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The cell biology of acute itch
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Itch, the irritation we feel and the relief that comes from
scratching, is an evolutionary warning system and de-
fense against harmful environmental agents. Although
once considered a subtype of pain, itch is now recognized
as a unique sense, with its own distinct physiology and
cell receptors. Here, we discuss recent advances in our
understanding of itch and the molecular players that me-
diate this sensory modality.

Introduction

The average human is covered in 1.8 to 2.0 m? of skin (Ogden
et al., 2004). With such a large surface area, a sensory modal-
ity we call itch has evolved to alert us to potentially danger-
ous external stimuli. Unlike the sensation of pain, where an
organism will actively try and withdraw from an unpleasant
stimuli, itch compels the affected to seek out the source and
respond with a scratch. Acute itch serves us well in guarding
against environmental threats; however, chronic or severe itch
(pruritus) is a burdensome illness that affects millions every
year (Nutten, 2015). Fortunately, great strides have been made
over the past few decades in understanding the cellular biology
that underlies both acute and chronic itch, providing hope for
new medical treatments.

Compared with its sensory cousin, pain, the understand-
ing of itch is still nascent. New discoveries within the past few
years have brought excitement, however. Work uncovering re-
ceptors, agonists, and the interplay of different cell types has
begun to widen the field and offer new avenues for study. In this
review, we will look at the cell biology of itch, with an emphasis
on the receptors, cell types, and pruriceptors that are involved in
the processing of itch, focusing on the periphery and how itch is
coded in the spinal cord.

The peripheral components of itch

Histaminergic peripheral neurons. Histamine was first
used at the turn of the previous century to study skin vascula-
ture. Application of histamine to the skin produces what cardi-
ologist Thomas Lewis termed the triple response, with redness,
flare, and swelling around the site of histamine injection (Lewis,
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1926). Along with these noted changes in vasculature, hista-
mine also produces itch (Simone et al., 1987), and many itch-
inducing stimuli, such as insect bites (Horsmanheimo et al.,
1996), are mediated through the endogenous release of
histamine. A variety of cell types are capable of producing
histamine, including mast cells, keratinocytes, and neurons.

There are four known histamine receptor subtypes, HIR,
H2R, H3R, and H4R, and all are bound to G proteins (G protein—
coupled receptors [GPCRs]) (Strasser et al., 2013). HIR is cou-
pled to Gq proteins, where the ligand-bound receptor leads to
activation of the phospholipase C and phosphatidylinositol sig-
naling pathways, with a consequent rise in intracellular calcium.
Subsequent effects of HIR activation are cell type dependent.
Histamine release can activate a subset of peripheral sensory
neurons, as peripheral blockade eliminates itch (Shelley and
Melton, 1950; Roberson et al., 2013). Activated pruriceptors
release neuropeptides, such as substance P and calcitonin gene—
related peptide (CGRP; McCoy et al., 2013), both of which
contribute to the characteristic flare and wheal that is concom-
itant with itch. Although substance P was originally implicated
in mediating itch via cutaneous activation of its receptor NK1
(Andoh et al., 1998), further studies in human skin using mi-
crodialysis showed little effect at physiological concentrations
(Weidner et al., 2000).

Early efforts in drug discovery found that antihistamines
are effective antipruritic agents and work by competing with
histamine for its endogenous receptor (Wells et al., 1945). Stud-
ies with histamine receptor subtypes, H2R and H3R, have yet
to reveal a role for either in itch. Both are expressed in a vari-
ety of tissue types, where activation of H2R on parietal cells
causes gastric acid secretion, and H3R expression in the central
nervous system is involved in neurotransmitter release (Black
et al., 1972; Morisset et al., 2000). As for H4R, more recent
evidence has shown some early success with H4R antagonists
in treating inflammatory diseases, including chronic pruritus
(Dunford et al., 2007; Thurmond et al., 2008). Histamine has
been implicated in a host of diseases involving itch. Studies
with patients suffering from atopic dermatitis found a 60% in-
crease in skin histamine levels compared with normal patients’
skin (Johnson et al., 1960). Similarly, histamine was also found
to be elevated in some patients suffering from chronic urticaria,
a condition marked by an itchy rash and more commonly re-
ferred to as hives (Phanuphak et al., 1980).

