 4] 
and C). In addition to an increase in vacuolar degradation in the 
presence of the GPI anchor, measurements of Hrd1-dependent 
degradation using HA-tagged versions of the fusion constructs 

revealed that the exchange of a TMD for a GPI anchor resulted 
in a significant drop in ERAD (Fig.  9, D and E). Together, 
the data obtained with CPY* corroborate those obtained with 
Gas1* and show that the presence of a GPI anchor on a mis-
folded ER protein generally causes a reduction in ER retention 
and ERAD in favor of an increase in ER export, followed by 
ultimate degradation inside the vacuole.

Discussion

Our data demonstrate that a GPI anchor does not pose a sterical 
obstruction for the degradation of a misfolded GPI-AP through 
a canonical ERAD pathway. In contrast to degradation of a 
misfolded GPI-AP inside the vacuole, where the GPI anchor 
may be removed by lipases and/or glycosidases, degradation of 
the same substrate through ERAD hints at the existence of a 

Figure 7.  Increased targeting of Gas1* to ERAD in GPI anchor lipid remodeling mutants. (A) CHX shut-off experiments with wild-type cells and remodeling 
mutants expressing HA-Gas1*. The lower part of the gel was separately stained with Coomassie as loading control. (B) Live cell fluorescence microscopy 
with wild-type cells and remodeling mutants expressing GFP-Gas1*. DIC = Nomarski image. Bar, 3 µm. (C–F) CHX shut-off experiments with the indicated 
double mutants expressing HA-Gas1*. The lower parts of the gels were separately stained with Coomassie as loading control. For quantification and sta-
tistical analysis, results from experiments shown in A as well as from those shown in Fig. 3 E (Δhrd1 and Δemp24 cells) were used. Mean values and SDs 
from at least three individual experiments are shown. Red circles are used to highlight the degradation rates in the double mutants.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/213/6/693/1595204/jcb_201602010.pdf by guest on 08 February 2026



JCB • Volume 213 • Number 6 • 2016700

yet-unknown cellular mechanism for the removal of the GPI 
anchor during or after protein retrotranslocation to allow deg-
radation by the proteasome. The presence of such a mechanism 
is also implied by observation that other posttranslational pro-
tein modifications such as glycans on retrotranslocated proteins 
are removed by a conserved specific cytosolic glycanase before 
proteasomal degradation (Katiyar et al., 2004). We are currently 
pursuing the identification of cellular components involved in 
the removal of a GPI anchor during ERAD.

Remodeled GPI anchors on (correctly folded) GPI-APs 
were previously known to be recognized by the p24 complex 
ER export machinery, thereby connecting GPI anchor remodel-
ing with ER export. Our finding that a GPI anchor is remodeled 
irrespective of protein (mis)folding reveals that a potent ER 
export signal is also generated on a misfolded protein. We fur-
thermore showed that the remodeled GPI anchor of misfolded 
Gas1* promotes binding to Emp24, which suggests that ineffi-
cient ER retention and ERAD of the tested misfolded GPI-APs 
are a consequence of efficient GPI anchor–mediated ER export. 
Although we observed variations in the degree of ER retention, 
ERAD, and degradation inside the vacuole between different 
tested constructs, we found in all cases that the presence of a 
GPI anchor resulted in a larger fraction of the misfolded protein 
to be exported from the ER and routed to the vacuole compared 
with the same protein when membrane-anchored via a TMD 
or when soluble. These observations combined suggest that 
the ER residence time for misfolded GPI-APs is mainly deter-
mined by remodeling of the GPI anchor and only to a minor 
degree by protein folding.

On a speculative note, it could be possible that ER pro-
tein-retention mechanisms, which are largely based on protein–
protein and protein–glycan interactions between substrates and 
chaperones, are in competition with lipid-based sorting mecha-
nisms connected to membrane homeostasis or membrane traffic. 
For instance, the particular lipids that are part of the GPI anchor, 
in particular after anchor remodeling, are likely to affect ER 
membrane homeostasis at least locally and might necessitate 

efficient export from the ER (Copic et al., 2009). Alternatively, 
the known segregation of GPI-APs from other membrane and 
soluble proteins inside the ER as part of a sorting mechanism 
linked to membrane traffic might limit the access of misfolded 
GPI-APs to particular cellular components involved in ER re-
tention and protein quality control (Muñiz et al., 2001; Castillon 
et al., 2009). Future work will address these possibilities.

Based on our results, we propose that canonical GPI an-
chor remodeling universally limits the ER quality control of 
GPI-APs. This provides a unifying model for the increasing 
number of observations in various organisms that misfolded 
GPI-APs are rather poor ERAD substrates. Interference with 
GPI anchor remodeling could thus also be a relevant approach 
in an attempt to increase ERAD of certain disease-prone mu-
tant prion proteins that are converted into pathogenic aggregates 
only after ER exit (Victoria and Zurzolo, 2015). Finally, our 
data also illustrate the importance of post-ER quality control 
mechanisms, about which much is still to be learned, that have 
particular relevance for the entire class of GPI-APs.

Materials and methods

Yeast strains
A detailed list of yeast strains used in this study is found in Table S1.

