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Polarized E-cadherin endocytosis directs actomyosin
remodeling during embryonic wound repair
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Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the
wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by
junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clath-
rin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around
wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility.
Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure
was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly.
E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Re-
ducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin.
Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocy-

tosis is necessary for actomyosin remodeling during embryonic wound repair.

Introduction

Wound repair in epithelial tissues is critical for animal sur-
vival. Epithelia line our organs and form our skin, acting as
physical barriers for homeostasis and defense against patho-
gens. Maintenance of epithelial integrity is therefore of cru-
cial importance and, as such, epithelial tissues can efficiently
repair wounds. In particular, wound repair in the embryonic
epidermis is completed rapidly, without inflammation or for-
mation of scar tissue (Rowlatt, 1979; Harrison et al., 1990;
Whitby and Ferguson, 1991).

Embryonic wound repair is driven by the assembly of a
contractile “purse string” at the wound margin, a supracellular
cable composed of filamentous actin and the molecular motor
nonmuscle myosin II (Martin and Lewis, 1992; Brock et al.,
1996). The purse string contracts (Fernandez-Gonzalez and
Zallen, 2013) and coordinates the movement of the cells adja-
cent to the wound into the wounded region (Wood et al., 2002).
The assembly of an actomyosin purse string during embryonic
wound repair is conserved in a wide range of organisms both
vertebrate and invertebrate, including mouse (McCluskey et al.,
1993), chick (Martin and Lewis, 1992), Xenopus laevis (Da-
vidson et al., 2002), and Drosophila melanogaster (Kiehart et
al., 2000; Wood et al., 2002).

The assembly and contraction of the actomyosin purse
string is accompanied by a redistribution of junctional pro-
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teins at the wound margin. In particular, the adherens junction
components E-cadherin (Brock et al., 1996; Abreu-Blanco et
al., 2012), a-catenin (Wood et al., 2002), and p-catenin (Zu-
lueta-Coarasa et al., 2014) are depleted from the interfaces be-
tween wounded and adjacent cells and accumulate at discrete
points at the wound margin where three cells meet. The redis-
tribution of junctional proteins may be required for extrusion of
the wounded cells. It has also been proposed that the junctional
rearrangements associated with embryonic wound repair facil-
itate assembly and contraction of the actomyosin purse string
(Brock et al., 1996; Carvalho et al., 2014).

E-cadherin down-regulation at the wound margin occurs
in two sequential phases (Carvalho et al., 2014). The first phase
is fast, seconds to minutes after wounding; the second phase
is slow, hours after wounding. In Drosophila embryos, the
Toll-NF-xB pathway is required for transcriptional down-reg-
ulation of E-cadherin ~1 h after wounding (Carvalho et al.,
2014). An alternative mechanism must therefore mediate the
rapid initial down-regulation of E-cadherin from the wound
margin. Toll-NF-xB signaling may also be important for the
rapid phase by promoting changes in E-cadherin turnover.
However, the mechanisms that regulate junctional turnover
and the role of junctional redistribution during embryonic
wound repair remain unclear.
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The endocytic machinery, used by cells to internalize
molecules, can favor junctional disassembly in response to ac-
tomyosin contractility. Endocytosis has been implicated in traf-
ficking of junctional proteins during Drosophila dorsal closure
(Mateus et al., 2011) and zebrafish epiboly (Song et al., 2013),
two processes that share several characteristics with embryonic
wound repair, including epithelial sheet movements mediated
by a contractile, supracellular actomyosin cable at the leading
edge (Kiehart et al., 2000; Behrndt et al., 2012). Endocytosis of
E-cadherin is also necessary for efficient actomyosin-mediated
cell intercalation during Drosophila axis elongation (Levayer
et al., 2011). In spite of the evidence linking actomyosin con-
tractility, junctional disassembly, and endocytosis, the interplay
between these three processes is not well understood.

In this study, we use in vivo confocal microscopy and
quantitative image analysis to examine the role of endocyto-
sis during embryonic wound repair in Drosophila. We find
that, upon wounding, the endocytic machinery localizes to
the wound margin in a calcium- and actomyosin-dependent
manner. Endocytic activity is necessary for polarized E-cad-
herin depletion, actomyosin purse string assembly, actin-based
protrusive activity, and rapid wound closure. E-cadherin over-
expression recapitulates the effects of inhibiting endocytosis,
and reducing E-cadherin levels when endocytosis is blocked
facilitates actin remodeling around wounds. We propose that
spatially regulated endocytosis orchestrates the junctional and
cytoskeletal rearrangements that drive efficient wound repair.

Results

Endocytic markers accumulate at
embryonic wound margins

Clathrin-mediated endocytosis has been implicated in the in-
ternalization of a wide range of cell surface and transmem-
brane molecules, including E-cadherin (Troyanovsky et al.,
2006; Levayer et al.,, 2011). Clathrin-mediated endocytosis
requires the vesicular coat protein, clathrin (Pearse, 1975),
and the GTPase dynamin, which is necessary for scission of
vesicles from the cell membrane (Damke et al., 1994). To in-
vestigate if endocytosis plays a role in embryonic wound re-
pair, we used spinning-disk confocal microscopy and image
analysis to quantify the localization of clathrin and the Dro-
sophila dynamin orthologue Shibire (Chen et al., 1991) around
embryonic wounds. We wounded the epidermis of Drosophila
embryos ~12 h after egg deposition (stage 14—15). Wounds
were created by ablating two to three cells with an ultraviolet
laser in embryos expressing fluorescently tagged versions of
myosin, clathrin, or dynamin. Upon wounding, mean myosin
fluorescence at the wound margin increased to a maximum of
2.5 + 0.3-fold with respect to the fluorescence levels in the
same region before wounding (Fig. 1, A and E; and Video 1),
consistent with previous studies (Kiehart et al., 2000; Wood
et al., 2002; Abreu-Blanco et al., 2012). The accumulation of
myosin around the wound occurred in parallel with the reor-
ganization of the membrane, as shown by the accumulation of
myristoylated:GFP at the wound margin (Fig. S1 A). We found
that GFP-fused clathrin light chain (GFP:clc) levels at the
wound margin increased by 2.1 + 0.3-fold relative to local lev-
els before wounding (Fig. 1, B and E). Clathrin-coated vesicles
accumulated in a 1.2 + 0.1-pym-wide band around the wound
(Fig. 1 B, 10 min). The accumulation of clathrin at the wound
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margin persisted for the duration of wound closure (Fig. 1 B
and Video 2). Dynamin also accumulated at the wound margin
to a maximum level of 2.0 = 0.3-fold (Fig. 1, C and E; and
Video 3). We quantified the change in total fluorescence along
the perimeter of the wound and found that over time there was
an increase in total protein levels for each marker, demonstrat-
ing that dynamin and clathrin accumulate at the wound margin
during wound closure (Fig. 1 F). For the cells immediately ad-
jacent to the wound, both clathrin and dynamin were enriched
at plasma membranes facing the wound over those in contact
with other epithelial cells (Fig. 1, B and C). Furthermore, a
cytoplasmic GFP construct did not display a significant enrich-
ment at the wound margin (Fig. S1 B), demonstrating that the
accumulation of endocytic proteins around wounds is not an
artifact of the loss of fluorescence inside the wound. Together,
our results show a polarized accumulation of the endocytic ma-
chinery at the wound margin, suggesting that endocytosis plays
arole in embryonic wound repair.

