>
o
o
-1
o
81
-l
-l
L
o
LL
@)
-l
<
2
o
>
o
-
Ll
I
-

Comment

Mother centrioles are kicked out so that starfish

zygote can grow
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Most oocytes eliminate their centrioles during meiotic
divisions through unclear mechanisms. In this issue,
Borrego-Pinto et al. (2016. J Cell. Biol. http://dx.doi.org
/10.1083/jcb.201510083) show that mother centrioles
need to be eliminated from starfish oocytes by extrusion
into the polar bodies for successful embryo development.

Canonical centrosomes contain a pair of centrioles, often made
of nine triplets of microtubules and surrounded by the pericen-
triolar material (PCM). They are the major microtubule orga-
nizing centers in most cells, which organize the microtubule
spindle required to segregate chromosomes during cell divi-
sion. Yet, most oocytes get rid of their centrioles. The biologi-
cal significance of oocyte centriole riddance remains a mystery.
Removing centrioles in oocytes could prevent some species,
like Xenopus, from undergoing parthenogenetic development
(Tournier et al., 1991). Also, eliminating the maternal centri-
oles is required to prevent the zygote from having an abnormal
number of centrioles after fertilization, as sperm contribute two
centrioles (motile sperm cells require centriole-based flagel-
lar assembly and must retain their centrioles until fertilization
[Manandhar et al., 2005]). In Drosophila, Xenopus, nema-
tode, mouse, and human oocytes, egg centrioles are eliminated
during meiotic prophase before oocyte asymmetric divisions
(Szollosi et al., 1972; Manandhar et al., 2005; Januschke et al.,
2006). Apart from the involvement of a helicase of undefined
substrates, the pathway leading to centriole elimination has not
been identified (Mikeladze-Dvali et al., 2012).

In contrast, starfish oocytes, like sea urchin or mollusk,
eliminate their centrioles later in meiotic divisions (Nakashima
and Kato, 2001; Shirato et al., 2006). Centrioles are replicated
in a semiconservative manner during the S phase of the cell
cycle. The old centriole, named the mother, is characterized by
the presence of distal and subdistal appendages and serves as a
template for the assembly of a new daughter centriole, lacking
appendages (Bornens and Gonczy, 2014). However, to become
haploid, oocytes undergo two consecutive divisions with no in-
tervening DNA replication. Hence, centrioles are not duplicated
between the two meiotic divisions and oocytes keep their num-
ber of centrioles limited to four. This also means that starfish
oocytes assemble their first meiotic spindle in the presence of a
pair of centrioles at each pole (Fig. 1 A). Out of the four centri-
oles contained in the oocyte, two (one mother and one daughter
centriole) are extruded into the first polar body during the first
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asymmetric division. Subsequently, the second meiotic spindle
is formed with only one centriole per pole (Fig. 1 A), and one
centriole is extruded in the second polar body. Previous work
suggested that the poles of the second meiotic spindle in star-
fish are not functionally equivalent (Uetake et al., 2002). In this
issue, Borrego-Pinto et al. find that the mother centriole retains
the ability to nucleate asters but is specifically guided into the
second polar body for extrusion, whereas the daughter centriole
is inactivated and then eliminated within the oocyte.

To investigate the mechanism of centriole elimination in
the starfish Patiria miniata, Borrego-Pinto et al. (2016) first
isolated homologues of centrosomal proteins and constructed
fluorescent protein fusions to several centriolar proteins to
track centriole fate in 3D time-lapse imaging during oocyte
asymmetric divisions. Using specific markers of mother ver-
sus daughter centrioles, they established that, in meiosis I, the
two spindle poles are equivalent, being constituted of a pair
of mother and daughter centrioles. At anaphase I, one pair of
mother/daughter centrioles is extruded into the first polar body.
Importantly, the authors described an asymmetry in metaphase
II, with the second meiotic spindle always having the mother
centriole facing the cortex and the daughter centriole deep in-
side the cytoplasm (Fig. 1 B).

Borrego-Pinto et al. (2016) went on to identify the origin
of this asymmetry. They show that the mother centriole, but
not the daughter one, starts being rapidly transported toward
the plasma membrane before completion of meiosis I spindle
disassembly in a microtubule- and dynein-dependent manner,
as its trafficking could be impaired by the dynein inhibitor cil-
iobrevin D (Firestone et al., 2012). In a second step, the mother
centriole is anchored to the plasma membrane through the
second meiotic division. Interestingly, electron microscopy of
starfish oocytes revealed electron-dense material as well as ves-
icles between the mother centriole and the plasma membrane,
suggesting that the mother centriole’s plasma membrane an-
chorage occurs via its appendages (Reiter et al., 2012; Stinch-
combe et al., 2015). Whether the mother centriole migrates to
the cortex with its appendages facing or opposite the plasma
membrane has not been addressed. However, it is reasonable
to assume that, in a viscous environment such as the oocyte
cytoplasm, a motion with the appendages up would be favored
(Fig. 1 B). Moreover, whereas the migration of the mother
centriole to the plasma membrane requires microtubules, its
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Figure 1. Centriole elimination during meiotic maturation of starfish oocytes. (A) Scheme of starfish oocyte meiotic divisions and early egg development.
Oocyte divisions are asymmetric in size; meiotic spindles are off-centered in these large cells; and daughter cells are tiny, tailored to the chromatin mass,
and named polar bodies. Microtubules are green, DNA is pink, maternal centrosomes are yellow, and sperm centrosomes are orange. (B) Fate of mother
and daughter centrioles during meiotic divisions. Centrosomes are artificially enlarged to emphasize the centrioles. PB1 and PB2, first and second polar
body, respectively. During anaphase |, the DNA and centrioles are segregated; one set of chromosomes and one pair of centrioles are extruded into
PB1 during anaphase I. The remaining mother centriole separates from its paired daughter and rapidly moves toward the plasma membrane, where it is
extruded in the second polar body (PB2) during anaphase Il, leaving one set of oocyte chromatids to combine with the sperm chromatids. The remaining
oocyte daughter centriole is inactivated and degraded after anaphase II. Therefore, only the sperm centrioles form the first mitotic spindle in the fertilized
oocyte. Oocytes forced to retain a mother centriole form a tripolar aster upon fertilization, which stops development.