Construction of plasmids
All constructs used in this study were expressed from integrative plas-
mids under the control of the endogenous GAS1 promoter. Plasmid 
markers are indicated in the list of yeast strains (Table S1). The con-
struct for the expression of HA-Gas1*, pMF616, was a gift from the 
Jigami laboratory (Fujita et al., 2006). A construct expressing HA-Gas1 
was generated from pMF616 by changing the single point mutation 
(G291R) back to wild-type sequence using the primers 5′-GAT​GTC​
TGG​TCT​GGT​GGT​ATC​GTA​TAC​ATG​TAC-3′ and 5′-GTA​CAT​GTA​
TAC​GAT​ACC​ACC​AGA​CCA​GAC​ATC-3′ in combination with the 
Quikchange protocol from Agilent Technologies, yielding NSp17. To 

Figure 8.  GPI anchor remodeling-dependent 
binding of Gas1* to Emp24. (A) Wild-type 
cells coexpressing chromosomally TAP-tagged 
Emp24 and the indicated Gas1 or Gas1* con-
structs and control cells were subjected to co-
immunoprecipitation (IP) experiments followed 
by SDS-PAGE and Western blotting (WB) with 
antibodies against HA. Emp24-TAP was recog-
nized by the secondary antibody. (B) As in A, 
with wild-type cells and Δted1 cells coexpress-
ing Emp24-TAP and HA-Gas1* or control cells.
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generate constructs for the expression of mutants lacking GPI anchors, 
the point mutations K526R and N528Q were simultaneously introduced 
into pMF616 and NSp17 using PCR-based single primer site-directed 
mutagenesis and the primer 5′-CAG​CTT​CAT​CTT​CAT​CTT​CTT​CGC​
GAA​AGC​AAG​CTG​CCA​CCA​ACG​TTA​AAGC-3′, yielding NSp23 
(HA-Gas1*TMD) and NSp20 (HA-Gas1TMD). To generate the soluble 
version HA-Gas1*ΔTMD, a stop codon was introduced into the coding 
region of the protein just upstream of the TMD using the same method in 
combination with pMF616 as template and the primer 5′-CTT​CAT​CTT​
CTA​GCA​AGA​AGT​AAA​AGG​CCT​CGA​CAC​ATA​CAT​AAT​AACT-3′, 
yielding VGp256. To generate GFP-tagged constructs, the GFP sequence 
was amplified from pKT128 (EUR​OSC​ARF Collection Center) with the 
primers 5′-GCG​ACG​CGT​TCT​AAA​GGT​GAA​GAA​TTA​TTC-3′ and 5′-
GCG​ACG​CGT​TTT​GTA​CAA​TTC​ATC​CAT​ACC-3′. The PCR product 
was cut with MluI and inserted into pMF616, NSp17, NSp20, NSp23, 
and VGp256 to yield NSp19 (GFP-Gas1*), LLp16 (GFP-Gas1), LLp17 
(GFP-Gas1TMD), LLp18 (GFP-Gas1*TMD), and clone374 (GFP-
Gas1*ΔTMD). To generate fusion constructs with CPY*, HA-Gas1* and 
HA-Gas1*TMD were first subcloned into pRS314 (TRP1, CEN) using 

XmaI and SacI, yielding VGp257 and VGp258. The coding sequence 
for 81 amino acids downstream of a unique BsrGI site in Gas1* was 
then removed in both constructs using PCR-based single primer site-di-
rected mutagenesis and the primer 5′-CAA​AGG​AAC​AGC​TAT​CTT​
TCT​CCA​GTT​CTT​CTT​CTT​CTTC-3′, leaving the coding region for the 
57 C-terminal amino acids of HA-Gas1* and HA-Gas1*TMD, yield-
ing clone390 and clone391. The CPY* moiety was amplified with PCR 
using the primers 5′-GCG​CAT​ATG​TCA​TTG​CAA​AGA​CCG​TTG-3′ 
and 5′-GCG​TGT​ACA​TAA​GGA​GAA​ACC​ACC​GTG-3′ from VGp173, 
cut with NdeI and BsrGI, and pasted into clone390 and clone391, yield-
ing HA-CPY*GPI (clone392) and HA-CPY*TMD (LLp43). To obtain 
the GFP-tagged constructs, LLp18 was cut with MluI to release the GFP 
moiety. The fragment was purified, pasted into clone392 and LLp43, 
and cut with the same enzyme, yielding GFP-CPY*GPI (LLp47) and 
GFP-CPY*TMD (LLp45). To generate integrative plasmids containing 
these fusion constructs, they were subcloned into pRS306 using XmaI 
and SacI, yielding clone409 and clone410, respectively.