Our data indicate that the endocytic machinery is po-
larized upon wounding. The ADP-ribosylation factor (ARF)
family of proteins, members of the Ras superfamily of small
GTPases, have important roles in the regulation of endocytic
trafficking (D’Souza-Schorey and Chavrier, 2006). ARF6 reg-
ulates dynamin- and clathrin-mediated endocytosis of E-cad-
herin from cell-cell contacts and promotes disassembly of
adherens junctions (Palacios et al., 2001, 2002; Kon et al.,
2008). We found that ARF6:GFP displayed a polarized dis-
tribution in the cells adjacent to the wound, accumulating at
the wound margin, where ARF6 reached a maximum mean ac-
cumulation of 3.1 + 0.5-fold (Fig. 1, D and E; and Video 4).
Total ARF6 fluorescence at the wound margin increased by
2.0 £ 0.4-fold (Fig. 1 F). Thus, an endocytic regulator im-
plicated in E-cadherin turnover becomes enriched around
the wound, suggesting that E-cadherin endocytosis may be
important for wound closure.

Endocytosis is necessary for rapid

wound closure

To determine if endocytosis is required for efficient wound clo-
sure, we treated embryos with dynasore, a drug that blocks the
ability of dynamin to hydrolyze GTP (Macia et al., 2006) and
promote vesicular scission (Damke et al., 1994). Dynasore blocks
all dynamin-mediated endocytosis including clathrin-mediated
endocytosis (Macia et al., 2006). Immediately before wounding,
we injected 50 mM dynasore into the perivitelline space of em-
bryos expressing E-cadherin: GFP and myosin:mCherry. Wounds
in dynasore-injected embryos closed at a significantly slower rate
than those in control, 50% DMSO-injected embryos (0.9 + 0.7
vs. 7.7 £ 0.9 um?%min, respectively; P =5.1 x 10-%; Fig. 2, A-D;
and Video 5). Out of 11 wounds in dynasore-injected embryos,
8 wounds did not show any sign of closure within 40 min. The
severe defect in wound closure after dynasore injection was not
caused by dynasore-induced apoptosis, as shown by the absence
of nuclear GFP in embryos expressing Apoliner, a fluorescent
caspase biosensor that localizes to the nucleus upon caspase acti-
vation (Bardet et al., 2008; Fig. S2). We confirmed our dynasore
results by treating embryos with 50 mM chlorpromazine, a drug
that specifically blocks clathrin-mediated endocytosis (Wang
et al., 1993). Perivitelline injection of chlorpromazine before
wounding resulted in a significant impairment of wound closure
with respect to water-injected controls (0.5 + 0.4 vs. 18.8 + 3.5
um?/min, respectively; P = 3.2 x 10-3; Fig. S3, A-D). Together,
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Figure 1. Components of the endocytic machinery
accumulate at the wound margin. (A-D) Epidermal
cells expressing myosin:GFP (A), GFP:clc (B), dy-
namin:GFP (C), or ARF6:GFP (D) in stage 14-15
embryos. Time after wounding is shown. Red lines
indicate wound sites. Yellow dotted lines outline the
wounds. Anterior left, dorsal up. Bars, 5 pm. (E and F)
Maximum fold change in mean (E) and total (F) flu-
orescence of myosin:GFP (n = 6), GFP:clc (n = 5),
dynamin:GFP (n = 7), and ARF6:GFP (n = 6) at the
wound margin with respect to the values before
wounding. Error bars denote SEM.
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our pharmacological data strongly suggest that endocytosis is
necessary for rapid embryonic wound repair.

To validate our pharmacological results, we took ad-
vantage of the dynamin temperature-sensitive mutation shi*’.
When shi*! embryos are exposed to temperatures above 30°C
(restrictive temperatures), the GTPase domain of dynamin un-
dergoes a change in tertiary structure that renders it inactive
(van der Bliek and Meyerowitz, 1991). At temperatures below
30°C, dynamin function is unaffected. When shi®*! embryos
expressing GFP:moesin, a marker of filamentous actin (Kie-
hart et al., 2000), were heated to the restrictive temperature
immediately before wounding, the rate of wound closure was
4.0 £ 2.7 ym?*/min, significantly slower than the rate of wound
closure in control shi”! embryos at the permissive tempera-
ture of ~23°C (19.6 = 4.1 um*min; P = 0.01; Fig. 2, F-I;
and Video 6) or control GFP:moesin embryos at the restric-
tive temperature (21.7 = 7.6 um?*/min; P = 0.04; Fig. 2, E and
G-I; and Video 6). These results demonstrate that dynamin
activity is necessary for efficient wound repair and provide
further evidence indicating that endocytosis is important
for embryonic wound healing.

