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P53- and mevalonate pathway-driven malignancies
require Arfé for metastasis and drug resistance
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Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tu-
mors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial-mesenchymal transition and
invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate
proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires
the Arfé-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase Il (GGT-Il) and its substrate
Rab11b are critical for Arfé trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases.
Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arfé activation via GGT-Il and
Rab11b. Inhibition of MVP and GGT-Il blocked invasion and metastasis and reduced cancer cell resistance against
chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpres-
sion of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These

results provide insights into the molecular basis of MVP-driven malignancy.

Introduction

The mevalonate pathway (MVP) has long been recognized as
an excellent target of cancer therapeutics, partly as a result of its
activity to prenylate and hence activate small GTPases, includ-
ing members of the Ras and Rho family, which are key players
in oncogenesis and cancer malignancy (Goldstein and Brown,
1990). MVP is involved in a wide variety of aspects of cell reg-
ulation under both normal and disease conditions (Yeganeh et
al., 2014). Statins are inhibitors of hydroxymethylglutaryl-CoA
reductase (HMGCR), a rate-limiting enzyme of MVP, and were
originally developed to lower cholesterol levels, such as in car-
diovascular disease (Endo et al., 1976). However, in spite of
such potentials of statins, which inhibit the activities of Ras and
Rho family members, many clinical trials showed that statins on
their own or even in combination with other drugs or with radia-
tion therapy did not always effectively treat cancers (Jukema et
al., 2012; Yeganeh et al., 2014; Altwairgi, 2015). Therefore, the
general functions of MVP, which may play roles in most cancer
cells, might not be crucial for promoting cancer malignancy.
However, MVP inhibitors might still become very effective
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therapeutics for cancer if they are combined with biomarkers to
identify the “responders” (see the last paragraph of Introduction
and the last paragraph of Discussion).

An example of the critical roles played by MVP in breast
cancer was recently shown in detail. Gain-of-function mutants
of pS3 may interact with the sterol regulatory element-binding
proteins SREBP-1 and SREBP-2 to up-regulate the transcription
of genes involved in fatty acid and sterol biosynthetic pathways,
including MVP (Freed-Pastor et al., 2012). Through the up-
regulation of MVP activity, mutant p53 enhances the invasive-
ness of breast cancer cells, such as MDA-MB-231 (Freed-Pastor
et al., 2012), which expresses R280K mutant p53 and has lost
the other TP53 allele (Wasielewski et al., 2006). However, al-
though MDA-MB-468 cells also express mutant p53 (R273H),
which up-regulates MVP, the up-regulation of MVP by mutant
p53 in this cell line did not promote invasiveness but only dis-
rupted the cell morphology (Freed-Pastor et al., 2012). These
results clearly demonstrate that MVP, as well as its enhanced
activity, can be linked to cancer invasiveness, although this link
seems to depend on cell contexts, even within the same type of
cancer. However, the detailed molecular mechanisms by which
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certain breast cancer cells respond to the enhanced activity of
MVP to promote invasiveness remain unidentified.

The small GTPase Arf6 and its signaling proteins are fre-
quently overexpressed in different types of cancers, such as breast
cancer, clear cell renal cell carcinoma, lung adenocarcinoma,
and head and neck squamous cell carcinoma, and constitute a
pathway promoting invasion and metastasis by down-regulating
E-cadherin—based cell-cell adhesion and up-regulating recy-
cling of 1 integrins (Hashimoto et al., 2004a, 2006, 2016; On-
odera et al., 2005; Morishige et al., 2008; Menju et al., 2011;
Kinoshita et al., 2013; Sato et al., 2014). In this pathway, Arf6
is activated by receptor tyrosine kinases (RTKs), such as EGF
receptor (EGFR) via GEP100 (also called BRAG2) in breast
cancer cells (Morishige et al., 2008), whereas Arf6 is activated
by lysophosphatidic acid receptors via EFA6 in clear cell renal
cancer cells (ccRCCs; Hashimoto et al., 2016). Activated Arf6
then recruits AMAP1 (Onodera et al., 2005). We have recently
identified that EPB41L5, which is expressed exclusively in
mesenchymal cells under normal conditions and acts to pro-
mote cell motility and focal adhesion dynamics (Hirano et al.,
2008), is an integral binding partner of AMAP1 for invasion
and metastasis (unpublished data). Thus, this Arf6-based path-
way is a cancer-specific mesenchymal-type signaling pathway.
It should be noted that Arf6 is acylated but is not prenylated and
hence is not a direct target of the MVP activity.

Possibly related to the results by Freed-Pastor et al.
(2012), it should be noted that MDA-MB-231 cells overexpress
Arf6 and its signaling components, including the mesenchymal-
specific EPB41L5, and use them for invasion and metastasis,
whereas MDA-MB-468 cells express these molecules at mar-
ginal levels (Hashimoto et al., 2004a; Onodera et al., 2005).
Moreover, several studies have shown that the acquisition of
mesenchymal properties by cancer cells, particularly breast
cancer cells, is significantly associated with their resistance to
therapeutic drugs (Tryndyak et al., 2010; Yu et al., 2013; Fischer
et al., 2015; Zheng et al., 2015), although the underlying mo-
lecular mechanisms remain unidentified. Here, we investigated
whether MVP activity is involved in activation of the Arf6-
based mesenchymal pathway, with the aim to identify a key
link between MVP and cancer malignancy. For this purpose, we
primarily used breast cancer cells, in which the roles of MVP
and the overexpressed Arf6 pathway, as well as the acquisition
of mesenchymal properties in the development of malignancy
(particularly drug resistance), have been well documented. Our
results revealed the molecular basis as to why MVP inhibitors
are highly effective against only a certain population of cancer
cells and proposed biomarkers that might be useful for identi-
fying cancer cells that are highly sensitive to the inhibition of
MVP activity, such as by statins.

Results

TGFB1 activates Arf6 via trans-activating
c-Met to promote invasiveness

Both the activity of MVP up-regulated by mutant p53 and the
Arf6-based pathway activated by RTKs were reported to be cru-
cial for the enhanced invasiveness of MDA-MB-231 cells, as
mentioned in the second and third paragraphs of the Introduction.
Moreover, TGFf1 signaling was also pivotal for the enhanced
invasiveness of this cell line (Adorno et al., 2009). To under-
stand the precise roles of MVP in this enhanced invasiveness,
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we first investigated the association of these events and found
that TGFp1 activates Arf6 in MDA-MB-231 cells (Fig. 1 A), as
assessed by the GGA pull-down assay. siRNA-mediated Arf6
silencing abolished the TGFB1-induced invasion (Fig. 1 B and
Fig. S1 A). Silencing of GEP100 also blocked Arf6 activation
and cell invasion, and silencing of AMAP blocked the invasion
(Fig. 1, B and C; and Fig. S1 A). Cell viability was not notably
affected under these conditions (Fig. S1 B). Therefore, TGFf1
signaling appears to use the Arf6 pathway to promote the inva-
siveness of MDA-MB-231 cells.