For lipidomics analysis, the various constructs expressing HA-
tagged Gas1 derivatives together with the adjacent URA3 gene were 

Figure 9.  The presence of a GPI anchor on CPY* 
causes an increase in vacuolar degradation and a 
parallel decrease in ERAD compared with CPY* with 
a TMD. (A) Live cell fluorescence microscopy of wild-
type cells expressing the indicated GFP-CPY* fusion 
constructs. Schematic illustrations of the various con-
structs are shown. From previously used GFP-Gas1* 
fusion constructs, the Gas1* moiety, with the excep-
tion of 57 amino acids comprising its C-terminal 
domain containing the GPI anchoring signal, was 
exchanged with CPY*; for details see Materials and 
methods. DIC = Nomarski image. Bar, 2 µm. (B) 
GFP-cleavage assay. Cells used for microscopy in A 
and Δpep4 cells expressing the same constructs were 
lysed in equal amounts and analyzed by SDS-PAGE 
in combination with Western blotting (WB) with an-
tibodies against GFP. The hashtag indicates a non-
specific protein that accumulated in Δpep4 cells. (C) 
Quantification and statistical analysis of results from 
experiments shown in B. Mean values and SDs from 
at least three individual experiments are shown. ***, 
P < 0.001 (unpaired two-tailed Student's t test). (D) 
Wild-type cells and the indicated mutant cells express-
ing HA-CPY*TMD and HA-CPY*GPI were subjected 
to CHX shut-off experiments. Protein O-mannosylation 
occurs within the serine-rich region proximal to the 
GPI anchoring site that is part of the C-terminal 57 
amino acids of the fusion proteins that originate from 
Gas1 (Gatti et al., 1994). A lower part of the gel was 
separately stained with Coomassie as loading control. 
(E) Quantification of results from experiments shown in 
D. Mean values and SDs from at least three individ-
ual experiments are shown.
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amplified from the integrated plasmids using the primers 5′-CTG​ATA 
​AAA​CAA​AAA​CAA​CAA​ACA​CAG​CTA​AAT​CTC​AAC​AAT​GTT​GTT​ 
TAA​ATC​CCT​TTCD-3′ and 5′-CTC​ATC​GAG​CAT​CAA​ATG​AAA​CTG​
CAA​TTT​ATT​CAT​ATC​AGA​TTG​TAC​TGA​GAG​TGC​ACC-3′. The PCR 
products were transformed into the Δgas1 strain, replacing the KAN​MX6 
cassette in the GAS1 locus by homologous combination.

Antibodies
Primary antibodies for Western blotting and immunoprecipitation exper-
iments were polyclonal rabbit antibodies from our laboratories (against 
Wbp1 and Gas1) and commercially available antibodies against HA or 
GFP (Roche). Secondary antibodies for Western blot analysis were perox-
idase-coupled anti-mouse or anti-rabbit antibodies from Sigma-Aldrich.

CHX shut-off experiments
The experiments were started with exponentially growing cells in rich 
medium with an OD of 0.5 to 0.8. Translation was stopped by addition 
of CHX to a final concentration of 200 µg/ml. Equal-volume aliquots 
of cell culture were removed at indicated time points and moved to 
ice. Cells were lysed using 150 mM NaOH, followed by adding sam-
ple buffer containing 2% SDS and heating. Samples were analyzed by 
SDS-PAGE followed by Western blotting using the indicated primary 
antibodies, peroxidase-coupled secondary antibodies (Sigma-Aldrich), 
and ECL (Thermo Fisher Scientific) as substrate. Images were taken 
with a LAS-3000 mini-imaging system (Fujifilm), and bands were 
quantified using Multi-Gauge software (Fujifilm).

Fluorescence microscopy
Cells were grown overnight, diluted to OD 0.3, regrown for 4 h, washed 
with PBS, and immediately analyzed by fluorescence microcopy at RT. 
Cells were observed with an Olympus BX61 microscope equipped with 
a 100×/1.4 PlanApo oil-immersion lens and a conventional FITC cube as 
well as a DIC prism and polarizer for Nomarski imaging. Images were 
acquired using a DP70 camera and the DPcontroller software (Olympus).

Probing for GPI anchor attachment
20 OD of exponentially growing cells were lysed by bead beating in 
cold TEPI buffer in presence of 150 mM NaCl and protease inhibitor 
cocktail (Roche). 1 ml lysate was incubated with 1% of precondensed 
Triton X-114 (Fluka) at 4°C for 30 min with rotation and cleared by 
spinning at 14,000 g for 15 min at 4°C. Cleared lysates were split into 
two equal parts. One sample was incubated with 0.1 units PI-PLC 
(Thermo Fisher Scientific), and the second sample was mock-treated. 
Samples were incubated for 12 h at 4°C on a rocker. Phase separation 
was achieved by heating to 32°C followed by brief spinning. Phases 
were split, reextracted twice, and precipitated with trichloroacetic acid 
(TCA). Finally, SDS sample buffer containing 2% and 6 M urea was 
added, and samples were analyzed by SDS-PAGE and Western blotting.

GFP processing assay
Cells were grown overnight, diluted to OD 0.3, and regrown for 
4 h. Before removal of aliquots, cells were incubated with CHX to a 
final concentration of 200 µg/ml and incubated for 15 min to allow 
for completion of posttranslational protein translocation across the ER 
membrane. Aliquots were removed, transferred to ice, lysed by alka-
line treatment (Kushnirov, 2000), and resuspended in a cell density– 
normalized volume of loading buffer, followed by SDS-PAGE and 
Western blotting using anti-GFP antibody (Roche), HRP-conjugated 
anti-mouse secondary antibody (Sigma-Aldrich), and ECL as substrate. 
Images were taken with a LAS-3000 mini-imaging system, and bands 
were quantified using Multi-Gauge software.