myosin clathrin dynamin ARF6

Inhibition of endocytosis prevents
cytoskeletal remodeling at the

wound margin

Rapid wound closure requires the assembly of a supracellular
actomyosin cable around the wound (Martin and Lewis, 1992;
Brock et al., 1996; Wood et al., 2002). To establish if the delay
in wound closure upon inhibition of endocytosis is associated
with defects in actomyosin purse string assembly, we quanti-
fied actin and myosin dynamics at the wound margin in dynas-
ore-treated embryos. We considered the purse string to be fully
formed when either myosin or actin accumulated by 1.5-fold
with respect to their values before wounding. In control em-
bryos injected with 50% DMSO, the myosin cable was fully
assembled 16.7 + 2.7 min after wounding (Fig. 3, A and C). In
contrast, in embryos in which endocytosis was blocked by in-
jecting dynasore immediately before wounding, myosin levels
around the wound did not increase significantly 40 min after
wounding (Fig. 3, B and C). Overall, mean myosin fluorescence
at the wound margin in dynasore-injected embryos changed
by 1.2 + 0.1-fold, a reduction of 48% with respect to controls
in which myosin increased by 2.3 + 0.3-fold (P = 5.3 x 10-3;
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Figure 2. Dynamin-mediated endocytosis is required for wound closure.
(A and B) Wound closure in embryos expressing E-cadherin:GFP (green)
and myosin:mCherry (red), injected with DMSO (A) or dynasore (B) before
wounding. (C and D) Mean wound area over time (C) and closure rate
for the fast phase of wound repair (D) for control (blue; n = 12) and dy-
nasore-injected embryos (red; n = 11). (E-G) Wound closure in wild-type
embryos expressing GFP:moesin and heated to the restrictive temperature
(35°C; E), or carrying a temperature-sensitive allele of dynamin (shi’) at
the permissive temperature (23°C; F) or the restrictive temperature (G). (H
and 1) Mean wound area over time (H) and closure rate for the fast phase
of wound repair (I} for wildtype embryos at the restrictive temperature
(blue; n = 5), shit! embryos at the permissive temperature (green; n =
6), or shis! embryos at the restrictive temperature (red; n = é). (A, B, and
E-G) Time after wounding is shown. Red lines indicate wound sites. Yellow
dotted lines outline the wounds. Anterior left, dorsal up. Bars, 5 pm. Error
bars, SEM; *, P < 0.05; ***, P < 0.001.
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Fig. 3 D). Myosin accumulation at the wound margin was sim-
ilarly impaired in shi®*! embryos expressing myosin:GFP and
heated to the restrictive temperature (Fig. S3, E-H).

Like myosin, F-actin did not localize to the wound margin
upon blocking endocytosis. In control embryos, the actin purse
string formed within 11.2 + 4.9 min after wounding (Fig. 3,
E and G). When endocytosis was blocked with dynasore, we
did not measure a significant enrichment of actin around the
wound 40 min after wounding (Fig. 3, F and G). The maximum
actin accumulation at the wound margin when endocytosis was
blocked was significantly lower than in control embryos (1.2 +
0.1-fold vs. 2.5 + 0.4-fold; P = 0.03; Fig. 3 H). We also quan-
tified a significant defect in actin accumulation at the wound
margin in shi*’; GFP:moesin embryos heated to the restrictive
temperature (Fig. 2, F and G; and Fig. S3, I and J). Together,
our results demonstrate that endocytic activity is necessary
for the localization of actin and myosin to the wound margin
during embryonic wound repair.

The kinase Rho-associated kinase (Rok) is one of the
main activators of myosin II (Amano et al., 1996; Kimura et al.,
1996), and during Drosophila axis elongation the recruitment
of myosin to contractile supracellular cables depends on Rok
(Fernandez-Gonzalez et al., 2009; Simdes et al., 2010). Actin
accumulation around embryonic wounds also requires the ac-
tivity of Rok, which localizes to the wound margin (Verboon
and Parkhurst, 2015). To determine if Rok localization to the
wound margin was disrupted when we blocked endocytosis,
we examined the distribution of GFP:RokK!16A 3 kinase-dead
form of Rok previously used to measure the localization of the
protein without causing phenotypes associated with excessive
activation of myosin II (Simdes et al., 2010), in DMSO- and
dynasore-injected embryos. In DMSO-injected embryos, GF-
P:Rok¥!16A accumulated at the wound margin to a maximum
level of 2.6 + 0.4-fold (Fig. 3, I, K, and L). Blocking endocy-
tosis by injecting dynasore resulted in a maximum accumula-
tion of GFP:RokX!'%A at the wound margin of 1.7 + 0.2-fold,
a significantly lower level than the controls (P = 0.04; Fig. 3,
J-L). These results suggest a role for polarized endocytosis
in directing the assembly of a contractile actomyosin purse
string at the wound margin.

Actin-based protrusions from the cells around the wound
also contribute to wound healing (Wood et al., 2002; Abreu-
Blanco et al., 2012). We investigated whether protrusive activity
was affected when we inhibited endocytosis. To this end, we
wounded GFP:moesin embryos injected with DMSO or dynas-
ore, and we quantified the fraction of bright pixels within a ring
immediately interior to the wound margin (Zulueta-Coarasa
et al., 2014). We found that protrusive activity 20 min after
wounding was 53.4% lower in dynasore-injected embryos than
in controls (P = 4.6 x 10-%; Fig. 3 H, inset), suggesting that en-
docytosis regulates not only actomyosin purse string formation
but also protrusive activity during embryonic wound repair.

Endocytosis is required for polarized
removal of E-cadherin from the

wound margin

Our data indicate that endocytosis is necessary for rapid wound
closure. During embryonic wound repair, junctional proteins
such as E-cadherin (Brock et al., 1996; Abreu-Blanco et al.,
2012), a-catenin (Wood et al., 2002), and p-catenin (Zulue-
ta-Coarasa et al., 2014) are down-regulated at the wound mar-
gin. Clathrin-mediated endocytosis has been implicated in the
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Figure 3. Blocking endocytosis causes defective cytoskeletal remodeling during wound repair. (A, B, E, F, |, and J) Epidermal cells expressing myosin:m-
Cherry (A and B), GFP:moesin (E and F), or GFP:RokK11¢A (I and J) in embryos injected with DMSO (A, E, and |) or dynasore (B, F, and J) immediately before
wounding. Time after wounding is shown. Red lines indicate wound sites. Yellow dotted lines outline the wounds. Anterior left, dorsal up. Bars, 5 pm. (C, G,
and K) Mean myosin:mCherry (C), GFP:moesin (G), or GFP:RokK11¢A (K) fluorescence at the wound margin over time, in control, DMSO-injected embryos
(blue; n=12inC, n=5in G, and n = 6 in K) or dynasore-injected embryos (red; n=11inC, n=5in G, and n =8 in K). (D, H, and L) Maximum fold
enrichment at the wound margin of myosin:mCherry (D), GFP:moesin (H), or GFP:RokK116A (L). (H, inset) Quantification of protrusive activity at the wound

margin. Error bars, SEM; *, P < 0.05; **, P < 0.01; *** P <0.001.

internalization of E-cadherin from cell—cell junctions (Troy-
anovsky et al., 2006; Levayer et al., 2011). To determine if
endocytosis is necessary for the depletion of E-cadherin from
the wound margin, we used image analysis to track E-cadher-
in:GFP fluorescence along individual segments of the wound
perimeter, both in control DMSO-injected embryos and in
dynasore-treated embryos (Fig. 4, A and B, yellow boxes). In
control embryos, E-cadherin:GFP fluorescence at the wound
margin decreased by 40.1 + 3.1% 15 min after wounding (P =
5.1 x 10-'%; Fig. 4, A and C). In dynasore-treated embryos,
E-cadherin:GFP fluorescence decreased only by 25.6 + 3.0%
(P =2.6 x 10719 Fig. 4, B and C). The loss of E-cadherin:GFP

from the wound margin was 57% greater in controls than in dy-
nasore-treated embryos (P = 7.8 x 10~*). Therefore, endocytic
activity is necessary to remove E-cadherin from the interfaces
between wounded and adjacent cells during the early stages
of embryonic wound repair.