Initial work by physiologists trying to elucidate the pe-
ripheral afferents responsible for itch proposed that itch was a
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modified form of pain (Von Frey, 1922). Low-level activation
of nociceptors would produce itch, whereas higher intensities
would evoke pain. This intensity hypothesis, whereby pain and
itch are coded by the same nociceptors, has lost ground to stud-
ies providing evidence for specific C-fibers that encode itch. Ex-
periments using increasing amounts of electrical stimulation of
nonglabrous skin in humans found concurrent increases in itch
intensity (Tuckett, 1982) with no reported changes in pain rat-
ings. Similar studies looking at pain and itch modulation using
mustard oil or histamine saw distinct effects, where pain could
not be converted to itch or vice versa (Handwerker et al., 1991).

The selectivity model, whereby a subset of neurons are
selective for itch but also capable of algogenic responses, has
recently garnered support (Schmelz et al., 2003). Two studies
found that vesicular glutamate transporter 2 (VGLUT2) plays
an important role in modulating both itch and pain (Lagerstrom
et al., 2010; Liu et al., 2010). Deletion of the gene for VGL
UT?2 in mice resulted in a decrease in pain but was accompanied
by a marked increase in basal itch behavior, with adult mice
displaying skin lesions caused by increased scratching (La-
gerstrom et al., 2010). However, this enhanced itch behavior
could be reduced with antihistamines, implicating histamine in
the transmission of VGLUT2-regulated itch. Loss of VGLUT?2
led to hypersensitivity to multiple pruritogens, including mast
cell activator compound 48/80 (Liu et al., 2010). Interestingly,
injection of capsaicin in VGLUT?2 knockout (KO) mice evoked
itch rather than pain. This phenotypic switch in behavior points
to VGLUT?2 contributing to pain transmission, whereas its loss
leads to disinhibition of itch in these neurons (Liu et al., 2010).

Nonhistaminergic itch. The flare that follows neuro-
peptide release is a hallmark of histamine-induced itch. How-
ever, another well-known pruritogen is the tiny hairs or spicules
derived from the plant cowhage (Mucuna pruriens). Cowhage is
capable of producing a strong dose-dependent itch in animals
and humans without any vasodilation. The active component of
cowhage spicules is the proteinase mucunain (Shelley and Ar-
thur, 1955; Reddy et al., 2008). Unlike histamine, cowhage
spicules activate mechanoresponsive polymodal C-fibers in hu-
mans (Johanek et al., 2007; Namer et al., 2008). These experi-
ments, along with those done in animal models (Tuckett and
Wei, 1987; Johanek et al., 2008), provide evidence that
cowhage and histamine activate separate and distinct
populations of C-fibers.

Cowhage has more recently been used to explore Ad
fiber—mediated itch. Unlike C-fibers, Ad fibers are thinly my-
elinated, possess a higher conduction velocity, and along with
pain are thought to transmit mild pressure and cold sensations.
Interestingly, selective blockade of Ad fibers has no effect on
capsaicin-induced pain and only a minor effect on histamine-
induced itch, whereas cowhage-induced itch is almost com-
pletely lost (Ringkamp et al., 2011), revealing the complexity
of peripheral pruriceptive neurons.

A GPCR family defines a class of histamine-
independent itch receptors. Mas-related G protein—
coupled receptors (Mrgprs) comprise a group of ~50 GPCRs
expressed primarily in dorsal root and trigeminal ganglia (Dong
et al., 2001). Four families of Mrgprs have been shown to play
a role in itch: MrgprA, MrgprB, MrgprC, and MrgprD. Al-
though histamine- and compound 48/80—induced itch was
maintained in Mrgpr cluster KO animals, scratching behavior
caused by the antimalarial drug chloroquine and bovine adrenal
medulla 8-22 peptide was significantly reduced (Liu et al.,
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2009). Further experiments, using heterologous expression
systems, identified MrgprA3 and its human homolog MrgprX1
as the receptor mediating chloroquine itch and MrgprC11 as
the receptor activated by bovine adrenal medulla 8-22 (Liu
et al., 2009).