The TGFp1 receptor is not a member of the RTKs, although
TGFp may trans-activate some RTKs (Uchiyama-Tanaka et al.,
2002). c-Met (hepatocyte growth factor [HGF] receptor) was
clearly tyrosine phosphorylated by TGFf1 in MDA-MB-231
cells (Fig. 1 D), and silencing of ¢-Met blocked TGFp1-induced
Arf6 activation and cell invasion (Fig. 1, E and F; and Fig. S1, C
and J). HGF on its own was able to activate Arf6 and cell inva-
sion, whereas these activations were abolished by the silencing
of GEP100 (Fig. 1, B and C). AMAP] silencing also blocked
HGF-induced cell invasion (Fig. 1 B). However, TGFp1 only
marginally activated EGFR in these cells (Fig. S1 D). Consis-
tently, the c-Met inhibitor PHA665752 blocked TGFp1-induced
Arf6 activation and cell invasion almost completely, without af-
fecting Smad2 phosphorylation or cell viability (Fig. S1, E-H).
c-Met uses Gabl in its intracellular signaling. Silencing of Gab!
blocked TGFp1-induced Arf6 activation and cell invasion with-
out affecting cell viability (Fig. 1, E and F; and Fig. S1, [ and J).
We also confirmed that c-Met and GEP100 are coprecipitated
with Gab1 upon HGF stimulation (Fig. S1 K) and that the pleck-
strin homology (PH) domain of GEP100, fused to GST, precip-
itated Gabl and c-Met upon TGFpP1 stimulation (Fig. SI L).
Therefore, it is likely that via the trans-activation of c-Met,
TGFp1 activates Arf6 in MDA-MB-231 cells.

Mutant p53 is critical for the activation of
Arf6 but not c-Met

We then analyzed the association between mutant p53 and
ligand-induced Arf6 activation. Silencing of mutant p53 in
MDA-MB-231 cells (resulting in shp53 cells) was shown to block
TGFP1-induced invasion (Adorno et al., 2009). We previously
generated shp53 cells expressing normal p53 (shp53/wild-type
[wt] cells), as well as shp53 cells expressing the oncogenic p53
mutants R175H, R249S, and R273H and the rescue construct of
R280K (shp53/R175H cells, shp53/R249S cells, shp53/R273H
cells, and shp53/R280K cells, respectively; unpublished data).
These exogenous p53 proteins were tagged with V5. We here
found that TGFf1-induced Arf6 activation and cell invasion are
substantially abolished in shp53 cells and shp53/wt cells, but not
in cells expressing mutant p53 proteins (Fig. 2, A and B). Sim-
ilar results were also observed upon EGF and HGF stimulation
(Fig. 2, A and B). However, TGFp1-induced phosphorylation of
c-Met (Fig. 2 C) and the ligand-induced activation of RTKs and
Akt occurred even in shp53 cells and shp53/wt cells (Fig. S2 A).
This association of GEP100 with EGFR also occurred in these
cells upon EGF stimulation (Fig. S2 B). Therefore, different mu-
tant p53 proteins are involved in ligand-induced Arf6 activation.
However, these results showed that mutant p53 proteins are dis-
pensable to the trans-activation of c-Met by TGFp1. Moreover,
the ability of R280K to promote Arf6 activation and cell invasion
appeared to be primarily dependent on its transcriptional activity,
as its transcription-dead mutant (txn-dead R280K) was unable
to restore these activities (Fig. S2, C and D).
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Other breast cancer cell lines, such as MDA-MB-435s and
Hs578T, also overexpress components of the Arf6-based path-
way (Hashimoto et al., 2004a; Onodera et al., 2005). These cell
lines express distinct types of mutant p53 proteins (Wasielewski
et al., 2006). Silencing their mutant p53s (shown again as shp53
cells) almost completely blocked HGF-induced Arf6 activation
(Fig. 2 D). However, unlike MDA-MB-231 cells, silencing of
their mutant p53s only partially blocked their HGF-induced
Matrigel invasion activities (Fig. 2 E), which was consistent
with our previous observation that these cells are not exclu-
sively dependent on Arf6 for invasion (Hashimoto et al., 2004a;
Onodera et al., 2005). These results indicate that different mu-
tant p53 proteins are involved in ligand-induced Arf6 activation
in different breast cancer cells to enhance invasiveness.

MVP is necessary for Arf6 activation

We next investigated the association between MVP and li-
gand-induced Arf6 activation. Simvastatin, Mevastatin, or
6-fluoromevalonate, an inhibitor of mevalonate pyrophos-
phate decarboxylase, all blocked the invasive phenotypes of
MDA-MB-231 cells (Freed-Pastor et al., 2012). We found
that these inhibitors block TGFp1-induced Arf6 activation and
invasion (Fig. 3, A and B) without affecting c-Met trans-ac-
tivation (Fig. 3 C) or cell viability (Fig. S2 E). The readdi-
tion of mevalonic acid (MVA) and MVA-phosphate restores
Arf6 activation and invasion (Fig. 3, A and B). HGF-induced
Arf6 activation of MDA-MB-435s cells and Hs578T cells was
also blocked by Simvastain (Fig. 3 D). Therefore, MVP ap-
pears to be crucial for ligand-induced Arf6 activation in differ-
ent breast cancer cells.

Mutant p53 and geranylgeranyl transferase
Il (GGT-II) are crucial for the plasma
membrane (PM) recruitment of Arf6

We then sought to understand the precise mechanisms by which
MVP as well as mutant p53 is involved in Arf6 activation.
GDP-Arf6 is predominantly localized at the cytoplasm and is
recruited to the PM during its activation by RTKs (Hashimoto
et al., 2004b). We noticed that the PM recruitment of Arf6 upon
TGFp1 treatment is substantially impaired in shp53 cells and
shp53/wt cells, as compared with their parental cells (Fig. 3, E
and F). However, inhibition of MVP is known to substantially
alter cell morphology (Freed-Pastor et al., 2012); hence, we
were unable to determine whether MVP is crucial for the PM
recruitment of Arf6 using statins.

To verify the involvement of MVP, we then identified the
enzymes involved. GGT and farnesyl transferase act under MVP.
Inhibition of GGT by GGTI-2133 blocked the invasive pheno-
types of MDA-MB-231 cells, whereas the inhibition of farnesyl
transferase by FTI-277 did so only slightly (Freed-Pastor et al.,
2012). Consistently, GGTI-2133, but not FTI-277, effectively
blocked the ligand-induced Arf6 activation of MDA-MB-231,
MDA-MB-435s, and Hs578T cells (Fig. 3 G). GGT consists of
two isoforms, GGT-I and GGT-II. Silencing of GGT-II blocked
Arf6 activation and cell invasion, whereas silencing of GGT-1
only blocked the invasion (Fig. 3, H and I). Cell viability was not
affected by these siRNA treatments (Fig. S2, F and G). Moreover,
silencing of GGT-1I, but not GGT-1, blocked the PM recruitment
of Arf6 induced by TGFp1 (Fig. 3, J and K; and Fig. S2, H and
I). Therefore, GGT-II appears to be crucial for the PM recruit-
ment of Arf6 and hence for Arf6 activation by external ligands.