The asymmetric localization of the endocytic machinery
in the cells adjacent to the wound suggests that E-cadherin re-
distribution upon wounding is polarized in these cells. To in-
vestigate if E-cadherin internalization is spatially regulated in
the cells at the wound margin, we compared E-cadherin:GFP
fluorescence in cell boundaries between a wounded cell and
a cell adjacent to the wound (wound edges) or between two

Polarized endocytosis in wound repair * Hunter et al.
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Figure 4. Dynamin-mediated endocytosis contributes
to polarized E-cadherin removal from the wound mar-
gin. (A and B) Epidermal cells expressing E-cadher-
in:GFP in a DMSOr-injected (A) or dynasore-injected
(B) embryo. Time after wounding is shown. Red lines
indicate wound sites. Arrowheads delimit boundaries
used to quantify fluorescence. Yellow boxes outline the
regions used to generate A" and B’. Anterior left, dor-
sal up. Bars, 5 pm. (A" and B’) Kymographs showing
the redistribution of E-cadherin in the interfaces indi-
cated in A and B. (C) Percentage of decrease in E-cad-
herin:GFP fluorescence at the wound margin 15 min
after wounding in DMSO (n = 32 interfaces) and dy-
nasore-injected (n = 39 interfaces) embryos. (D) Per-
centage of decrease in E-cadherin:GFP fluorescence
15 min after wounding in wound margin interfaces (n
= 32) or lateral interfaces (n = 35). (E) Cartoon indi-
cating the position of wound interfaces (blue, between
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cells adjacent to the wound (lateral edges; Fig. 4, D-G). Mean
E-cadherin:GFP fluorescence in lateral edges decreased by 32.1
+ 2.7% 15 min after wounding (Fig. 4, D and G). Thus, the re-
duction of E-cadherin at wound edges was significantly greater
than at lateral edges (P = 3.4 x 10~2), suggesting that polarized
E-cadherin internalization in the cells adjacent to the wound
contributes to rapid embryonic wound repair.

A calcium signal and actomyosin
contractility are required to polarize the
endocytic machinery around wounds

What signal polarizes the endocytic machinery around embry-
onic wounds? Transient, large calcium stimuli promote endocy-
tosis at nerve terminals in rat brainstems (Wu and Wu, 2014).
Recent studies showed that wounding causes a transient cal-
cium wave that decreases in amplitude as it moves away from
the wound (Antunes et al., 2013; Razzell et al., 2013). There-
fore, a calcium signal may promote polarized endocytosis in the
cells adjacent to the wound. To investigate whether a calcium
signal was implicated in the recruitment of the endocytic ma-
chinery to the wound margin, we injected embryos with 50 mM
BAPTA, a cell-impermeable calcium chelator. In embryos ex-
pressing GCaMP3, a fluorescent calcium biosensor (Nakai et
al., 2001; Tian et al., 2009), BAPTA injection immediately be-
fore wounding completely attenuated the calcium signal caused
by wounding (Video 7). When we compared the localization of
the endocytic machinery during wound repair in water or BAP-
TA-injected embryos, we found that in water-injected embryos

JCB « VOLUME 210 « NUMBER 5 « 2015

E-cadherin:GFP

the wound—indicated by the yellow asterisk—and an
adjacent cell) and lateral interfaces (red, between two
cells adjacent to the wound). (F and G) Kymographs
showing E-cadherin:GFP redistribution in a wound (F)
or a lateral interface (G). (A, B’, F, and G) Asterisks
denote the position of the wound. Bars, 1 min. Error
bars, SEM; *, P < 0.05; ***, P < 0.001.

*

dynamin:GFP accumulated at the wound margin to a maximum
level of 2.5 + 0.4-fold (Fig. 5, A, C, and D; and Video 8). In con-
trast, in BAPTA-treated embryos, mean dynamin fluorescence
at the wound margin only increased by 1.2 + 0.1-fold, a value
52% lower than in controls (P = 1.6 x 10-%; Fig. 5, B-D; and
Video 8). Similarly, GFP:clc fluorescence at the wound margin
in BAPTA-injected embryos displayed a maximum increase of
1.4 = 0.1-fold, significantly lower than the 1.9 + 0.2-fold en-
richment in control embryos (P = 1.7 x 10-%; Fig. S4, A-D).
Together, these results indicate that the polarized accumulation
of the endocytic machinery to the wound margin is mediated
by the release of calcium in the epidermis upon wounding, sug-
gesting that calcium signaling may be important for cytoskele-
tal and junctional remodeling in embryonic wound repair.
Calcium signaling is necessary for actomyosin contrac-
tility (Hathaway and Adelstein, 1979; Scholey et al., 1980). To
determine if the localization of the endocytic machinery to the
wound margin required actomyosin contractility, we injected
embryos with 10 mM Y-27632, a Rok inhibitor. Rok inhibition
blocks actomyosin contractility during embryonic development
in Drosophila (Fernandez-Gonzalez et al., 2009). In embryos
expressing dynamin:GFP and injected with Y-27632, dynamin
reached a maximum accumulation at the wound margin of 1.3
+ (.1-fold, 28% lower than the 1.8 + 0.01-fold accumulation
in control embryos (P = 9.6 x 10-3; Fig. 5, E-H). Clathrin re-
cruitment to the wound margin was similarly impaired upon
blocking actomyosin contractility: GFP:clc accumulated to a
maximum level of 1.2 + 0.1-fold in Y-27632-treated embryos,
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Figure 5. Calcium and actomyosin contractility are required for the recruitment of dynamin to the wound. (A, B, E, and F) Epidermal cells in embryos
expressing dynamin:GFP, injected with water (A and E), BAPTA (B), or Y-27632 (F). Time after wounding is shown. Red lines indicate wound sites. Yellow
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n=7inCand n=>5inG), BAPTA (red; n = 6 in C), or Y-27632 (red; n = 6 in G)-injected embryos. (D and H) Maximum fold enrichment of dynamin:GFP

at the wound margin. Error bars, SEM; *, P < 0.05; **, P < 0.05.

43% lower than the 2.1 + 0.1-fold accumulation we quantified
in water-injected controls (P = 1.1 x 10-3; Fig. S4, E-H). To-
gether, these results indicate that actomyosin contractility is
required for the polarized accumulation of the endocytic ma-
chinery at the periphery of the wound.