The peptide SLIGRL-NH2, a synthesized unmasked N
terminus (tethered ligand) of protease-activated receptor 2
(PAR?2), can result in robust itch when injected into animals and
humans, pointing to PAR2 as a target for itch studies (Steinhoff
et al., 2003; Shimada et al., 2006). More recently, however, SLI
GRL was identified as an agonist specific for MrgprC11 (Liu et
al.,2011a). Liu et al. (2011a) demonstrated comparable scratch-
ing behavior between wild-type and PAR2 KO mice. Moreover
SLIGRL elicited very little scratch behavior from MrgprCl11
KO mice, supporting its role as the primary receptor for SLI
GRL. Although activated by distinct agonists, both MrgprA3
and MrgprC11 have been shown to rely on transient receptor
potential cation channel ankyrin 1 (TRPA1) to transduce itch
(Wilson et al., 2011). Further work with Mrgprs has implicated
MrgprD in mediating the itch and prickling sensation found
after consumption of the sports supplement f-alanine (Liu et
al., 2012). These findings point to the important role the Mrgpr
family has in contributing to itch.

The discovery of Mrgprs has also provided additional ev-
idence for the labeled line theory of itch, whereby dedicated
itch-specific prurinergic fibers transmit information to the spinal
cord. Using a mouse line in which the transient receptor poten-
tial cation channel vanilloid 1 (TRPV1) was knocked out, Han
et al. (2013) reintroduced TRPV1 via an MrgprA3 driver. When
the potent TRPV1 agonist capsaicin was injected, scratching
was observed but not nocifensive behavior. As TRPV1 was ex-
pressed only on MrgprA3* neurons, this result demonstrated that
MrgprA3* neurons are selective for itch and not pain. Moreover,
when these MrgprA3* neurons were ablated, itch behavior was
reduced but thermal and mechanical allodynia was maintained.

Identifying populations of itch neurons. In an
elegant paper using an unbiased sampling of single-cell
RNA-sequenced lumbar dorsal root ganglia (DRG) neurons,
Usoskin et al. (2015) found 11 different expression classes
comprising four distinct clusters of neurons. One cluster of non-
peptidergic (NP) nociceptors appears to play a role in pruritus
because of its expression of a wide assortment of itch receptors.
This cluster was identified based on unique expression of Plexin
C1, purinergic receptor 3, the neurotrophin receptor tyrosine
kinase, CGRP, and somatostatin.

Surprisingly, the study found low levels of histamine re-
ceptor expression across the NP cluster, with only NP2 (9%)
and NP3 (8%) at detectable levels for H1. However, Mrgprs
were found to have expression overlap with histamine-positive
NP clusters. Moreover, Mrgprs had high expression overlap
with TRPA1 (51% NP1) and TRPV1 (58% NP3), known down-
stream mediators of Mrgpr and histaminergic itch, respectively
(Imamachi et al., 2009; Wilson et al., 2011). Cytokine receptors
Oncostatin M and interleukin (IL)-31 were highly expressed
(75% and 58%, respectively) on the NP3 cluster, implicating
this cluster as associated with inflammatory itch. Collectively,
the data in this study provide further evidence demonstrating
distinctive types of itch neurons in the somatosensory system.

Nonneuronal cell biology of itch
Keratinocytes. As the primary cell type found in skin, kera-
tinocytes are capable of producing a variety of defenses against
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pathogens. In response to noxious stimuli, keratinocytes can
release a host of inflammatory mediators, including nerve
growth factor, IL-6, and serotonin, sensitizing peripheral neu-
rons (Luo et al., 2015). Keratinocytes have also been shown to
directly activate neurons via the release of the cytokine thymic
stromal lymphopoietin, triggering itch behavior (Fig. 1; Wilson
et al., 2013). Keratinocytes interact with the immune system via
the release of chemoattractants, such as monocyte chemoattrac-
tant protein 1, chemokine ligand 5, and IL-8, recruiting immune
cells to the site of injury or pruritinergic stimuli. These chemo-
kines were found to be elevated in patients with atopic dermati-
tis and psoriasis, implicating keratinocytes in the pathology of
itch (Giustizieri et al., 2001).