Optiprep gradient flotation assay
10 OD of exponentially growing cells were harvested at OD 0.1, 
washed in ice cold water, and lysed by bead beating in TNE buffer 
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 5 mM EDTA) containing 
a protease inhibitor cocktail (Roche). The lysate was cleared, washed, 
and resuspended in 300 µl TNE buffer. Triton X-100 was added to 1% 
final concentration and incubated on ice for 30 min. Optiprep solution 
(Nycomed) was added to 40% final concentration, and the resulting 
solution was divided into two parts with equal volume. One part was 
considered “total”; the other part was overlaid with 1.2 ml of 30% Op-
tiprep in TXNE (TNE with 1% Triton X-100) and finally with 200 µl 
TXNE. The samples were centrifuged at 55,000 rpm for 2 h in a TLS55 
rotor (Beckman Coulter). Six fractions (360  µl each) were collected 
from top to bottom. Protein contents were precipitated by adding TCA 
to 15%, washed, and resuspended in SDS-PAGE loading buffer, fol-
lowed by SDS-PAGE and Western blot analysis.

CoIP
200 ml of cell culture was grown to mid-log phase, washed, and lysed 
by bead beating with glass beads in lysis buffer (1× PBS, 1 mM EDTA, 
1  mM PMSF, and protein inhibitor cocktail [Roche]). Lysates were 
cleared, solubilized by addition of 1% digitonin (EMD Millipore) for 
30 min, and cleared by centrifugation for 20 min at 100,000 g, followed 
by incubation with magnetic beads (Thermo Fisher Scientific) coupled 
to rabbit IgG (Sigma-Aldrich) for 2 h at 4°C. Washing was done in lysis 
buffer with 0.5% digitonin followed by elution in SDS-loading buffer.

Lipid extraction protocols
Yeast culture, lipid extraction of sphingolipid and glycerophospholip-
ids, and mass spectrometry analysis were performed as described (da 
Silveira Dos Santos et al., 2014). In brief, strains were grown in rich 
medium (yeast extract/peptone/dextrose) at 30°C to early exponential 
growth phase. 25 600-OD units were collected, and metabolism was 
stopped using TCA and cooling on ice. Samples were resuspended in 
extraction solvent (ethanol, water, diethylether, pyridine, and ammo-
nium hydroxide). Internal standards were added, and the samples were 
broken through mechanical disruption using glass beads. Cell debris 
was pelleted by centrifugation, and the supernatant was collected. Lipid 
extract was divided into two aliquots for analysis of glycerophospholip-
ids and sphingolipids. Mild alkaline hydrolysis was performed on the 
sphingolipid fraction. Finally, both fractions were desalted using water 
saturated n-butanol. Mass spectrometry analysis was done using direct 
infusion in negative and positive mode. The lipid species were iden-
tified by the m/z of the lipid and relevant fragment, and their amount 
was calculated by their signal intensities relative to the standards. 
Three independent biologic replicates were analyzed. The amount of 
ceramide and IPC species were summed to obtain the total amount of 
each lipid class, and the samples were normalized by the total amount 
of inorganic phosphate.

Determination of total phosphorus
Glycerophospholipid lipid extract was resuspended in 500  µl 
chloroform​:methanol (1:1, vol/vol), and 50  µl was placed in 13-mm 
disposable Pyrex tubes. After solvent evaporation, 20 µl of water and 
140 µl of 70% perchloric acid were added to the tubes. Samples were 
heated for 1 h at 180°C in a hood. Tubes were allowed to cool for 5 min 
at RT. Next, 800 µl of freshly prepared water​:1​.25% NH4 molybdate​: 
1​.67% ascorbic acid (5:2:1, vol/vol) was added to the tubes, followed 
by 5 min of heating at 100°C. Tubes were cooled at RT, and 100 µl was 
used for measurement of absorbance at 820 nm. A standard curve was 
generated with KH2PO4 standard solution and processed identically.
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Online supplemental material
Fig. S1 shows the degradation rates of HA-Gas1* in single- and double-
deletion mutants, highlighting the contribution of Hrd1-dependent 
ERAD to global protein degradation. Fig. S2 shows lipid profiles of 
Δgas1 cells in dependence on expressing various Gas1* and Gas1 
constructs along with control experiments. Table S1 shows a detailed 
list of yeast strains used in this study. Online supplemental material is 
available at http​://www​.jcb​.org​/cgi​/content​/full​/jcb​.201602010​/DC1.

Acknowledgments

We thank the Jigami laboratory for plasmids and Martin Spiess and 
Robert Ernst for critical reading of the manuscript.

This work was supported by the Swiss National Center for Compe-
tence in Research (Chemical Biology) and the Schweizerischer Na-
tionalfonds zur Förderung der Wissenschaftlichen Forschung to 
H. Riezman and the Ministerio de Ciencia e Innovación (BFU2009-
07290 and BFU2014-59309-P) and the Junta de Andalucia (P09-
CVI-4503) to M. Muñiz and V. Goder.

The authors declare no competing financial interests.