ArfB8 connects prenylation and cancer malignancy * Hashimoto et al.
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Figure 2. Mutant p53 is crucial for ligand-induced Arfé activation but not for the trans-activation of c-Met. (A and B) Arfé activation (A) and Matrigel
invasion (B), induced by EGF, HGF, or TGFp1, as indicated, were measured in MDA-MB-231 cells (parental) and their p53 derivatives. Exogenous p53
proteins were tagged with V5. Matrigel invading cells were quantified as described in the Matrigel invasion assay section within Materials and methods.
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Rab11 with Arf6 to play essential roles in
the PM recruitment of Arf6

Arf6 on its own cannot determine the destination of its own
intracellular trafficking. Likewise, the functional cooperation
of Arf6 with other small GTPases has been well documented
(Grant and Donaldson, 2009). We identified molecules act-
ing downstream of GGT-II to recruit Arf6 to the PM. GGT-II
is involved in the lipid modification of the Rab family small
GTPases, whereas GGT-I is involved in the lipid modifica-
tion of Rap-GTPases (Wiemer et al., 2011). Screening of a
Rab-GTPase siRNA library revealed the possible involvement
of Rab3b, Rab5c, Rab7b, Rabl1a, and Rab11b in the invasion
of MDA-MB-231 cells (Fig. S3 A). Rab5c was previously
shown to be essential for invasion but not for Arf6 recruitment
(Onodera et al., 2012). After confirming positive roles of those
Rab proteins in invasion (Fig. 4 A and Fig. S3, B and C), we
found that Rabl1la and Rab11b, but not Rab3b or Rab7b, are
required for Arf6 activation upon stimulation by TGFp1, HGF,
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and EGF in MDA-MB-231 cells (Fig. 4 B). Moreover, silenc-
ing of both Rab11a and Rab11b blocked Arf6 activation almost
completely (Fig. 4 B and Fig. S3 C). Therefore, it is likely that
Rablla and Rabl1b are able to independently contribute to
Arf6 activation. However, although Rab1 1¢ (also called Rab25)
is a Rabl1 family member, it was not expressed at detectable
levels in the breast cancer cell lines that we examined, including
MDA-MB-231 (Fig. S4 A).

Like Arf6, the functions of Rabl11 are associated with the
recycling of endosomes (Stenmark, 2009). Using fluorescence
protein tags, we then found that Rabl1b is colocalized with
Arf6 to a certain extent in the cytoplasm and that Rabl1a is
also colocalized with Arf6, but to a lesser extent than Rabl1b
(Fig. 4, C and D). We confirmed the colocalization of endoge-
nous Rab11b with Arf6-EGFP using an antibody applicable to
the detection of Rabl1b in fixed cells (Fig. 4 E). Silencing of
Rabl1a and Rabl11b each blocked the PM recruitment of Arf6
upon TGF1 stimulation to a certain extent (Fig. 4, F and G).
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Arfé activation (H), Matrigel invasion (I), and PM recruitment of Arfé () and K) were measured in MDA-MB-231 cells pretreated with siRNAs for GGT,
GGTHI, or Irr, as indicated. Matrigel invasion activities were measured as in B (n = 3), and PM recruitment of Arf6 was estimated as in F (n = 2). Repre-
sentative images are shown from two independent experiments in which >10 cells were examined in each experiment. Simvastatin + MVA/MVAP, cells
incubated with mevalolactone and MVA 5-phosphate for 6 h before addition of Simvastatin. The results represent mean + SEM. *, P < 0.001. Bars, 10 pm.
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We also performed time-lapse fluorescence image recording and
found that Rab11b is transported together with Arf6 in the cyto-
plasm before and after stimulation, although Rab11b appeared
to separate from Arf6 before Arf6 reaches the PM (Fig. S3 D
and Video 1). We confirmed that the colocalization of Rabl1b
with Arf6 was unaffected, even when different tags were used
for each of these small GTPases (Fig. S3 E). We furthermore
confirmed that these tagged proteins are not excessively over-
expressed by performing immunoblotting analysis (Fig. S3 F).

Using a Triton X114-based fractionation method with
MDA-MB-231 cells, we confirmed that Simvastatin dramat-
ically increases the amounts of HA-Rabl1b (wt) recovered

within the soluble fraction (S), whereas HA-Rab11b in these
cells was recovered mostly within the detergent-insoluble mem-
brane fraction (M; Fig. 4 H). Under this condition, a nonger-
anylgeranylated mutant of HA-Rabl1b (C214A/C215A) was
exclusively recovered within the soluble fraction (Fig. 4 H).
Silencing of GGT-II, but not GGT-I, blocked the association of
HA-Rab11b with the membrane fraction (Fig. 4 I). Moreover,
significant amounts of Rab11b were recovered within the sol-
uble fraction in shp53 cells and shp53/wt cells compared with
the parental cells (Fig. 4 J). Furthermore, the originally known
function of wt p53 to suppress SREBP activity appeared to be
recaptured in our results, in which higher amounts of Rab11b
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were recovered in the soluble fraction in shp53/wt cells than in
shp53 cells (Fig. 4 J). These results show that MVP and GGT-11
are essential for the function of Rab11b and also support the no-
tion that mutant p53 acts to increase the amounts of functional
Rab11b proteins, whereas wt p53 acts to limit Rab11b activity
and hence limit the activation of Arf6 by external ligands.

Mutant p53 does not affect lipid rafts

MVP leads to the biosynthesis of cholesterol, which, together
with other lipids such as sphingolipids, forms discrete heterog-
enous microdomains termed lipid rafts. Increased amounts of
lipid rafts, as well as increased lipid raft localization of EGFR,
have been implicated in cancer malignancy (Li et al., 2006;
Irwin et al., 2011). However, mutant p53 did not appear to be re-
sponsible for the enhanced lipid raft localization of these RTKs,
nor for the increased amounts of lipid rafts and total cellular
cholesterol, at least in MDA-MB-231 cells (Fig. S3, G and H).

Requirement of MVP and GGT-Il in Arf6
activation originates from a normal

cell context

To clarify whether the requirement for Rabl1, as well as for
MVP and GGT-II, in Arf6 activation is specific only to some
breast cancer cells, we next examined whether these require-
ments also exist in normal mammary epithelial cells. We used
HMLE cells, which are immortalized normal mammary epithe-
lial cells (Elenbaas et al., 2001). The culture medium for these
cells contains a basal amount of EGF to maintain their viability,
which prevented us from starving the cells of EGF. We instead
found that silencing of Rabl1b greatly reduces Arf6 activity
and causes the cytoplasmic redistribution of Arf6 in HMLE
cells, even in the presence of EGF (Fig. 5, A and B). Silencing
of Rablla also significantly reduced Arf6 activity, although to
a lesser extent than that by Rab11b silencing (Fig. 5 A). HMLE
cells were found to express Rabllc (Fig. S4 A). Silencing of
Rabllc also reduced Arf6 activity, again to a lesser extent than
that by Rabll1b silencing (Fig. 5 A). Therefore, although all
Rabl11 family members appear to be involved in the processes
activating Arf6, Rab11b appears to play the major role in HMLE
cells. We also confirmed that cell viability was not affected by
the silencing of these mRNAs (Fig. S4, B-D). Moreover, a sim-
ilar cytoplasmic redistribution of Arf6é was observed by treat-
ment of HMLE cells with Simvastatin (Fig. 5 C). Therefore, the
requirement for MVP and Rab11 in Arf6 activation is likely to
occur also in a normal cell context.