Mast cells. Unlike other granulocytes that freely circu-
late in the bloodstream, mast cells reside in connective tissue.
Their location and function as sentinel cells allow for interac-
tion with other cell types, including keratinocytes, sensory neu-
rons, and vascular epithelium (Fig. 1; Galli et al., 2011). Mast
cells and their products are best known for their association
with IgE-mediated allergic disorders, including itch, eczema,
rhinitis, and asthma. Three broad categories of mediators are
capable of being released from activated mast cells in a time-
dependent manner. These include preformed mediators (hista-
mine, tryptase, serotonin), lipid mediators (leukotrienes and
prostaglandins, released within minutes), and cytokines,
chemokines, and growth factors (IL-6, chemokine ligand 5,
nerve growth factor, and VEGF, hours after activation; Theoha-
rides et al., 2015). As the primary reservoir of histamine in the
skin, drugs targeting mast cells, including mast cell stabilizers,
are effective in treating itch- and allergen-induced asthma, con-
junctivitis, and mastocytosis (Horan et al., 1990). More re-
cently, our laboratory identified a novel mast cell-specific
receptor, Mas-related G protein—coupled receptor B2 (Mrg-
prB2), and its human ortholog, MrgprX2, in pseudo-allergenic
activation of mast cells (McNeil et al., 2015), opening up a new
target in the treatment of mast cell-related disorders.

The central components of itch
Pain and itch are distinct sensations. Early studies saw itch as
a subset of pain, where sensory neuron firing frequency could

o / " >

Figure 1. Multiple cell types contribute to pe-
ripheral itch. Prurinergic stimuli, here a mos-
quito bite, generates itch via the interaction of
a variety of cell types. Keratinocytes release
endogenous pruritogens, including thymic
stromal lymphopoietin (TSLP), contributing di-
rectly to itch sensation by activating the TSLP
receptor (TSLPR) on peripheral afferent neu-
rons (Wilson et al., 2013). Keratinocytes also
release chemoattractants that recruit immune
cells, including mast cells. Histamine released
Q from stored granules in mast cells binds H1
receptors, activating pruriceptors and trans-
mitting itch signals to the spinal cord. Along
with histamine, other pruritogens, including
serotonin, proteases, and IL-6, are released
by resident immune cells such as T cells and
dendritic cells (Schmelz et al., 2003). The blue
squares af the nerve endings represent the re-
ceptor for itchy substances.

© JHU 2016/AAAM

distinguish itch from pain. However, more recent work points to
a labeled line theory in which itch has a distinct population of
spinal neurons that encode itch.

The dorsal horn of the spinal cord receives sensory input
from the periphery, including pain and itch, and is divided into
distinct layers, or laminae. The C- and AS fibers that transmit
pain and itch terminate in lamina I and II of the dorsal horn.
Compared with the study of peripheral afferents, the cell bi-
ology underlying spinal pruriceptors is still emerging. Work
using recordings from cat spinal cord identified neurons in
the spinothalamic tract (STT) that were selective to activation
by histamine (Andrew and Craig, 2001). The STT is home to
many second-order neuron types, connecting the dorsal horn
to the thalamus. Studies of histamine-responsive STT neurons
showed them to have low conduction velocity, with no sponta-
neous activity, and projections to lateral thalamic nuclei, prop-
erties that are markedly different from both nociceptive spinal
and wide-dynamic-range neurons (Andrew and Craig, 2001).

The findings outlined earlier in this review offer evidence
for separate histamine and cowhage projections to the dorsal
horn. Studies examining dorsal horn neurons have also uncov-
ered distinct histamine- and cowhage-responsive populations of
neurons in the STT (Fig. 2). Antidromic stimulation, in which
axon conduction occurs opposite of the normal direction, was
used to identify a population of STT neurons when histamine
and cowhage was applied to their receptive field (Davidson
et al., 2012). STT recordings found that 20% of neurons re-
sponded to histamine and 13% responded to cowhage, with
only 2% of neurons responding to both. These histamine- and
cowhage-responsive neurons terminated in a cluster of densely
packed neurons, termed the ventral posterior nucleus, an area
implicated in itch behavior.

STT neurons and the scratch reflex. Scratching
in response to histamine injection has been shown to reduce
spinal neuronal activity in mice (Akiyama et al., 2012). In pri-
mates, scratching of cutaneous receptive fields results in consis-
tent STT neuronal firing. However, in histamine-evoked
scratching, the opposite has been found, where recordings from
these same STT neurons exhibited a reduction in action
potential discharge (Davidson et al., 2009). In studies of human
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subjects, histamine-evoked itch can be reduced via scratching
the receptive field, but with a recovery in itching minutes later
(Yosipovitch et al., 2007). Consistent with the human data, Da-
vidson et al. saw a similar rebound of firing in primate STT
neurons after scratching had ceased (Davidson et al., 2009). The
switch to an inhibitory phenotype in STT neurons was depen-
dent on histamine, as scratching caused by capsaicin injection
only increased their firing. These results suggest that activation
of prurinergic fibers is required for the relief one
finds in scratching an itch.