Author Contributions: N.  Sikorska, L.  Lemus, A.  Aguilera-Romero, 
M. Muñiz, and V. Goder designed experiments. N. Sikorska, L. Lemus, 
A. Aguilera-Romero, J. Manzano-Lopez, and V. Goder performed ex-
periments. N. Sikorska, L.  Lemus, A. Aguilera-Romero, J. Manzano- 
Lopez, H.  Riezman, M.  Muñiz, and V.  Goder evaluated data. 
V. Goder wrote the manuscript.

Submitted: 3 February 2016
Accepted: 26 May 2016

References
Arvan, P., X. Zhao, J. Ramos-Castaneda, and A. Chang. 2002. Secretory pathway 

quality control operating in Golgi, plasmalemmal, and endosomal 
systems. Traffic. 3:771–780. http​://dx​.doi​.org​/10​.1034​/j​.1600​-0854​.2002​
.31102​.x

Ashok, A., and R.S. Hegde. 2008. Retrotranslocation of prion proteins from the 
endoplasmic reticulum by preventing GPI signal transamidation. Mol. 
Biol. Cell. 19:3463–3476. http​://dx​.doi​.org​/10​.1091​/mbc​.E08​-01​-0087

Bordallo, J., R.K.  Plemper, A.  Finger, and D.H.  Wolf. 1998. Der3p/Hrd1p is 
required for endoplasmic reticulum-associated degradation of misfolded 
lumenal and integral membrane proteins. Mol. Biol. Cell. 9:209–222.  
http​://dx​.doi​.org​/10​.1091​/mbc​.9​.1​.209

Braakman, I., and N.J. Bulleid. 2011. Protein folding and modification in the 
mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80:71–99.  
http​://dx​.doi​.org​/10​.1146​/annurev​-biochem​-062209​-093836

Carvalho, P., V.  Goder, and T.A.  Rapoport. 2006. Distinct ubiquitin-ligase 
complexes define convergent pathways for the degradation of ER 
proteins. Cell. 126:361–373. http​://dx​.doi​.org​/10​.1016​/j​.cell​.2006​.05​.043

Castillon, G.A., R. Watanabe, M. Taylor, T.M. Schwabe, and H. Riezman. 2009. 
Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic. 
10:186–200. http​://dx​.doi​.org​/10​.1111​/j​.1600​-0854​.2008​.00857​.x

Castillon, G.A., A.  Aguilera-Romero, J.  Manzano-Lopez, S.  Epstein, 
K.  Kajiwara, K.  Funato, R.  Watanabe, H.  Riezman, and M.  Muñiz. 
2011. The yeast p24 complex regulates GPI-anchored protein transport 
and quality control by monitoring anchor remodeling. Mol. Biol. Cell. 
22:2924–2936. http​://dx​.doi​.org​/10​.1091​/mbc​.E11​-04​-0294

Contreras, F.X., A.M. Ernst, P. Haberkant, P. Björkholm, E. Lindahl, B. Gönen, 
C. Tischer, A. Elofsson, G. von Heijne, C. Thiele, et al. 2012. Molecular 
recognition of a single sphingolipid species by a protein’s transmembrane 
domain. Nature. 481:525–529. http​://dx​.doi​.org​/10​.1038​/nature10742

Copic, A., M. Dorrington, S. Pagant, J. Barry, M.C. Lee, I. Singh, J.L. Hartman 
IV, and E.A. Miller. 2009. Genomewide analysis reveals novel pathways 
affecting endoplasmic reticulum homeostasis, protein modification 
and quality control. Genetics. 182:757–769. http​://dx​.doi​.org​/10​.1534​/
genetics​.109​.101105

da Silveira Dos Santos, A.X., I.  Riezman, M.A.  Aguilera-Romero, F.  David, 
M. Piccolis, R. Loewith, O. Schaad, and H. Riezman. 2014. Systematic 
lipidomic analysis of yeast protein kinase and phosphatase mutants 
reveals novel insights into regulation of lipid homeostasis. Mol. Biol. 
Cell. 25:3234–3246. http​://dx​.doi​.org​/10​.1091​/mbc​.E14​-03​-0851

Davidson, E.A., and D.C.  Gowda. 2001. Glycobiology of Plasmodium 
falciparum. Biochimie. 83:601–604. http​://dx​.doi​.org​/10​.1016​/S0300​
-9084(01)01316​-5

Drisaldi, B., R.S.  Stewart, C.  Adles, L.R.  Stewart, E.  Quaglio, E.  Biasini, 
L. Fioriti, R. Chiesa, and D.A. Harris. 2003. Mutant PrP is delayed in its 
exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP 
undergoes retrotranslocation prior to proteasomal degradation. J.  Biol. 
Chem. 278:21732–21743. http​://dx​.doi​.org​/10​.1074​/jbc​.M213247200

Fujita, M., and Y. Jigami. 2008. Lipid remodeling of GPI-anchored proteins and 
its function. Biochim. Biophys. Acta. 1780:410–420. http​://dx​.doi​.org​/10​
.1016​/j​.bbagen​.2007​.08​.009