anchoring does not depend on microtubules or microfilaments,
as shown by the continued tight association between the centri-
ole and the membrane in the presence of microtubule- and/or
actin-depolymerizing agents. This close anchoring via the cen-
triole’s appendages is reminiscent of the anchoring of centrioles
forming cilia or at the immunological synapse in T cells (Stinch-
combe et al., 2015). The precise mechanisms involved in mother
centriole anchoring to the plasma membrane in starfish might be
conserved in other systems that also require proximity between
these two structures. It would be interesting to assess whether
astral microtubules emanating from the mother centriole pro-
gressively depolymerize as the mother centriole approaches the
plasma membrane to allow the intimate anchoring of the ap-
pendages with the plasma membrane. If so, Katanin, a microtu-
bule-severing enzyme whose activity is regulated during meiotic
divisions in the nematode oocyte, would be a good candidate to
promote such a progressive destabilization (Srayko et al., 2000).

Future work will tell us why the daughter centriole does
not experience such a migration event. This strongly argues for
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a functional asymmetry between the two types of centrioles.
From the work of Borrego-Pinto et al. (2016), it appears that the
daughter centriole is passively pushed inside the oocyte cyto-
plasm as a result of meiosis II spindle assembly and elongation.
Dynein, which controls the migration of the mother centriole,
could specifically associate with this centriole, like it does in
Saccharomyces cerevisiae, by localizing preferentially to the
spindle pole body (the yeast equivalent of the centrosome) fac-
ing the bud (Grava et al., 2006). Centrosome asymmetry has
been described in several stem cell types (Roubinet and Cab-
ernard, 2014) and this asymmetry is often rooted in its activity.
However, Borrego-Pinto et al. (2016) show that the microtubule
nucleation capacity of the daughter and mother centrioles is
equivalent up to the metaphase II stage. It is only after fertiliza-
tion and anaphase II that a difference in activity is detected be-
tween the mother and daughter centrioles. Thus, what underlies
the asymmetry in behavior between the mother and daughter
centrioles at anaphase I remains to be discovered. One possi-
bility is that the presence of appendages in the mother centriole
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allows the recruitment of specific factors, such as dynein, which
in turn regulate mother centriole migration and anchoring.

Borrego-Pinto et al. (2016) also discovered that specific
anchoring of the mother centriole to the plasma membrane, at
which the second polar body will form, is the mechanism by
which oocytes get rid of the remaining mother centriole. Im-
portantly, actively removing the mother centriole after anaphase
II is essential for zygotic development. Indeed, the researchers
used the actin polymerization inhibitor cytochalasin D to pre-
vent extrusion of the second polar body and artificially retain
the mother centriole in the oocyte after anaphase II. When a
mother centriole is retained, it keeps its microtubule nucleation
capacity and participates in the first mitotic spindle pole orga-
nization of the fertilized egg, whereas the daughter centriole is
inactivated and dismantled after anaphase II. As a consequence,
because of the two centrioles contributed by the sperm cell, the
mitotic spindle ends up being tripolar in the presence of an ad-
ditional mother centriole, precluding correct chromosome seg-
regation and further development (Fig. 1 B).

The origin of the difference in behavior between mother and
daughter centrioles after anaphase II will require further investi-
gation. To explain the loss in nucleation capacity of the daughter
centriole, it will be important to check for the presence of vari-
ous PCM components. Indeed, it is reasonable to assume that the
daughter centriole loses its PCM association. PCM size scales
with centriole size; thus, appendages of the mother centriole
might possess an innate ability to maintain association with the
PCM (Bobinnec et al., 1998; Delattre et al., 2004). A possible cell
cycle—dependent enzymatic activity appearing after anaphase II
might explain the rapid loss in microtubule nucleation capacity of
the daughter centriole. It is surprising that the starfish zygote can-
not cluster the mother centriole material with the centrioles from
the sperm, unlike mouse oocytes, which, like cancer cells, are
able to cluster PCM to regulate the total number of microtubule
organizing centers (Kwon et al., 2008; Breuer et al., 2010). It will
be interesting to determine whether starfish zygotes express pro-
teins such as HURP or HSET, which are major players in extra-
centrosome clustering (Kwon et al., 2008; Breuer et al., 2010).

Altogether, the results from Borrego-Pinto et al. (2016)
address a major unresolved question: why do oocytes lose or
inactivate their canonical centrioles during female meiosis?
They show for the first time that maternal centrioles must be
extruded from or inactivated in the starfish egg before fertiliza-
tion so that they do not perturb mitotic spindle assembly. This
is a very important step in our understanding of female gam-
ete formation. Moreover, this work establishes starfish oocyte
meiosis as a novel model system to study both functional and
structural centrosome asymmetry, an essential component
of asymmetric divisions.
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