MVP and Rab11b are essential for ArfG-
driven metastasis

We then validated the requirement for Rab11b in metastasis.
The shRNA-mediated silencing of Rabl1b in MDA-MB-231
cells, expressing a firefly luciferase reporter, effectively blocked
lung metastasis in nude mice, in which the cells were originally
injected into tail veins (Fig. 6, A and B; and Fig. S4, E and F).
This silencing did not affect cell growth in vitro but reduced cell
invasion in vitro (Fig. S4, G and H). Simvastatin also blocked
the lung metastasis of MDA-MB-231 cells in vivo without
affecting cell proliferation in vitro (Fig. 6, C and D; and Fig.
S4, T and J), as previously demonstrated using other cell lines
(Shibata et al., 2004). However, inhibitors of GGT, which can
be safely administered to animals for long periods of time, are
not available. Collectively, these results indicated that MVP and
Rabl1b, which is a substrate of GGT-II, are essential for the

metastasis of breast cancer cells, in which metastatic activity is
primarily driven by the Arf6 pathway.

Blocking the Arf6 pathway effectively
decreases the drug resistance of breast
cancer cells

As mentioned earlier, the expression of mesenchymal genes in
breast cancer cells is closely associated with their acquisition
of drug resistance. The Arf6 pathway includes mesenchymal-
specific EPB41L5, which is expressed in MDA-MB-231 cells
and MDA-MB-435s cells at high levels (unpublished data).
A fundamental function of EPB41L5 is to down-regulate
E-cadherin (Hirano et al., 2008); the down-regulation of E-
cadherin is a hallmark feature that leads to anoikis resistance
and may thereby also lead to the drug resistance of cancer cells
(Frisch et al., 2013). We hence investigated whether EPB41LS5,
as well as the Arf6 pathway, contributes to the drug resistance
of breast cancer cells. Gemcitabine is a cytidine analogue, and
Temsirolimus is an inhibitor of mammalian target of rapamy-
cin activity (Maring et al., 2005; Grunt and Mariani, 2013). We
found that knockdown of EPB41L5 by its specific siRNAs sig-
nificantly improves the sensitivities of MDA-MB-231 cells and
MDA-MB-435s cells to Gemcitabine and Temsirolimus (Fig. 7,
A and B). We then found that Simvastatin also significantly im-
proves the drug sensitivities of these cells (Fig. 7, C and D).
Such effects were observed at concentrations of 10 nM or lower
for Simvastatin, as well as for Gemcitabine and Temsirolimus.
However, such improvement by Simvastatin was not at all ob-
served in MDA-MB-468 cells and MCF7 cells (Fig. S5, A and
B), which do not overexpress components of the Arf6 pathway
(Hashimoto et al., 2004a; Onodera et al., 2005). The expres-
sion of EPB41L5 in these cells is almost undetectable (unpub-
lished data). Furthermore, the silencing of GGT-II and Rab11b
each also enhanced the drug sensitivities of MDA-MB-231
cells and MDA-MB-435s cells but not MDA-MB-468 cells
and MCF7 cells (Fig. 7, A and B; and Fig. S5, C and D), even
though MDA-MB-468 cells and MCF7 cells expressed GGT-1I
and Rabl1b at levels comparable to those in MDA-MB-231
cells and MDA-MB-435s cells (Fig. S5, E and F). These re-
sults indicated that the Arf6-based mesenchymal pathway may
significantly contribute to the promotion of the drug resistance
of breast cancer cells. Consistent with this notion, these results
demonstrated that statins, as well as blocking the activities of
GGT-II and Rabll1b, can effectively decrease the drug resis-
tance of breast cancer cells if they overexpress components of
the Arf6-based mesenchymal pathway.

MVP and the Arf6 pathway cooperatively
promote the poor outcome of patients

We finally investigated the clinical relevance of the possible co-
operation between MVP and the Arf6 pathway in breast cancer
malignancy. Overexpression of HMGCR (encoding HMGCR)
in primary breast tumors statistically correlates with the poor
overall survival of patients (Freed-Pastor et al., 2012). We
previously analyzed the Cancer Genome Atlas RNASeq data-
set on primary breast tumors (n = 970; Cancer Genome Atlas
Network, 2012) and showed that the simultaneous high ex-
pression of mRNAs (top 33%) of all components of the Arf6
pathway (i.e., mRNAs for GEP100, Arf6, AMAPI, EPB4ILS5,
and EGFR and/or c-Met) correlates with the poor overall sur-
vival of patients with a p-value of 0.0419 (unpublished data).
In the same dataset, high expression of HMGCR (top 33%)
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Figure 5. Requirement for MVP and Rab11 in the PM recruitment and activation of Arf6 in HMLE cells. (A) Arfé activities of cells pretreated with siRNAs
for Rab11a, Rab11b, Rabl1c, or Irr and maintained in their growth medium were measured. (B and C) Subcellular localization of Arf6-EGFP or Arf6-
mCherry was examined in cells pretreated with siRNAs for Rab11b or Irr (B) or preincubated with Simvastatin or DMSO for 24 h (C) and maintained in
growth medium. F-actin was visualized using Alexa Fluor 568- (B) or Alexa Fluor 488—conjugated (C) phalloidin. Fluorescence intensities along the green
arrows (B) and the red arrows (C) are shown on the right. Each experiment was performed at least twice, and representative images from >10 cells then

examined are shown. Bars, 10 pm. a.u., arbitrary units.

indeed correlated with poor overall survival (Fig. 7 E). We then
found that co-overexpression of HMGCR with mRNAs for all
components of the Arf6 pathway exhibits a stronger correlation
(Fig. 7 F). Moreover, high expression of EPB41L5 (top 33%) on
its own was previously found to sufficiently correlate with poor
overall survival (p-value of 0.0242; unpublished data). Notably,
co-overexpression of EPB41L5 and HMGCR tightly correlated
with poor overall survival, with a much higher correlation value
than high EPB4IL5 expression or high HMGCR expression
alone (Fig. 7 G). Thus, consistent with our results obtained
using cultured cells, overexpression of components of the Arf6-

JCB » VOLUME 213 « NUMBER 1 » 2016

based mesenchymal pathway and enhancement of MVP activity
appear to cooperatively promote breast cancer malignancy.

Discussion

In this paper, we show that MVP is essential for the activation
of Arf6 by external ligands, particularly through the activity of
GGT-II and its substrate Rab11 both in normal cells and can-
cer cells. However, components of the Arf6-based pathway are
often abnormally overexpressed in different cancer cells, and
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Figure 6. Requirement for MVP and Rab11b in cancer metastasis. (A-D) Lung metastases of MDA-MB-231 cells expressing a luciferase reporter were
measured after their injection info the tail veins of nude mice. Cells were transfected with an shRNA plasmid (to silence Rab11b) or a control vector (Scram-
ble; A and B) or were pretreated with Simvastatin or a control solution for 2 d before the injection (C and D). In C and D, mice received Simvastatin or a
control solution, as indicated, every day after the injection. In A and C, bioluminescence intensities from the chests of the injected mice were measured on
the indicated days. Results are shown as mean + SEM. n = 5. *, P < 0.05. Representative images of the mice are shown on the right. In B and D, repre-
sentative whole images of the lungs (top) and hematoxylin and eosin staining of lung sections (bottom) 28 d after the injection are shown. Bars, 100 pm.

such overexpression is crucial to promote invasion and me-
tastasis to be statistically associated with the poor outcome
of patients (Hashimoto et al., 2004a, 2006, 2016; Onodera et
al., 2005; Morishige et al., 2008; Menju et al., 2011; Kinoshita
et al., 2013; Sato et al., 2014). Based on these facts, we here
demonstrated that the newly discovered link of MVP to Arf6
activation is critical for malignancy of breast cancer cells that
overexpress the Arf6 pathway. Like Arf6 and its signaling
proteins, RTKs are also frequently overexpressed in different
breast cancer cells, which is associated with the poor outcome
of patients (Ocaiia et al., 2013; Elster et al., 2015). It is hence
conceivable that the enhancement of MVP activity, such as by
mutant p53, greatly assists in the efficient activation of overex-
pressed Arf6 and its signaling pathway under enhanced RTK
signaling through enhancement of the geranylgeranylation of
Rabl1, which then facilitates the intracellular trafficking of
Arf6 proteins to the PM to be activated by RTKs.