Fujita, M., and T. Kinoshita. 2012. GPI-anchor remodeling: Potential functions 
of GPI-anchors in intracellular trafficking and membrane dynamics. 
Biochim. Biophys. Acta. 1821:1050–1058. http​://dx​.doi​.org​/10​.1016 
​/j​.bbalip​.2012​.01​.004

Fujita, M., T.  Yoko-O, and Y.  Jigami. 2006. Inositol deacylation by Bst1p is 
required for the quality control of glycosylphosphatidylinositol-anchored 
proteins. Mol. Biol. Cell. 17:834–850. http​://dx​.doi​.org​/10​.1091​/mbc​.E05​
-05​-0443

Fujita, M., Y. Maeda, M. Ra, Y. Yamaguchi, R. Taguchi, and T. Kinoshita. 2009. 
GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored 
proteins from the ER to the Golgi. Cell. 139:352–365. http​://dx​.doi​.org​
/10​.1016​/j​.cell​.2009​.08​.040

Gatti, E., L. Popolo, M. Vai, N. Rota, and L. Alberghina. 1994. O-linked oli-
gosaccharides in yeast glycosyl phosphatidylinositol-anchored protein 
gp115 are clustered in a serine-rich region not essential for its function. 
J. Biol. Chem. 269:19695–19700.

Gauss, R., T.  Sommer, and E.  Jarosch. 2006. The Hrd1p ligase complex 
forms a linchpin between ER-lumenal substrate selection and Cdc48p 
recruitment. EMBO J. 25:1827–1835. http​://dx​.doi​.org​/10​.1038​/sj​.emboj​
.7601088

Goder, V., and A. Melero. 2011. Protein O-mannosyltransferases participate in 
ER protein quality control. J. Cell Sci. 124:144–153. http​://dx​.doi​.org​/10​
.1242​/jcs​.072181

Haynes, C.M., S. Caldwell, and A.A. Cooper. 2002. An HRD/DER-independent 
ER quality control mechanism involves Rsp5p-dependent ubiquitination 
and ER-Golgi transport. J.  Cell Biol. 158:91–101. http​://dx​.doi​.org​/10​
.1083​/jcb​.200201053

Hirayama, H., M.  Fujita, T.  Yoko-o, and Y.  Jigami. 2008. O-mannosylation 
is required for degradation of the endoplasmic reticulum-associated 
degradation substrate Gas1*p via the ubiquitin/proteasome pathway in 
Saccharomyces cerevisiae. J.  Biochem. 143:555–567. http​://dx​.doi​.org​
/10​.1093​/jb​/mvm249

Jonikas, M.C., S.R. Collins, V. Denic, E. Oh, E.M. Quan, V. Schmid, J. Weibezahn, 
B.  Schwappach, P.  Walter, J.S.  Weissman, and M.  Schuldiner. 2009. 
Comprehensive characterization of genes required for protein folding in 
the endoplasmic reticulum. Science. 323:1693–1697. http​://dx​.doi​.org​/10​
.1126​/science​.1167983

Katiyar, S., G.  Li, and W.J.  Lennarz. 2004. A complex between peptide​:N​
-glycanase and two proteasome-linked proteins suggests a mechanism for 
the degradation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA. 
101:13774–13779. http​://dx​.doi​.org​/10​.1073​/pnas​.0405663101

Kincaid, M.M., and A.A.  Cooper. 2007. Misfolded proteins traffic from the 
endoplasmic reticulum (ER) due to ER export signals. Mol. Biol. Cell. 
18:455–463. http​://dx​.doi​.org​/10​.1091​/mbc​.E06​-08​-0696

Kushnirov, V.V. 2000. Rapid and reliable protein extraction from yeast. Yeast. 
16:857–860. http​://dx​.doi​.org​/10​.1002​/1097​-0061(20000630)16​
:9<857::AID-YEA561>3.0.CO;2-B

Loizides-Mangold, U., F.P. David, V.J. Nesatyy, T. Kinoshita, and H. Riezman. 
2012. Glycosylphosphatidylinositol anchors regulate glycosphingolipid 
levels. J.  Lipid Res. 53:1522–1534. http​://dx​.doi​.org​/10​.1194​/jlr​
.M025692

Ma, J., and S. Lindquist. 2001. Wild-type PrP and a mutant associated with prion 
disease are subject to retrograde transport and proteasome degradation. 
Proc. Natl. Acad. Sci. USA. 98:14955–14960. http​://dx​.doi​.org​/10​.1073​
/pnas​.011578098

Manzano-Lopez, J., A.M.  Perez-Linero, A.  Aguilera-Romero, M.E.  Martin, 
T. Okano, D.V. Silva, P.H. Seeberger, H. Riezman, K. Funato, V. Goder, et 
al. 2015. COP​II coat composition is actively regulated by luminal cargo 
maturation. Curr. Biol. 25:152–162. http​://dx​.doi​.org​/10​.1016​/j​.cub​.2014​
.11​.039

Mayor, S., and H. Riezman. 2004. Sorting GPI-anchored proteins. Nat. Rev. Mol. 
Cell Biol. 5:110–120. http​://dx​.doi​.org​/10​.1038​/nrm1309