Calcium signaling is necessary for rapid
wound closure, purse string formation, and
E-cadherin redistribution
Our results showing that calcium is necessary for the polariza-
tion of the endocytic machinery to the wound margin predict
that blocking calcium signaling should cause phenotypes simi-
lar to those resulting from blocking endocytosis. To investigate
whether wound healing was delayed when we blocked cal-
cium release, we measured the rate of wound closure in BAP-
TA-treated embryos (Fig. 6, A-D). Blocking calcium release
led to wounds that closed at a rate of 11.9 + 2.4 um?/min, sig-
nificantly slower than wounds in water-injected controls, which
closed at a rate of 20.2 + 3.4 um?*/min (P = 3.8 x 10-%; Fig. 6 D).
We confirmed these results by treating embryos with 500 uM
thapsigargin, a cell-permeable calcium chelator, which also de-
layed wound healing (Fig. S4, I and J). These data show that
calcium release is necessary for rapid wound repair.

In the Drosophila pupal notum, calcium release upon
wounding is necessary for actomyosin purse string formation
(Antunes et al., 2013). However, the mechanisms by which cal-

cium mediates purse string assembly remain unclear. We exam-
ined whether calcium is required for purse string formation in
the embryonic epidermis by quantifying actin intensity at the
wound margin in BAPTA-treated embryos expressing mCher-
ry:moesin. When we blocked calcium signaling, actin fluores-
cence at the wound margin reached a maximum level of 1.6 +
0.2-fold, significantly lower than the 2.5 + 0.2-fold increase in
actin intensity in control, water-injected embryos (56% reduc-
tion; P = 7.5 x 10-3; Fig. 6, E-H).

To determine if the defect in purse string formation when
we blocked calcium release was associated with increased
E-cadherin at the wound margin, we quantified E-cadherin:GFP
fluorescence around wounds in BAPTA-treated embryos. Cal-
cium binds to cadherins to prevent their degradation (Yoshida
and Takeichi, 1982) and, thus, BAPTA treatment could impair
cell—cell adhesion. In spite of this, we quantified significantly
higher levels of E-cadherin at the wound margin in BAPTA-in-
jected embryos. In water-injected controls, E-cadherin:GFP
fluorescence decreased by 36.9 + 5.4% 15 min after wounding
(P =8.9 x 1077; Fig. 6, I and K; and Video 9). In contrast, in
BAPTA-treated embryos there was not a significant reduction
in E-cadherin:GFP fluorescence at the wound margin within 15
min (2.0 £ 9.0%; P = 0.82; Fig. 6, J and K; and Video 9). The
depletion of E-cadherin from the wound margin was therefore
significantly higher in controls than in BAPTA-injected em-
bryos (P = 2.1 x 10-3; Fig. 6 K). Similarly, E-cadherin levels
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up. Error bars, SEM; *, P < 0.05; **, P < 0.01.

at the wound margin 15 min after wounding were significantly
higher in thapsigargin-treated embryos in comparison to DM-
SO-injected controls (P = 5.5 x 10-3; Fig. S4, I’, J', and K).
Therefore, a calcium signal is necessary for the polarized re-
moval of E-cadherin from the wound margin. Together, our
results strongly suggest that the release of calcium in the em-
bryonic epidermis upon wounding triggers the accumulation
of the endocytic machinery at the wound margin and that po-
larized endocytosis of E-cadherin from the interfaces between
wounded and adjacent cells is required for actomyosin purse
string formation and rapid wound closure.

E-cadherin overexpression delays

wound closure and impairs cytoskeletal
rearrangements

Our results suggest that E-cadherin endocytosis is required for
rapid wound repair. To investigate if E-cadherin specifically

JCB « VOLUME 210 « NUMBER 5 « 2015

needs to be removed from the wound margin, we overexpressed
E-cadherin in the embryonic epidermis using the upstream ac-
tivating sequence (UAS)-Gal4 system (Brand and Perrimon,
1993) and the strong driver tubulin-Gal4, which is expressed in
every cell at every stage of development (Lee and Luo, 1999).
We quantified wound-closure rates in embryos overexpressing
UAS-E-cadherin:GFP and found that wound repair proceeded
at a significantly slower rate (17.5 = 1.4 um?*min) than in em-
bryos expressing wild-type levels of E-cadherin (34.4 + 4.0
pm?/min; P =4.5 x 10-3; Fig. 7, A-C). Notably, when we quan-
tified the rate of wound closure in embryos expressing E-cad-
herin:GFP at endogenous levels (endo—E-cadherin:GFP; Huang
et al., 2009), mildly increased levels (ubi—E-cadherin:GFP; Oda
and Tsukita, 2001), or high levels (UAS-E-cadherin:GFP),
we found that slower wound closure correlated with increas-
ing E-cadherin expression (Fig. 7, D and E). To further test
if increasing E-cadherin levels disrupted wound closure, we
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tive E-cadherin fluorescence in cell interfaces with respect to the counterstain (Dlg; D) and wound closure rate for the fast phase of wound repair (E) in stage
14-15 embryos expressing endo-E-cadherin:GFP (endo; n = 5), ubi~Ecadherin:GFP (ubi; n = 5), or UAS-E-cadherin:GFP driven by tubulin-Gal4 (UAS; n =
5). (F-H) Kymographs showing the redistribution of E-cadherin:GFP along cell interfaces at the wound margin in embryos expressing endo—E-cadherin: GFP
(F), ubi~E-cadherin:GFP (G), or UAS-E-cadherin:GFP (H). Anterior left, dorsal up. Bars, 30 s. (I) Percentage of decrease in E-cadherin:GFP fluorescence
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overexpressed pl120-catenin using fubulin-Gal4. p120-catenin
stabilizes E-cadherin at adherens junctions by preventing its
endocytosis (Ishiyama et al., 2010; Nanes et al., 2012). Over-
expression of p120-catenin resulted in significantly higher lev-
els of junctional E-cadherin (61.7% increase; P = 0.02; Fig. S5
E). When we overexpressed pl120-catenin, the rate of wound
closure decreased significantly, from 34.4 + 4.0 um?*/min in
controls to 18.7 = 5.1 pym?*min in p120-catenin-overexpress-
ing embryos (P = 0.03; Fig. S5, A-D). Together, our data sug-
gest that E-cadherin levels must be tightly regulated to promote
rapid embryonic wound repair.