Our results suggest that co-overexpression of EPB41L5
and HMGCR mRNAs provides a biomarker predictive for
breast cancer cells that can be highly reactive to MVP inhibi-
tion. Immunohistochemical detection of their protein products

might also show similar results, as these mRNAs appear struc-
turally to belong to “strong” mRNAs that are immediately
translated into proteins upon transcription (De Benedetti and
Graff, 2004). The 5-yr survival rates of breast cancer patients
have reached >80% in several medically advanced countries
(Coleman et al., 2008). Interestingly, effects of the possible
cooperation of enhanced MVP activity and the overexpressed
Arf6 pathway appear to manifest 5 yr or so after the diagnosis
(Fig. 7, F and G). Activities of MVP change dynamically under
various physiological conditions, such as by cholesterol intake
and estrogen levels (Goldstein and Brown, 1990; Faulds et al.,
2012). However, TP53 mutations may account for only a small
population of the high HMGCR expression group of primary
breast tumors (Fig. S5, G and H), despite the fact that 7P53
mutations are very frequent in breast cancer cells with highly
aggressive phenotypes, i.e., the basal-like genotype cells (80%;
Cancer Genome Atlas Network, 2012). In this regard, it should
be noted that 7P53 mutations are infrequent in other types of
breast cancer cells, such as the luminal A genotype (12%) and
the luminal B genotype (29%; Cancer Genome Atlas Network,
2012). Thus, it would be interesting to investigate the types of
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nutritional as well as hormonal conditions of patients that may
respond well to the inhibition of MVP and GGT-1I. However,
it should also be noted that animal experiments revealed that
statins administrated orally selectively accumulate in the liver
(Duggan et al., 1989; Vickers et al., 1990; Nezasa et al., 2002),
whereas statins can be delivered to target organs by other meth-
ods, including intraarterial infusion, as well as direct infusion
into mammary ducts in the case of breast cancer.

We recently found that ccRCCs also frequently over-
express components of the Arf6 pathway, overexpression
which is tightly associated with the poor outcomes of patients
(Hashimoto et al., 2016). In ccRCCs, however, Arf6 is activated
by EFA6, but not GEP100, under G protein—coupled receptors
(Hashimoto et al., 2016). Consistently, we found that statins
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were not highly effective in reducing the drug resistance of
ccRCC cell lines (unpublished data). Moreover, we still do not
know the precise molecular mechanisms as to how EPB41L5
and also the Arf6-based pathway enhance the drug resistance
of cancer cells. It is possible that the involvement of EPB41L5
and the Arf6 pathway, as well as the enhanced activities of MVP
promoting Arf6 activation, in drug resistance depends on the
cell context. The degree of involvement might also vary de-
pending on the types of cancers and on the different genomic
mutations in different cancer cells. Therefore, a detailed un-
derstanding of these mechanisms will be necessary to further
ensure the effective use of MVP inhibitors in clinical settings.
In conclusion, our results suggested that blocking the ac-
tivities of MVP, particularly blocking GGT-II, may effectively
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kill cancer cells that overexpress the Arf6-based mesenchymal
pathway (i.e., the responders) when appropriately combined
with other therapeutics and perhaps also with particular patient
conditions and genome status of cancer cells. Blocking these
enzymatic activities of the responder cells on their own may also
effectively block their motility and invasiveness. Furthermore,
consistent with the reported functions of statins (Yeganeh et al.,
2014), such blockage is expected to effectively inhibit tumor
angiogenesis, as overexpressed Arf6 and AMAPI are also es-
sential for this process (Hashimoto et al., 2011). We hence pro-
pose that clinical usefulness of statins for cancer therapy should
be reevaluated using the biomarkers that we have identified in
this paper to be predictive of the responders of cancer cells. In
addition to statins, GGT-II inhibitors that can be administered
safely to humans may have high potential to be developed as
cancer therapeutics (Berndt et al., 2011; Zhou et al., 2015), al-
though to date, the development of safe GGT-II inhibitors has
been unsuccessful because of the serious side effects of the con-
ventional method of GGT inhibition.

Materials and methods

Cell lines

MDA-MB-231, MDA-MB-435s, Hs578T, MDA-MB-468, and MCF7
cells were obtained from ATCC. MDA-MB-231 cells were maintained
in a 1:1 mixture of DMEM (Invitrogen)/RPMI 1640 (Invitrogen),
supplemented with 10% FCS (HyClone) and 5% NU serum (BD).
MDA-MB-435s, Hs578T, MDA-MB-468, and MCF7 cells were main-
tained as instructed by ATCC. HEK293T FT cells were purchased from
Invitrogen and maintained according to the manufacturer’s instructions.
Plat-E cells were a gift from T. Kitamura (Tokyo University, Tokyo,
Japan) and maintained in DMEM containing 10% FCS. HMLE cells
were a gift from R.A. Weinberg (Massachusetts Institute of Technol-
ogy, Cambridge, MA) and cultured in mammary epithelial cell growth
medium (Lonza). No antibiotics were used in our cell cultures to avoid
latent contamination with mycoplasma.

To generate MDA-MB-231 cells stably expressing Arf6-EGFP
or Arf6-mCherry, cells were retrovirally transduced with pCX4-blast/
Arf6-EGFP or pCX4-blast/Arf6-mCherry and selected with 20 pg/ml
Blasticidin S (Invitrogen).

For ligand stimulation, cells were prestarved for FCS for 16 h
and then incubated with 2 ng/ml TGFp1 (R&D Systems), 10 ng/ml
HGF (PeproTech), or 10 ng/ml EGF (PeproTech) in the absence of FCS
for the indicated times before being subjected to analyses.

Cell viabilities were measured using a cell counting kit (CCK-8;
Dojindo) according to the manufacturer’s instructions. Protein concen-
tration of cell lysates was measured using a bicinchoninic acid protein
assay kit (Thermo Fisher Scientific).

Chemicals

The following chemicals were from Sigma-Aldrich: Simvastatin
(S6196), Mevastatin (M2537), 6-fluoromevalonate (F2929), GGTI-
2133 (G5294), FTI-277 (F9803), pL-mevalolactone (M4667),
and DL-MVA 5-phosphate (79849). All other chemicals were pur-
chased from Sigma-Aldrich or Wako Pure Chemical Industries,
unless otherwise stated.

