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Eukaryotic cells have dedicated proteins that sense membranes, 
depending on their curvature (Antonny, 2011). Sensors of mem-
brane curvature are important because they organize a wide 
variety of cellular functions, including vesicle trafficking and 
organelle shaping (McMahon and Gallop, 2005). Curvature- 
sensing proteins, for example, the Bin-Amphiphysin-Rvs 
(BAR) domain–containing proteins, have been mostly described 
to work at the nanometer scale (Zimmerberg and Kozlov, 2006). 
In contrast, a clear mechanism of sensing membrane curvature 
at the micron scale in eukaryotic cells has not been described. 
In this issue, Bridges et al. discover that septins, a poorly under-
stood component of the cytoskeleton, recognize plasma mem-
brane curvature at the micron scale and serve as landmarks for 
eukaryotic cells to know their local shape.

Septins are an evolutionarily conserved family of 
GTP-binding proteins that assemble into nonpolar filaments 
and rings (John et al., 2007; Sirajuddin et al., 2007; Bertin et 
al., 2008). Septins have been implicated in diverse membrane 
organization events where micron-scale curvature takes place 
(Saarikangas and Barral, 2011; Mostowy and Cossart, 2012), 
including the cytokinetic furrow, the annulus of spermato-
zoa, the base of cellular protrusions (e.g., cilium and dendritic 
spines), and the phagocytic cup surrounding invasive bacte-
rial pathogens (Fig.  1). However, the precise role of septin– 
membrane interactions remains elusive. It was first sug-
gested in 1999 that the interaction of human septins with 
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is important 
for septin localization (Zhang et al., 1999). More recently, work 
using recombinant septins from budding yeast Saccharomyces 
cerevisiae assembled on PI(4,5)P2 lipid monolayers showed 
that septins interact with membrane to facilitate filament assem-
bly (Bridges et al., 2014). Membrane-facilitated septin assem-
bly has also been observed using phospholipid liposomes, and 
in this case septins were also shown to induce membrane tubu-
lation (Tanaka-Takiguchi et al., 2009). Given that (a) septins 
can interact with membrane, (b) septin assembly is membrane 
facilitated, and (c) septin assemblies are associated with a vari-
ety of membrane organization events from yeast to mammals, 
Bridges et al. (2016) hypothesized that septins serve as a mech-
anism to recognize membrane curvature.

In their new work, Bridges et al. (2016) provide several 
lines of evidence to support the hypothesis that septins recog-
nize micron-scale curvature. First, using the filamentous fungus 
Ashbya gossypii, they performed in vivo localization studies 
and showed that the fungal septin Cdc11a concentrates in re-
gions of positive micron-scale curvature and that the degree of 
concentration is proportional to the degree of curvature. More-
over, septins localize to curved membranes that also recruit 
septin-interacting proteins (e.g., the signaling protein Hsl7). 
These findings indicate that, by acting as curvature-sensing 
proteins, septins can localize signaling platforms in the cell. 
To test if septins can differentiate among micron-scale curva-
tures, Bridges et al. (2016) developed an elegant model system 
for septin assembly in vitro. They decorated silica beads with 
anionic phospholipid bilayers and measured the interaction af-
finity between purified fungal septin complexes and beads of 
different curvatures. Interestingly, septins were maximally re-
cruited to “intermediate” sized beads (1.0–3.0 µm in diameter), 
with little to no recruitment to either very large (5.0–6.5 µm 
in diameter) or very small (0.3 µm in diameter) beads. These 
results indicate that septin filaments preferentially localize to 
a curvature (κ) of 0.7–2.0 µm−1 in the absence of other cellular 
factors. To provide additional information on the mechanism 
of sensing, the authors purified mutant septin complexes that 
fail to polymerize into filaments and showed that the affinity of 
septins for micron-scale membrane curvature does not require 
filament formation per se. However, septins must polymerize 
into filaments for stable membrane association. Collectively, 
in vivo experiments using A. gossypii and in vitro experiments 
using silica beads highlight that septins have the intrinsic ability 
to recognize membrane curvature at the micron scale.

Finally, to study the recognition of micron-scale mem-
brane curvature beyond fungi, Bridges et al. (2016) turn their 
attention to human septins. Using tissue culture cells, they ob-
serve that the abundance of septins is associated with the de-
gree of membrane curvature. To confirm these observations in 
vitro, they purified human septins and analyzed their binding 
affinity to silica beads with phospholipid bilayers. As seen with 
A. gossypii septins, human septins also showed a preference for 
beads ∼1.0 µm in diameter, strongly suggesting an evolution-
arily conserved property of septins for sensing membrane cur-
vature at the micron scale.

Based on their findings, Bridges et al. (2016) propose that 
septins provide eukaryotic cells with a mechanism to recognize 
curvature at the micron scale. This feature differentiates septins 
from other sensor proteins that strictly detect curvature at the 

How cells recognize membrane curvature is not fully 
understood. In this issue, Bridges et al. (2016. J. Cell Biol. 
http​://dx​.doi​.org​/10​.1083​/jcb​.201512029) discover 
that septins, a component of the cytoskeleton, recognize 
membrane curvature at the micron scale, a common 
morphological hallmark of eukaryotic cellular processes.
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nanometer scale (e.g., BAR domain–containing proteins). How-
ever, it is likely that septins do more than recognize membrane, 
and the precise role of septins in membrane recognition re-
mains unknown. The highly conserved structural and biochem-
ical properties of septins suggest they organize, stabilize, and 
functionalize membrane domains (Caudron and Barral, 2009;  
Kusumi et al., 2012; Bridges and Gladfelter, 2015). Although 
we are far from knowing the full repertoire of septin function, 
this new work by Bridges et al. (2016) reminds us that under-
standing how membranes can specify septin assembly is essen-
tial to understand the role of septins in eukaryotic cells.
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Figure 1.  Morphological hallmarks of eukaryotic cells characterized by micron-scale membrane curvature and septin assembly. Septins have been impli-
cated in membrane organization events where micron-scale curvature takes place. (A) A septin ring acts as a scaffold for cytokinesis proteins and forms a 
diffusion barrier at the cytokinetic furrow of a dividing cell. (B) A septin ring forms a diffusion barrier at the annulus of a mammalian spermatozoon, which 
separates the anterior and posterior tail. (C) A septin ring forms a diffusion barrier at the base of a cilium to separate the ciliary membrane from the plasma 
membrane. (D) In neurons, a septin-dependent diffusion barrier can localize at the base of dendritic spine necks. (E) During phagocytosis, a cup is formed 
at the plama membrane; septin rings assemble at the base of the phagocytic cup to regulate entry.
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