To determine whether E-cadherin overexpression affects
the redistribution of junctional proteins during wound repair,
we quantified E-cadherin:GFP fluorescence at the wound
margin in embryos expressing E-cadherin:GFP from the en-
dogenous E-cadherin promoter and in embryos in which E-cad-
herin:GFP was overexpressed using the UAS-Gal4 system. In
embryos expressing endo—E-cadherin:GFP, we found a 32.3 +

6.0% reduction in E-cadherin fluorescence from interfaces be-
tween wounded and adjacent cells 15 min after wounding (P
= 1.9 x 10-3; Fig. 7, F and H). In contrast, in embryos over-
expressing UAS—-E-cadherin:GFP, fluorescence only decreased
by 12.4 + 5.9% during the same time period (P = 0.05; Fig. 7,
H and I). The loss of E-cadherin:GFP from the wound mar-
gin was 160% greater in endo—E-cadherin:GFP embryos than
in embryos overexpressing UAS—E-cadherin:GFP (P = 2.3 x
10-%; Fig. 7 I). We also quantified significantly lower levels
of E-cadherin:GFP at the wound margin in embryos express-
ing ubi—E-cadherin:GFP in comparison to those overexpress-
ing UAS-E-cadherin:GFP (P = 1.7 x 10-%; Fig. 7, G-I). Our
data show that overexpression of E-cadherin results in higher
E-cadherin levels at the interfaces between wounded and adja-
cent cells, thus affecting the normal redistribution of junctional
proteins associated with wound repair.

Blocking endocytosis resulted in significantly higher
levels of E-cadherin at the wound margin (Fig. 4) accompa-
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nied by a significant reduction in F-actin, myosin II, and Rok
(Fig. 3). Therefore, we predicted that purse string assembly
would be disrupted in embryos overexpressing E-cadherin.
To determine whether overexpression of E-cadherin affected
purse string formation, we quantified actin:RFP fluorescence
at the wound margin in embryos expressing wild-type levels
of E-cadherin and in embryos overexpressing E-cadherin: GFP.
In embryos overexpressing E-cadherin, actin:RFP reached a
maximum accumulation of 2.0 + 0.3-fold around the wound,
significantly lower than the 3.0 + 0.4-fold enrichment in act-
in:RFP fluorescence at the wound margin in control embryos
(P = 0.04; Fig. 8, A-D). These results indicate that E-cadherin
depletion from the wound margin is required for the accumula-
tion of actin around the wound. We also found a significant re-
duction in protrusive activity at the wound margin in embryos
overexpressing E-cadherin (P = 3.9 x 10-7; Fig. 8 E), further
indicating that excess E-cadherin at the wound margin impairs
the cytoskeletal rearrangements associated with wound clo-
sure. Together, our data strongly suggest that polarized E-cad-
herin endocytosis in the cells adjacent to the wound is required
for the assembly of the cytoskeletal structures that mediate
force generation and coordinate cell movement to promote
rapid embryonic wound repair.

E-cadherin reduction partially rescues
purse string formation and protrusive
activity when endocytosis is blocked

If endocytosis of E-cadherin is specifically required for actin
accumulation around embryonic wounds, decreasing E-cad-
herin levels in embryos in which endocytosis was blocked
should facilitate actin assembly at the wound margin. To re-
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duce E-cadherin levels, we injected syncytial embryos with
double-stranded RNA (dsRNA) against shotgun (shg, Dro-
sophila E-cadherin) at 27.5 ng/ul. dsRNA treatment reduced
E-cadherin in the epidermis of embryos at the permissive
temperature to 58% of the levels in water-treated controls
(P = 0.01; Fig. 9, A-C). Partial rather than complete E-cad-
herin depletion was necessary to allow embryos to develop to
stage 14. The reduction in E-cadherin levels did not rescue
the wound closure phenotype caused by blocking dynamin
in shi®*'; GFP:moesin embryos at the restrictive temperature
(Fig. 9, D-F). However, E-cadherin reduction in shi*’ em-
bryos at the restrictive temperature resulted in the presence
of actin-rich segments and protrusions at the wound margin
(Fig. 9, E, G, and H). To quantify the presence of actin-rich
structures, we measured the 90th percentile of the actin signal
in the pixels around the wound. We found that, in shi*’ em-
bryos injected with shg dsRNA and heated to the restrictive
temperature, the maximum level of actin at the wound margin
increased by 12.5 + 4.4% at 39.5 min after wounding. This
was a significantly greater change than the 3.4 + 2.2% max-
imum increment found 20 min after wounding in water-in-
jected shi! embryos at the restrictive temperature (P = 0.05;
Fig. 9 G). Protrusive activity increased by 145% when we
reduced E-cadherin levels in embryos in which endocytosis
was blocked (P = 1.2 x 10-'%; Fig. 9 H). Together, our data
indicate that decreasing E-cadherin levels when endocytosis
is blocked facilitates actin accumulation and protrusive activ-
ity around embryonic wounds, providing further evidence to
suggest that endocytosis contributes to wound repair at least
in part by removing E-cadherin from the wound margin to fa-
cilitate cytoskeletal rearrangements.
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Discussion

An outstanding question in cell and developmental biology
is how cells coordinate their movements. Using quantitative
imaging and pharmacological and genetic manipulations, we
demonstrate that endocytosis is essential for collective cell mi-
gration during Drosophila embryonic wound repair. Inhibition
of endocytosis disrupts junctional remodeling, prevents the as-
sembly of the supracellular actomyosin cable that coordinates
cell migration, and dramatically slows down wound closure.
Overexpression of E-cadherin, a core junctional component,
phenocopies inhibition of endocytosis, and partial depletion of
E-cadherin when endocytosis is blocked rescues actin assem-
bly around wounds, suggesting that E-cadherin endocytosis is
a necessary step for the cytoskeletal rearrangements associated
with embryonic wound repair.

We show that the endocytic machinery is deployed to the
wound margin within minutes, in a process that requires acto-
myosin contractility. Actomyosin contractility is necessary for
polarized clathrin accumulation at the rear end of migrating T
cells (Samaniego et al., 2007), and it has been proposed that
actomyosin assembly and contraction induce spatially regulated
E-cadherin clustering and polarized membrane recruitment of
the endocytic machinery during Drosophila axis elongation
(Levayer et al., 2011). What are the contractile forces that pro-
mote the localization of the endocytic machinery to the wound
margin? Polarized endocytosis is required for purse string as-

sembly, suggesting that purse string contraction does not trig-
ger the polarization of clathrin and dynamin. Epidermal cells
display myosin pulses on their medial-apical cortex (Fernan-
dez-Gonzalez and Zallen, 2013) that could contribute to the
localization of the endocytic machinery to the wound edge.
Further experiments locally manipulating myosin activity in
different subcellular domains (Morckel et al., 2012) will help
to clarify the complex interplay between the cytoskeleton and
endocytosis during wound repair.