Antibodies and immunoblotting

Affinity-purified rabbit polyclonal antibodies against GEP100 and
AMAPI were as described previously (Onodera et al., 2005; Morishige
et al., 2008). A rabbit polyclonal antibody against EPB41L5 was raised

against a GST-fused peptide corresponding to amino acids 541-733
of EPB41L5. The resulting serum was adsorbed with GST and then
affinity purified using the antigen peptide before use. Other antibodies
were purchased from commercial sources as follows: mouse monoclo-
nal antibodies against Arf6 (Santa Cruz Biotechnology, Inc.), p53 (Cell
Signaling Technology), V5-tag (Invitrogen), Flotillin (BD), and f-
actin (EMD Millipore); and rabbit polyclonal antibodies against GGT-1
and GGT-II (Santa Cruz Biotechnology, Inc.), Rab11b (immunoblot-
ting, Cell Signaling Technology; immunostaining, Abgent), c-Met,
Tyr1234/1235-phosphorylated c-Met, EGFR, Tyr1086-phosphorylated
EGFR, Gabl, Tyr307-phosphorylated Gabl, Akt, Ser473-phosphory-
lated Akt, Smad2, Ser465/467-phosphorylated Smad2, and Rabl1b
(Cell Signaling Technology). Donkey antibodies against rabbit and
mouse IgGs, each conjugated with horseradish peroxidase, were from
Jackson ImmunoResearch Laboratories, Inc. Immunoblotting analysis
was performed using detection reagents (ECL Western; GE Healthcare)
as described previously (Hashimoto et al., 2004a).

Plasmids

pEGFP-Rabl1a and pmRFP-Rab11b were described previously (Mat-
sui et al., 2011). The plasmid encoding Arf6-EGFP was constructed
as follows. The Nhel-Notl fragment of Arf6-EGFP isolated from the
pEGFP-N1-Arf6 plasmid (Hashimoto et al., 2004a) was blunted and
then ligated into the blunted EcoRI site of the pCX4-blast vector (a gift
from T. Akagi, KAN Research Institute, Inc., Kobe, Japan). The plas-
mid encoding Arf6-mCherry was constructed as follows. The HindIII—
Notl fragment of mCherry was isolated from the pmCherry-N1 vector
(a gift from N. Mochizuki, National Cardiovascular Center Research
Institute, Osaka, Japan) and inserted into the HindIII-NotI site of the
pCX4-Arf6-EGFP plasmid that was digested with HindIII and Notl to
remove the EGFP fragment. HA-Rab11b was generated by PCR and
inserted into the BamHI sites of the pCX4 vector. HA-Rab11b C214A/
C215A was obtained by PCR site-directed mutagenesis, using the plas-
mid HA-Rab11b as a template, and then blunted and ligated. Oligonu-
cleotides used for the PCR reactions are shown in Table S1.

siRNA

siRNA-mediated gene silencing was performed as described previously
(Hashimoto et al., 2004a; Morishige et al., 2008). In brief, cells were
transfected with 50 nM siRNA oligonucleotide duplexes using Lipo-
fectamine 2000 or Lipofectamine RNAi Max (Invitrogen) according
to the manufacturer’s instructions and incubated for 48 h, unless oth-
erwise described, before being subjected to assay. Duplex oligonucle-
otides were chemically synthesized and purified by Japan BioService.
Two different sequences were used for each target, except for Arfo,
GEP100, AMAPI, and EPB41L5, for which we have previously con-
firmed the specificity of the oligonucleotides (Hashimoto et al., 2004a;
Onodera et al., 2005; Morishige et al., 2008). The nucleotide sequences
used are shown in Table S2.

For Rab-RNAI screening, siRNA libraries (targeting 122 genes;
Human siGENOME SMARTpool siRNA libraries for cell membrane
trafficking; GE Healthcare) were used. An siRNA duplex with an irrel-
evant sequence (Irr; 5'-GCGCGCUUUGUAGGAUUCG-3") was also
purchased from GE Healthcare.

p53 manipulation

For the stable silencing of endogenous mutant p53, pLKO.1-puro—
based recombinant lentiviruses were generated according the method
described previously (Moffat et al., 2006). In brief, sShRNAs against
p53 were purchased from an shRNA library (TRCN0000342261;
Sigma Mission; Sigma-Aldrich), and a control scramble shRNA in
pLKO.1-puro (1864; Addgene) was transfected into 293FT cells,
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together with the envelope plasmid pMD2.G (12259; Addgene) and the
packaging plasmid psPAX2 (12260; Addgene) using Lipofectamine
LTX (Invitrogen) according to the manufacturer’s instructions. 48 h
after transfection, the cultured supernatants were harvested and filtered
through 0.45-um filters (Advantec), and the resultant lentivirus prepa-
rations were then applied onto target cells in the presence of 8 ug/ml
Polybrene. After 24 h, 1.25 pg/ml puromycin was added to the culture
for 1 wk to select infected cells.

For generation of cells stably expressing recombinant p53,
pBabe-hygro vector-based retroviruses (Morgenstern and Land, 1990)
were generated as follows. Plasmids encoding the V5-tagged normal
p53 protein and mutant p53 proteins (R175H, R249S, R273H, and
R280K) were purchased (22945, 22936, 22935, 22934, and 22933,
respectively; Addgene). A cDNA encoding a trans-activation—deficient
pS3 protein (L22Q/W23S/W53Q/F54S; p53 txn-dead) was generated
by PCR-based mutagenesis, and these mutations were then introduced
into the R280K construct. The oligonucleotide primers that were used
are listed in Table S1. DNA fragments encoding these p53 constructs
were then each ligated into the SnaB1 site of the pBabe-Hygro vec-
tor. Recombinant retroviruses were generated using Plat-E packaging
cells and the pGP-Ampho and pE-Ampho plasmids (Takara Bio Inc.;
Akagi et al., 2003). 24 h after the infection of these plasmids into cells,
infected cells were selected by the addition of 200 ug/ml hygromycin
(Wako Pure Chemical Industries) and 1.25 pg/ml puromycin. During
these experiments, we observed that the expression of normal p53 in
MDA-MB-231 cells using other vectors, such as the pLenti6-based
lentiviral vector (22945; Addgene) and the pcDNA vector (Invitrogen),
caused immediate cell senescence or death.