Gastrin-releasing peptide. Further evidence for a
distinct itch pathway has been provided by the identification of
gastrin-releasing peptide (GRP) and its receptor (GRPR) as
transducers of itch. Early work with GRP homologs bombesin
and neuromedin B found both to produce scratching behavior
when injected intrathecally (Gmerek and Cowan, 1983; Van
Wimersma Greidanus and Maigret, 1991). Their human ortho-
log, the neuropeptide GRP, was first identified as mediating the
release of gastric acid in the stomach. The GRPR is highly ex-
pressed in the stomach, as well as the pancreas and central ner-
vous system, where receptor activation plays a role in
modulating circadian rhythms. Studies in mice revealed expres-
sion of GRP in small- and medium-diameter dorsal root ganglia
containing CGRP and substance P (Sun and Chen, 2007). These
GRP+ fibers terminated in lamina I and II of the dorsal horn,
whereas no GRP was detected in the spinal cord. However, Sun
and Chen (2007) saw GRPR expression in lamina I and II of the
dorsal horn, and scratching behavior was reduced in mice lack-
ing GRPR. Interestingly, responses to noxious thermal and me-
chanical stimuli were unchanged in GRPR KO mice, with no
deficits seen in motor activity, indicating that GRPR is not in-
volved in pain transduction (Sun et al., 2009).
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Glutamate ((9,@4 @

o®
..
L

© JHU 2016/AAAM

Itch after morphine treatment has long been reported in the
clinic, with spinal application providing robust pruritus (Hales,
1980). Opioids provide pain relief by activating the p-opioid
receptor (MOR), leading to presynaptic y-aminobutyric acid
release, decreasing neuronal hyperexcitability (Kieffer, 1999).
It was thought that pain inhibition unmasks itch signals in the
spinal cord, as pain has been shown to reduce itch behavior.
This selectivity hypothesis has been brought into question with
the finding that morphine activates a subset of spinal neurons
expressing a heteromer of the G protein—coupled receptor con-
sisting of MOR and GRPR subunits (Liu et al., 2011b). This
MOR1D-GRPR complex was located primarily in lamina I of
the spinal cord. Furthermore, loss of GRPR had no effect on
morphine-induced analgesia, nor did MOR inhibition effect
GPR-induced scratching. This study provided proof for the di-
rect action of MOR on itch behavior while providing more evi-
dence for the role of GRPR as an itch receptor.

B-type natriuretic polypeptide. A more recent ar-
ticle identified another neuropeptide that plays a role in the
transmission of itch in the spinal cord. Earlier work with
TRPV 1-deficient mice had shown deficits in scratching behav-
ior when exposed to many different pruritogens (Mishra et al.,
2011). Because of this finding, Mishra and Hoon (2013) used a
differential microarray—based screen and found the neuropep-
tide B-type natriuretic polypeptide (BNP) selectively expressed
in TRPV1* and MrgprA3/C11* DRG neurons. When BNP was
injected intrathecally, mice displayed a robust itch phenotype.
Scratching behavior was lost in BNP KO mice injected with a
variety of pruritogens, including histamine, chloroquine, sero-
tonin, and compound 48/80. However, these mice had normal
responses to thermal and mechanical stimuli. The primary re-
ceptor for BNP, NPRA, was found to be expressed in the outer
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inferneurons. Mechanical itch is gated via excitatory input
under the control of NPY+ interneurons (Bourane et al., 2015).
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layer of lamina I, differing from GRPR expression patterns.
Furthermore, when NPRA* dorsal horn neurons were ablated
using BNP bound to the toxin saporin, BNP-induced scratching
was strongly attenuated.

Interestingly, ablation of BNP neurons did not affect
GRP-induced itch, and BNP KO mice still displayed normal
itch behavior when GRP was injected intrathecally (Mishra
and Hoon, 2013). Antagonist blockade of GRPR reduced both
BNP- and GRP-induced itch. These results, along with data re-
vealing dorsal horn interneuron expression of GRPR (Wang et
al., 2013), indicate that GRP acts downstream of BNP in the
spinal cord and identify a new itch circuit in the dorsal horn
(Fig. 3). However, later studies from Liu et al. (2014) using
in situ hybridization and real-time RT-PCR demonstrated that
GRP is expressed in the DRG. These discrepancies could be
caused by the low expression of the proteins being studied and
the differences in detection methods used by each laboratory.
Moreover, it is possible that the expression levels of these pep-
tides and receptors become altered by changes in physiology or
alterations from abnormal pathological conditions.