Our data show that a calcium signal promotes the polarized
recruitment of the molecules necessary for endocytosis to the
wound margin. Mechanically gated ion channels are activated
upon wounding (Xu and Chisholm, 2011; Antunes et al., 2013)
and could enable calcium entry into the cells adjacent to the
wound, actomyosin contractility, and localization of the endocytic
machinery to the wound margin. Calcium could also promote
polarized endocytosis through other mechanisms. Calcium entry
into single cells upon wounding promotes membrane resealing
(Steinhardt et al., 1994), and this reorganization of the mem-
brane could facilitate the accumulation of membrane-associated
endocytic molecules. Calcium triggers calcineurin-mediated de-
phosphorylation of dynamin II, the mammalian orthologue of
Drosophila Shibire, during cytokinesis (Chircop et al., 2010).
Dynamin II dephosphorylation is necessary for its localization to
the midbody and the completion of cell division (Chircop et al.,
2011). Calcium binding also promotes recruitment of the clathrin
light chain (Mooibroek et al., 1987) and assembly of clathrin
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coats (Keen et al., 1979). Therefore, calcium entry into the cells
adjacent to the wound could directly and indirectly control the
recruitment of the endocytic machinery to the wound margin.

Our data strongly suggest that E-cadherin endocytosis
regulates actomyosin network assembly in vivo. Endocytosis
may redistribute E-cadherin and other junctional proteins to
discrete points at the wound margin where they can initiate
actin polymerization (Ratheesh and Yap, 2012) and provide
anchor points for the assembly of the purse string (Brock et
al., 1996). E-cadherin internalization may also destabilize the
bonds between a-catenin and the cytoskeleton, thus facilitat-
ing disassembly of the apical, actin-rich cortex to provide short
actin filaments that act as a substrate for Arp2/3-mediated actin
polymerization at the wound edge (Campos et al., 2010; Su-
raneni et al., 2012; Chen and Pollard, 2013; Kumar et al., 2015)
or protrusive activity driven by Diaphanous and/or Ena/VASP
(Homem and Peifer, 2009). A dileucine motif in the juxtam-
embrane domain of E-cadherin regulates its endocytosis (Mi-
yashita and Ozawa, 2007); however, this motif is not conserved
in Drosophila (Nanes et al., 2012). Experiments using forms of
E-cadherin that cannot be endocytosed will contribute to clari-
fying the relationship between junctional redistribution and cy-
toskeletal dynamics during wound healing in vivo.

The interaction of endocytic molecules with the cytoskele-
ton could directly regulate actomyosin remodeling at the wound
margin. Dynamin has a putative actin-binding domain that can
induce actin polymerization by displacing capping proteins such
as gelsolin (Gu et al., 2010). In mammalian cells, dynamin can
interact with Rok (Tumusiime et al., 2009), a regulator of actin
dynamics (Mason et al., 2013) and one of the main activators
of myosin II (Amano et al., 1996; Kimura et al., 1996). Mutat-
ing dynamin has a similar effect on cytoskeletal organization as
Rok inhibition, and expression of dominant-negative dynamin
can be rescued by coexpression of constitutively active Rok,
suggesting that dynamin may directly regulate Rok (Tumusiime
et al., 2009). Consistent with this, we find that the accumulation
of Rok at the wound edge is strongly reduced when dynamin
activity is inhibited. Dynasore treatment and the shi*! mutation
used in our study affect the GTPase domain of dynamin, sug-
gesting that it is the role of dynamin in vesicle scission that
is important for actomyosin purse string assembly. However,
the GTPase domain of dynamin has also been implicated in cy-
toskeletal remodeling (Schafer et al., 2002), and therefore, we
cannot exclude the possibility that dynamin directly regulates
actomyosin dynamics during embryonic wound closure.

Endocytosis may regulate other molecules in addition to
E-cadherin during wound repair. Integrins have been implicated
in embryonic wound closure (Campos et al., 2010), are regulated
via endocytosis (Caswell et al., 2009), and can sequester actin
filaments similar to adherens junctions. Members of the PAR
polarity complex are also trafficked via endocytosis (Nakayama
et al., 2009); and Bazooka/Par-3 specifically is depleted from
embryonic wound margins (Pickering et al., 2013) in a process
that restricts the localization of the lipid phosphatase PTEN,
thus driving PIP3 accumulation around the wound and protru-
sive activity. Importantly, overexpression of PTEN inhibits ac-
tin-based protrusions at wound edges, but not the assembly of
the actin purse string (Pickering et al., 2013), suggesting that if
Bazooka/Par-3 is regulated by endocytosis during wound repair,
this process may not be necessary for purse string formation.

The assembly of supracellular actomyosin networks is a
conserved feature of collective cell behavior in development
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and disease. Therefore, the relationship that we found between
E-cadherin dynamics, actomyosin network formation, and
collective cell migration may be at play in other systems. For
instance, metastatic cells down-regulate E-cadherin both tran-
scriptionally (Lombaerts et al., 2006) and through endocytosis
and degradation (Yang et al., 2006). It has been proposed that
the down-regulation of E-cadherin in metastatic cells facili-
tates detachment from their neighbors and invasion. In addi-
tion, metastatic cells can migrate as small clusters (Yamamoto
et al., 1983; DiCostanzo et al., 1990) in which individual cell
movements are coordinated by the assembly of a supracellular
actomyosin cable around the cluster (Gaggioli et al., 2007; Hi-
dalgo-Carcedo et al., 2011). An interesting possibility is that the
down-regulation of E-cadherin in metastatic cells is a prerequi-
site for the assembly of the supracellular actomyosin cable that
coordinates cluster migration. Consistent with this, blocking
endocytosis in metastatic cells decreases the efficiency of their
migration (Eppinga et al., 2012). Further experiments using
metastatic cell lines and animal models of metastasis will help
to determine the interactions between E-cadherin, trafficking,
and actomyosin dynamics in abnormal invasive behaviors.

Materials and methods

Fly stocks

The following markers were used for live imaging: endo-DE-cadher-
in:GFP (Huang et al., 2009), ubi-DE-cadherin: GFP (Oda and Tsukita,
2001), UAS-DE-cadherin: GFP (gift of N. Gorfinkiel, Consejo Superior
de Investigaciones Cientificas—Universidad Auténoma de Madrid, Ma-
drid, Spain), UAS-p120-catenin:GFP (Bloomington Drosophila Stock
Center; Myster et al., 2003), UAS-actin:RFP (Simdes et al., 2006; gift
of N. Gorfinkiel), sqgh-GFP:moesin (Kiehart et al., 2000), UAS-mCher-
ry:moesin (Millard and Martin, 2008), sgh-sqgh:GFP (Royou et al.,
2004), sqh-sqh:mCherry (Martin et al., 2009), sqh-GFP:rokK!%A
(Simdes et al., 2010), UAS-GFP:clc (Chang et al., 2002), 20XU-
AS-shi*!:GFP (Pfeiffer et al., 2012), UAS-Apoliner (Bloomington Dro-
sophila Stock Center; Bardet et al., 2008), UAS-GFP (gift of U. Tepass,
University of Toronto, Toronto, Canada), /0XUAS-myr:GFP (Bloom-
ington Drosophila Stock Center; Pfeiffer et al., 2010), UAS-GCaMP3
(Bloomington Drosophila Stock Center; Tian et al., 2009), and UAS-
arf6:GFP (this study). daughterless-Gal4 or tubulin-Gal4 (Blooming-
ton Drosophila Stock Center) were used to drive ubiquitous expression
of all UAS transgenes. rubulin-Gal4 was used for all overexpression
experiments. yellow white flies were used for controls.