GST-GGA pull down and protein coprecipitation

Arf6 activities were measured using the GST-GGA pull-down assay,
as described previously (Morishige et al., 2008). In brief, cells were
lysed on ice with GGA buffer (1% Triton X-100, 0.5% sodium deoxy-
cholate, 0.1% SDS, 50 mM Tris-HCI, pH 7.4, 100 mM NaCl, 2 mM
MgCl,, 10% glycerol, 1 mM sodium orthovanadate [Na;VO,], | mM
PMSEF, 5 pug/ml aprotinin, 2 pg/ml leupeptin, and 3 ug/ml pepstatin A).
Lysates were clarified by centrifugation at 15,000 g for 10 min. 300 pg
of cell lysates were incubated with 50 ug GST-GGA bound to glutathi-
one-Sepharose beads (GE Healthcare) for 45 min. The beads were then
washed three times with 1 ml GGA buffer; proteins bound to the beads
were eluted into 30 ul SDS sample buffer, separated by SDS-PAGE
(15% gel), and subjected to immunoblotting using an Arf6 antibody.
Total levels of Arf6 in the starting lysates were assayed by immunoblot-
ting. Protein coprecipitation assays using appropriate antibodies were
performed as described previously (Morishige et al., 2008). In brief,
cells were lysed in radioimmunoprecipitation assay buffer (1% Nonidet
P-40, 1% deoxycholate, 0.1% SDS, 20 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 5 mM EDTA, 1 mM Na;VO,, 1 mM PMSEF, 5 ug/ml aprotinin, 2
pg/ml leupeptin, and 3 pg/ml pepstatin A). 1 mg of each cell lysate was
then incubated with the appropriate antibodies coupled with protein A—
Sepharose beads. The beads were washed three times with 1 ml radio-
immunoprecipitation assay buffer, and proteins precipitated with these
antibodies were separated by SDS-PAGE (8% gel) and then subjected
to immunoblotting using antibodies against the proteins of interest.

Matrigel invasion assay

The Matrigel chemoinvasion assay was performed using Matrigel
chambers (Biocoat; BD) as described previously (Morishige et al.,
2008). In brief, 105 cells were seeded on the upper wells of 24-well
chambers in the absence of serum, in which the lower wells were filled
with 2 ng/ml TGFp1, 10 ng/ml HGF, 10 ng/ml EGF, or 10% FCS. After
incubation for 18 h, cells were fixed in 4% PFA, and the number of cells
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that transmigrated through the chamber filter (6.4 mm in diameter) to
the lower surface of the filters was scored by staining with 1% crystal
violet. Data were collected from three independent experiments, each
measuring at least 12 fields of two different wells.

RT-PCR

Total RNA was extracted from cultured cells using TRIzol reagent (In-
vitrogen) according to the manufacturer’s protocol and reverse tran-
scribed by M-MLV reverse transcription (Promega) using oligo dT
primers at 42°C for 60 min. cDNAs were then subjected to 35 cycles of
PCR amplification. The primer sequences are listed in Table S1.

Immunofluorescence microscopy

Immunofluorescence microscopy analysis was performed as described
previously (Onodera et al., 2012). For analysis of the subcellular lo-
calization of Arf6, cells stably expressing Arf6 proteins with fluores-
cent tags were plated onto plastic dishes coated with 10 ug/ml collagen
1. After 24 h, the cells were serum starved for 16 h and then stimulated
with 2 ng/ml TGFB1 for 5 min at 37°C before fixation. For analysis
of the colocalization of Arf6 and Rab-GTPases, cells expressing Arf6-
mCherry together with EGFP-Rablla, or Arf6-EGFP with mRFP-
Rabl11b, were used. For analysis of the subcellular localization of Arf6
in HMLE cells, cells were transfected with siRNA for Rabl1b or a
control oligonucleotide bearing an Irr. After 24 h of incubation, cells
were retrovirally infected with pCX4-blast/Arf6-EGFP or pCX4-blast/
Arf6-mCherry for 24 h. Cells were then cultured for an additional 24 h
with or without 1 uM Simvastatin before fixation. Fluorescence im-
ages were obtained with a confocal laser-scanning microscope using
a 60x H oil-immersion objective (NA of 1.4; CFI Plan Apo VC) and
analyzed with the attached software (model AIR with NIS-Elements;
Nikon). For quantitative analysis of protein colocalization, the Pear-
son’s correlation coefficient between two proteins of interest was
measured using NIS-Elements. For the PM localization of Arf6, the
Pearson’s correlation coefficient of the localization of Arf6-EGFP or
Arf6-mCherry at the F-actin—rich cell periphery was measured using
NIS-Elements AIR software, in which F-actin was visualized using
Alexa Fluor 647 dye. Data were collected from two independent ex-
periments, each examining at least 10 cells. Images were handled using
Photoshop (version 7; Adobe).

High-resolution structured illumination microscopy (SIM)

To examine the colocalization of Arf6 and Rabll, MDA-MB-231
cells expressing Arf6-mCherry and EGFP-Rabl1a or Arf6-EGFP and
mRFP-Rab11b were also subjected to SIM imaging. Specimens were
then analyzed with an N-SIM microscope (Nikon) with an oil-immer-
sion objective (100x/1.49 NA), laser illumination (488 nm at 180 pW
and 561 nm at 120 pW), and an electron-multiplying charged-coupled
device camera (DU-897; Andor Technology). Image reconstruction
was performed using NIS-Elements software.

Deconvolution microscopy

To examine the colocalization of endogenous Rab11b with Arf6-EGFP,
MDA-MB-231 cells stably expressing Arf6-EGFP were plated onto
glass-bottom dishes coated with 10 pg/ml collagen I. The cells were
then fixed with 4% PFA in PBS at RT for 10 min, permeabilized with
0.1% Triton X-100/PBS at RT for 10 min, and then incubated with
blocking medium (MAXblock; Active Motif) at RT for 1 h. After
washing the cells with PBS, cells were incubated with a rabbit anti—
Rab11b polyclonal antibody (diluted at 1:100; AP12943b; Abgent) at
RT for 1 h. After washing with PBS, cells were incubated with Alexa
Fluor 555—conjugated F(ab’)2 fragments of a goat anti—rabbit polyco-
nal antibody (diluted at 1:400; A-21430; Molecular Probes) at RT for
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1 h. Cells were then washed with PBS and mounted with 50% glycerol
in PBS. Fluorescent images were acquired with a microscope system
(True Confocal Scanning SP8; Leica Biosystems) equipped with HyD
detectors and a hybrid superresolution (HyVolution) package using a
63x/1.40 oil objective (part 15506350; HC PL APO CS2). Z-section
images were captured using the HyD detectors, and the raw data were
deconvolved using Huygens (Scientific Volume Imaging) that accom-
panies the Hy Volution package and using the default parameters.

Time-lapse recording

Fluorescence time-lapse imaging was performed under 5% CO,
at 37°C using a confocal laser-scanning microscope with a 60x H
oil-immersion objective (model AIR with NIS-Elements; CFI Plan
Apo VC). Cells stably expressing Arf6-EGFP or Arf6-mCherry were
plated onto glass-bottom dishes (MatTek Corporation) in a complete
MDA-MB-231 medium and incubated for 24 h and then transiently
transfected with pmRFP-Rab or pEGFP C1-Rab plasmids using Li-
pofectamine LTX. After further incubation for 24 h, cells were serum
starved for 16 h, and their fluorescence images were then taken every
20 s for 20 min, during which cells were stimulated with 2 ng/ml
TGFp1 from just before taking the fourth image. Acquired images were
processed with NIS-Elements software and Photoshop.