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/213/6/693/1595204/jcb_201602010.pdf by guest on 08 February 2026

http://www.jcb.org/cgi/content/full/jcb.201602010/DC1
http://dx.doi.org/10.1034/j.1600-0854.2002.31102.x
http://dx.doi.org/10.1034/j.1600-0854.2002.31102.x
http://dx.doi.org/10.1091/mbc.E08-01-0087
http://dx.doi.org/10.1091/mbc.9.1.209
http://dx.doi.org/10.1146/annurev-biochem-062209-093836
http://dx.doi.org/10.1016/j.cell.2006.05.043
http://dx.doi.org/10.1111/j.1600-0854.2008.00857.x
http://dx.doi.org/10.1091/mbc.E11-04-0294
http://dx.doi.org/10.1038/nature10742
http://dx.doi.org/10.1534/genetics.109.101105
http://dx.doi.org/10.1534/genetics.109.101105
http://dx.doi.org/10.1091/mbc.E14-03-0851
http://dx.doi.org/10.1016/S0300-9084(01)01316-5
http://dx.doi.org/10.1016/S0300-9084(01)01316-5
http://dx.doi.org/10.1074/jbc.M213247200
http://dx.doi.org/10.1016/j.bbagen.2007.08.009
http://dx.doi.org/10.1016/j.bbagen.2007.08.009
http://dx.doi.org/10.1016/j.bbalip.2012.01.004
http://dx.doi.org/10.1016/j.bbalip.2012.01.004
http://dx.doi.org/10.1091/mbc.E05-05-0443
http://dx.doi.org/10.1091/mbc.E05-05-0443
http://dx.doi.org/10.1016/j.cell.2009.08.040
http://dx.doi.org/10.1016/j.cell.2009.08.040
http://dx.doi.org/10.1038/sj.emboj.7601088
http://dx.doi.org/10.1038/sj.emboj.7601088
http://dx.doi.org/10.1242/jcs.072181
http://dx.doi.org/10.1242/jcs.072181
http://dx.doi.org/10.1083/jcb.200201053
http://dx.doi.org/10.1083/jcb.200201053
http://dx.doi.org/10.1093/jb/mvm249
http://dx.doi.org/10.1093/jb/mvm249
http://dx.doi.org/10.1126/science.1167983
http://dx.doi.org/10.1126/science.1167983
http://dx.doi.org/10.1073/pnas.0405663101
http://dx.doi.org/10.1091/mbc.E06-08-0696
http://dx.doi.org/10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B
http://dx.doi.org/10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B
http://dx.doi.org/10.1194/jlr.M025692
http://dx.doi.org/10.1194/jlr.M025692
http://dx.doi.org/10.1073/pnas.011578098
http://dx.doi.org/10.1073/pnas.011578098
http://dx.doi.org/10.1016/j.cub.2014.11.039
http://dx.doi.org/10.1016/j.cub.2014.11.039
http://dx.doi.org/10.1038/nrm1309


JCB • Volume 213 • Number 6 • 2016704

Mehnert, M., T.  Sommer, and E.  Jarosch. 2010. ERAD ubiquitin ligases: 
Multifunctional tools for protein quality control and waste disposal in 
the endoplasmic reticulum. BioEssays. 32:905–913. http​://dx​.doi​.org​/10​
.1002​/bies​.201000046

Meusser, B., C. Hirsch, E. Jarosch, and T. Sommer. 2005. ERAD: the long road 
to destruction. Nat. Cell Biol. 7:766–772. http​://dx​.doi​.org​/10​.1038​/
ncb0805​-766

Muñiz, M., C. Nuoffer, H.P. Hauri, and H. Riezman. 2000. The Emp24 complex 
recruits a specific cargo molecule into endoplasmic reticulum-derived 
vesicles. J. Cell Biol. 148:925–930. http​://dx​.doi​.org​/10​.1083​/jcb​.148​.5​.925

Muñiz, M., P. Morsomme, and H. Riezman. 2001. Protein sorting upon exit from 
the endoplasmic reticulum. Cell. 104:313–320. http​://dx​.doi​.org​/10​.1016​
/S0092​-8674(01)00215​-X

Petris, G., A.  Casini, L.  Sasset, F.  Cesaratto, M.  Bestagno, A.  Cereseto, and 
O.R. Burrone. 2014. CD4 and BST-2/tetherin proteins retro-translocate 
from endoplasmic reticulum to cytosol as partially folded and multimeric 
molecules. J. Biol. Chem. 289:1–12. http​://dx​.doi​.org​/10​.1074​/jbc​.M113​
.512368

Puig, B., H.  Altmeppen, and M.  Glatzel. 2014. The GPI-anchoring of PrP: 
Implications in sorting and pathogenesis. Prion. 8:11–18. http​://dx​.doi​
.org​/10​.4161​/pri​.27892

Reggiori, F., E. Canivenc-Gansel, and A. Conzelmann. 1997. Lipid remodeling 
leads to the introduction and exchange of defined ceramides on GPI 
proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO 
J. 16:3506–3518. http​://dx​.doi​.org​/10​.1093​/emboj​/16​.12​.3506

Satpute-Krishnan, P., M.  Ajinkya, S.  Bhat, E.  Itakura, R.S.  Hegde, and 
J. Lippincott-Schwartz. 2014. ER stress-induced clearance of misfolded 
GPI-anchored proteins via the secretory pathway. Cell. 158:522–533.  
http​://dx​.doi​.org​/10​.1016​/j​.cell​.2014​.06​.026