Interneurons modulate itch. Interneurons in the
spinal cord play an important role in relaying sensory informa-
tion from peripheral afferents to the thalamus. In a study look-
ing at interneurons, Ross et al. (2010) found that loss of the
transcription factor Bhlhb5 yielded an increase in itch behavior
when Bhlhb5 KO mice were exposed to pruritogens. Loss of
Bhlhb5 in the superficial lamina of the dorsal horn resulted in
pathological itch, results that implicate the importance of inhib-
itory interneurons in modulating itch.

Light touch of hairy skin evokes a type of acute itch
termed mechanical itch. Mechanical itch was thought to be
under the control of mechanoreceptor-specific afferents, but
the specific circuits involved were unknown. However, Bou-
rane et al. (2015) have recently identified an important subset
of interneurons that play a role in inhibiting mechanical itch.
By expressing the diphtheria toxin receptor in a subset of in-
terneurons that expressed neuropeptide Y (NPY), mice devel-
oped touch-evoked itch; however, chloroquine- and compound
48/80—-evoked itch were unaffected (Bourane et al., 2015).
NPY ablation was histamine independent, as histamine H1/H4

receptor antagonists had no effect on touch-evoked itch. In-
terestingly, NPY-ablated mice showed similar sensitivity to
high-intensity force and pain, providing evidence for a pathway
specific to light touch that also gates mechanical itch.

Studies have also identified excitatory interneurons in
regulating itch in the spinal cord. Mice lacking the testicular
orphan nuclear receptor (TR4) gene had complete loss of itch
behavior when exposed to pruritogens such as histamine and
chloroquine (Wang et al., 2013). Interestingly, these animals
developed normal heat and mechanical hypersensitivity to a
complete Freund’s adjuvant model of inflammation, but devel-
oped marked thermal hypersensitivity in a chronic constriction
injury model of neuropathic pain. Immunohistochemistry re-
vealed a loss of excitatory interneurons in the superficial dorsal
horn of TR4 conditional KO mice. Moreover, by using a variety
of markers, Wang et al. (2013) saw a 76.6% decrease of GRP-
positive cells and an 83% decrease in GRPR-positive cells in
the TR4 conditional KO mice. Although not specific for itch,
TR4 interneurons provide further confirmation for the pivotal
role interneurons have in regulating itch.

A new role for glia. Much focus over the past decade
has involved understanding and integrating peripheral and cen-
tral circuits involved in itch. However, a recent article has pro-
vided evidence for glial cells, specifically astrocytes, in
mediating pruritus. Using a mouse model of atopic dermatitis,
Shiratori-Hayashi et al. (2015) observed astrocytes in the spinal
dorsal horn with enlarged cell bodies and overly arborized pro-
cesses, hallmarks of astrogliosis. Astrogliosis is normally a re-
sult of infection or injury; however, the chronic scratching
found in atopic dermatitis was also capable of shifting these
cells to an abnormal state. The astrocyte marker GFAP was also
found to be increased in segments of the spinal cord innervated
from skin lesions caused by scratching. When TRPV 1+ C-fibers
were ablated using resiniferatoxin, mice with atopic dermatitis
had fewer scratching bouts and reduced GFAP expression, pro-
viding a link between peripheral skin lesions caused by chronic
itch and the astrogliosis found in the dorsal horn of the spinal
cord. Although the study focused on the role of astrocytes in a
chronic model of itch, the findings provide evidence for the im-
portance of nonneuronal cells in contributing to pruritus.
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Conclusion

Progress has been made in identifying distinct receptors and
sensory neurons that encode itch, which was formerly thought
to be a submodality of pain. Characterization of primary affer-
ents expressing Mrgprs and GRP, as well as those spinal neu-
rons that are positive for GRPR, BNP, and NPY, have broadened
our understanding of the cell types underlying itch. The focus of
this review has been acute itch, and questions still remain about
whether pathological or chronic itch alters the expression and
molecular underpinnings of the mechanisms outlined in this re-
view. However, the research outlined here provides hope for the
future, as the identification of unique itch pathways will aid in
the development of novel clinical therapies for those suffering
from debilitating pruritus.
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