Inhibition of MVP

Inhibition of MVP was performed as described previously (Sadeghi
et al., 2000). In brief, 5 mg Simvastatin prodrug was dissolved in
0.125 ml of 95% ethanol followed by 0.15 ml of 0.1 M NaOH, and
the solution was incubated at 50°C for 2 h and finally brought to a pH
of ~7.2. Working solutions (1 mM) were stored in DMSO at —80°C
until use. Final concentrations of the inhibitors used were 100 nM or
1 uM for Simvastatin, 100 nM or 1 uM for Mevastatin, 20 or 200 pM
for 6-fluomevalonate, 2 uM for GGTI-2133, and 2 uM for FTI-277. For
the add-back experiment, cells were preincubated with a mixture of
1 mM pL-mevalolactone and 1 mM pL-MVA 5-phosphate for 6 h and
then treated with 1 uM Simvastatin. For injection into mice, the acti-
vated Simvastatin solution was diluted to the appropriate concentration
in sterile PBS without using DMSO in any of the steps, in which the
control was a PBS solution containing equivalent amounts of ethanol,
NaOH, and HCl as contained in the injected Simvastatin solution.

Membrane association of Rab11b

To separate the prenylated and unprenylated forms of Rabllb in
MDA-MB-231 cells, a Triton X-114 fractionation method (Coxon et
al., 2005) was used. In brief, cells were transfected with pCX4-HA-
Rab11b orits C214A/C215A mutant using Lipofectamine LTX accord-
ing to the manufacturer’s instructions (Invitrogen). After 24 h, cells were
lysed in Triton X-114 fractionation buffer (20 mM Tris-HCI, pH 7.4,
150 mM NaCl, 1% Triton X-114, and protease inhibitor cocktail [Na-
kalai]). After clarifying by centrifugation (13,000 g) at 4°C for 15 min,
cell lysates were subjected to partitioning into a detergent-rich phase
and an aqueous phase by incubating them for 10 min at 37°C, which
was followed by centrifugation (13,000 g) at 25°C for 5 min. Proteins
of each fraction (10 ug each) were then separated by SDS-PAGE (12%
gel) and subjected to immunoblotting using antibodies against HA.

Lipid raft and cholesterol levels

To analyze lipid raft localization, cell membrane fractionation was
performed using OptiPrep (Axis-Shield) as described previously (Mac-
donald and Pike, 2005). In brief, cells grown on two 14-cm dishes were
washed twice and scraped into ice-cold buffer (20 mM Tris-HCI, pH
7.8,250 mM sucrose, | mM CaCl,, and 1 mM MgCl,) and centrifuged
at 250 g for 2 min. Cell pellets were then resuspended in 0.5 ml of the

same buffer containing a cocktail of protease inhibitors and ruptured by
passage through a 22-gauge needle 50 times and centrifuged at 1,000 g
for 10 min. Supernatants containing 240 pg of protein were then ad-
justed to a final volume of 800 pl with the same buffer, mixed with
800 pl of 50% OptiPrep in the same buffer, and placed at the bottom
of a centrifuge tube (50 ultra clear 1/2 x 2" tube; Beckman Coulter).
A 20-0% OptiPrep gradient in the same buffer was then made on top
of the samples with a total volume of 3,960 pl, and the tubes were
centrifuged at 52,000 g for 90 min using an SW55Ti rotor (Optima
L-100XP; Beckman Coulter). After centrifugation, each 300-ul frac-
tion was collected from the top of the tubes. All of these steps were
performed at 4°C. 10 ml of each fraction was then separated by 8%
SDS-PAGE followed by immunoblotting using an anti—Flotillin-1 an-
tibody (610820; BD). For measuring total cellular cholesterol levels,
cells grown on a 6-well dish were washed twice with ice-cold PBS
and scraped with 100 ul of ice-cold lysis solution (2% n-octyl-p-p-
glucoside, 1% Nonidet P-40, 20 mM Tris-HCI, pH 7.4, 150 mM sodium
chloride, 1 mM EDTA, 1 mM sodium orthovanadate, 20 mM sodium
fluoride, and 5% glycerol) containing a protease inhibitor cocktail. Ly-
sates were then collected into new tubes, mixed well, and clarified by
centrifugation at 4°C for 10 min. The amounts of cholesterol in the
resulting supernatants containing 1 mg of protein were measured using
a cholesterol assay kit (Amplex Red; Molecular Probes) according to
the manufacturer’s instructions.

Metastasis assay

Nu/Nu athymic mice were obtained from Central Laboratory for Ex-
perimental Animals Japan. All experiments were conducted under a
protocol approved by the animal care committee of Hokkaido Uni-
versity. MDA-MB-231 cells were lentivirally infected with pLenti
CMYV V5-Luc blast (21474; Addgene) and pLKO.1-puro shRNA con-
structs bearing shRNA sequences to knock down Rab11b, which were
purchased from an shRNA library (TRCNO0000381919; Mission;
Sigma-Aldrich). A scrambled shRNA (1864; Addgene) was used as
a control. We tried in vain to silence GGT-II by shRNA constructs,
which were purchased from an shRNA library (TRCN00000299714;
Mission). A total of 2 x 10° cells were injected into the lateral tail vein
of each female athymic nude mouse at 5 wk of age. For Simvastatin
treatment, MDA-MB-231 cells stably expressing the luciferase gene
were pretreated with 1 uM Simvastatin or with a control PBS solution
for 2 d before injection. After injection, mice were intraperitoneally in-
jected with 5 mg/kg body weight of Simvastatin or with a control PBS
solution every day for 28 d. For bioluminescence imaging, mice were
anesthetized with 3% isoflurane and injected intraperitoneally with 150
mg/kg body weight of p-luciferin in PBS. At 10 min after the injection,
bioluminescence was detected with an in vivo imaging system (Xe-
nogen) and analyzed with living-image software (Xenogen). Photon
flux (photons/seconds/square centimeters/steradian) was calculated for
each mouse using a region of interest encompassing the thorax. This
value was normalized with a comparable background value. For his-
tology, lungs were fixed in 10% neutral buffered formalin (Wako Pure
Chemical Industries). Sections were stained with hematoxylin using
standard procedures by Morpho Technology.

Drug resistance assay

Gemcitabine and Temsirolimus were purchased from Wako Pure
Chemical Industries and Sigma-Aldrich, respectively. In the
EPB41L5 knockdown experiment, cells pretreated with siRNAs spe-
cific for EPB41L5 or a control oligonucleotide for 24 h were plated
onto 96-well culture plates at 3,000 cells per well, and drugs were
applied on the next day. After incubation for another 3 d, cell vi-
abilities were measured.
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Statistics

Unless otherwise noted, each in vitro experiment was performed in
triplicate, and analysis of variance was used to compare two groups
of independent samples. The log-rank test was used to compare Ka-
plan-Meier survival curves.

Online supplemental material

Fig. S1 shows the Arf6 activation mediated by TGFf1-trans-activated
c-Met. Fig. S2 shows the roles of mutant p53, MVP, and GGT-II in
Arf6 activation by external ligands in breast cancer cells. Fig. S3
shows the involvement of Rab11b in the PM recruitment of Arf6 and
no effect of mutant p53 in lipid rafts. Fig. S4 shows the silencing of
Rabll in HMLE cells and the requirement of Rabl1b and MVP in
cancer metastasis. Fig. S5 shows the drug resistance of MDA-MB-468
and MCF7 and limited contribution of the 7P53 mutation to the high
HMGCR expression group of primary breast tumors. Table S1 contains
the oligonucleotides used in this study. Table S2 is a list of siRNA
sequences used in this paper. Video 1 shows colocalization of Rabl1b
with Arf6 during the TGFp1-induced PM recruitment of Arf6. Online
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.201510002/DC1.
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