Spear, E.D., and D.T. Ng. 2003. Stress tolerance of misfolded carboxypeptidase Y 
requires maintenance of protein trafficking and degradative pathways. Mol. 
Biol. Cell. 14:2756–2767. http​://dx​.doi​.org​/10​.1091​/mbc​.E02​-11​-0717

Tashima, Y., R.  Taguchi, C.  Murata, H.  Ashida, T.  Kinoshita, and Y.  Maeda. 
2006. PGAP2 is essential for correct processing and stable expression of 
GPI-anchored proteins. Mol. Biol. Cell. 17:1410–1420. http​://dx​.doi​.org​
/10​.1091​/mbc​.E05​-11​-1005

Umemura, M., M.  Fujita, T.  Yoko-O, A.  Fukamizu, and Y.  Jigami. 2007. 
Saccharomyces cerevisiae CWH43 is involved in the remodeling of the 
lipid moiety of GPI anchors to ceramides. Mol. Biol. Cell. 18:4304–4316. 
http​://dx​.doi​.org​/10​.1091​/mbc​.E07​-05​-0482

Vembar, S.S., and J.L. Brodsky. 2008. One step at a time: Endoplasmic reticulum-
associated degradation. Nat. Rev. Mol. Cell Biol. 9:944–957. http​://dx​.doi​
.org​/10​.1038​/nrm2546

Victoria, G.S., and C.  Zurzolo. 2015. Trafficking and degradation pathways 
in pathogenic conversion of prions and prion-like proteins in 
neurodegenerative diseases. Virus Res. 207:146–154. http​://dx​.doi​.org​/10​
.1016​/j​.virusres​.2015​.01​.019

Wang, S., and D.T. Ng. 2010. Evasion of endoplasmic reticulum surveillance 
makes Wsc1p an obligate substrate of Golgi quality control. Mol. Biol. 
Cell. 21:1153–1165. http​://dx​.doi​.org​/10​.1091​/mbc​.E09​-10​-0910

Wang, Y.J., B.O. Tayo, A. Bandyopadhyay, H. Wang, T. Feng, N. Franceschini, 
H. Tang, J. Gao, Y.J. Sung, R.C. Elston, et al. COG​ENT BP consortium. 
2014. The association of the vanin-1 N131S variant with blood pressure 
is mediated by endoplasmic reticulum-associated degradation and loss 
of function. PLoS Genet. 10:e1004641. http​://dx​.doi​.org​/10​.1371​/journal​
.pgen​.1004641

Yedidia, Y., L.  Horonchik, S.  Tzaban, A.  Yanai, and A.  Taraboulos. 2001. 
Proteasomes and ubiquitin are involved in the turnover of the wild-type 
prion protein. EMBO J. 20:5383–5391. http​://dx​.doi​.org​/10​.1093​/emboj​
/20​.19​.5383

Zhao, Y., J.A.  Macgurn, M.  Liu, and S.  Emr. 2013. The ART-Rsp5 ubiquitin 
ligase network comprises a plasma membrane quality control system that 
protects yeast cells from proteotoxic stress. eLife. 2:e00459. http​://dx​.doi​
.org​/10​.7554​/eLife​.00459

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/213/6/693/1595204/jcb_201602010.pdf by guest on 08 February 2026

http://dx.doi.org/10.1002/bies.201000046
http://dx.doi.org/10.1002/bies.201000046
http://dx.doi.org/10.1038/ncb0805-766
http://dx.doi.org/10.1038/ncb0805-766
http://dx.doi.org/10.1083/jcb.148.5.925
http://dx.doi.org/10.1016/S0092-8674(01)00215-X
http://dx.doi.org/10.1016/S0092-8674(01)00215-X
http://dx.doi.org/10.1074/jbc.M113.512368
http://dx.doi.org/10.1074/jbc.M113.512368
http://dx.doi.org/10.4161/pri.27892
http://dx.doi.org/10.4161/pri.27892
http://dx.doi.org/10.1093/emboj/16.12.3506
http://dx.doi.org/10.1016/j.cell.2014.06.026
http://dx.doi.org/10.1091/mbc.E02-11-0717
http://dx.doi.org/10.1091/mbc.E05-11-1005
http://dx.doi.org/10.1091/mbc.E05-11-1005
http://dx.doi.org/10.1091/mbc.E07-05-0482
http://dx.doi.org/10.1038/nrm2546
http://dx.doi.org/10.1038/nrm2546
http://dx.doi.org/10.1016/j.virusres.2015.01.019
http://dx.doi.org/10.1016/j.virusres.2015.01.019
http://dx.doi.org/10.1091/mbc.E09-10-0910
http://dx.doi.org/10.1371/journal.pgen.1004641
http://dx.doi.org/10.1371/journal.pgen.1004641
http://dx.doi.org/10.1093/emboj/20.19.5383
http://dx.doi.org/10.1093/emboj/20.19.5383
http://dx.doi.org/10.7554/eLife.00459
http://dx.doi.org/10.7554/eLife.00459