Generation of ARF6:GFP

For UAS-arf6:GFP, the arf6 gene was PCR amplified from cDNA
(Canadian Drosophila Microarray Centre), using 5'-AGATATGTC-
GACGCATTTTTTAGCG-3’ (forward) and 5'-AGTGTTCTCGA-
GAGCTTATGGTTCGACG-3’ (reverse) primers. The PCR product
was cloned into the Gateway entry vector (Invitrogen) and recombined
into the Gateway destination vector pPWG (Invitrogen), containing a
C-terminal EGFP tag and an upstream UASp sequence. The destina-
tion vector was inserted into the genome using P-element transposon
technology (Genetic Services Inc.). A recovered homozygous-via-
ble transgenic fly line containing the transgene on the third chromo-
some was used for this study.

Time-lapse imaging
Stage 1415 embryos were dechorionated in 50% bleach for 2 min,
aligned with their ventral-lateral side up on an apple juice agar pad,
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and transferred to a coverslip coated with heptane glue. Embryos were
covered with 1:1 halocarbon oil 27:700 (Sigma-Aldrich) and imaged
at 25°C using a Revolution XD spinning disk confocal microscope
(Andor Technology) with an iXon Ultra 897 camera (Andor Technol-
ogy), a 60x oil-immersion lens (NA 1.35; Olympus), and Metamorph
software (Molecular Devices). 16-bit Z-stacks were acquired at 0.3-
um steps every 15-60 s and projected for wound closure analysis (15
slices/stack). Wounds were created using a pulsed Micropoint N, laser
(Andor Technology) tuned to 365 nm.

Drug injections

Embryos were glued onto a coverslip (see Time-lapse imaging), de-
hydrated for 10—15 min, and covered with 1:1 halocarbon oil 27:700.
Pharmacological inhibitors were injected ventrally into the perivitelline
space of stage 14—15 embryos using a Transferman NK2 micromanipu-
lator (Eppendorf) and a microinjector (PV820; World Precision Instru-
ments) coupled to our spinning disk confocal microscope. Drugs were
injected immediately before wounding and imaging. Drug solutions are
predicted to be diluted 50-fold in the embryo (Foe and Alberts, 1983).
Dynasore (Tocris Bioscience) was injected at 50 mM in 50% DMSO,
chlorpromazine hydrochloride (Sigma-Aldrich) was injected at 50 mM
in water, BAPTA (Life Technologies) was injected at 50 mM in water,
thapsigargin (Sigma-Aldrich) was injected at 500 uM in 50% DMSO,
and Y-27632 (Tocris Bioscience) was injected at 10 mM in water. 50%
DMSO and water were used as controls.

Temperature-shift experiments

shi®!; sqh-GFP:moesin or shi®!; sqh-sqh:GFP (gifts of T. Blankenship,
University of Denver, Denver, CO) embryos were dechorionated and
transferred to a coverslip, covered with 1:1 halocarbon oil 27:700, and
heated at 35°C for 90 min on a hot plate. Embryos were then wounded
and imaged. Control shi*! embryos were not heated. Potential effects
of temperature on wound healing were controlled for using sgh-GF-
P:moesin or sqh-sqh:GFP embryos (not carrying the shi! mutation)
and heated under the same conditions as mutant embryos.

Quantification of E-cadherin expression levels

Embryos were fixed for 1 h in 3.7% formaldehyde in 0.1 M phosphate
buffer/heptane (1:1) and manually devitellinized. Antibodies used were
rat anti-DCAD2 (1:20; Developmental Studies Hybridoma Bank),
mouse anti-Discs large (Dlg; 1:100; Developmental Studies Hybrid-
oma Bank), goat anti-rat IgG conjugated to Alexa Fluor 488 (1:500;
Molecular Probes), goat anti—rat IgG conjugated to Alexa Fluor 647
(1:500; Molecular Probes), and goat anti-mouse IgG conjugated to
Alexa Fluor 555 (1:400; Invitrogen). Embryos were mounted in Pro-
long Gold (Molecular Probes). For quantification of E-cadherin levels
in embryos expressing endo—E-cadherin:GFP, ubi-E-cadherin:GFP,
and UAS-E-cadherin:GFP driven by fubulin-Gal4, as well as in yel-
low white embryos injected with water or shg dsSRNA, embryos were
imaged as indicated in the Time-lapse imaging section at 60—100x.
Z stacks were acquired at 0.1-um steps (20-30 slices/stack) and 1-2
slices were projected for quantitative analysis. Cell boundaries were
manually delineated in the E-cadherin and Dlg images, and the mean
interface fluorescence for each image was calculated after subtracting
the image mean as the background. E-cadherin values were normalized
to the DIg values. For quantification of E-cadherin levels in embryos
overexpressing UAS-p120-catenin:GFP, embryos were imaged at 25°C
using a spinning-disk confocal microscope (Quorum Technologies)
with a 63x oil immersion objective (NA 1.4; Carl Zeiss), a piezo top
plate, an electron microscopy charge coupled device camera (C9100-
13; Hamamatsu Photonics), and Volocity software (PerkinElmer). 16-
bit z stacks were acquired at 0.3-um steps (1015 slices/stack) and 1-2

slices were projected for quantitative analysis. Image analysis was per-
formed as indicated for the rest of the E-cadherin quantifications.

E-cadherin dsRNA injections

shi*!; GFP:moesin embryos were collected for 60-90 min at 18°C,
glued onto a coverslip, dehydrated for 4-5 min, and covered in 1:1
halocarbon oil 27:700. Embryos were immediately injected ven-
trally with dsRNA against shg at a concentration of 27.5 ng/ul.
Water was injected as a control. Templates to produce dsRNA were
generated by PCR from genomic DNA with the following primer
pairs containing the T7 promoter sequence (5'-TAATACGACTCAC-
TATAGGGAGACCAC-3') at the 5’ end: shotgun T7 forward, 5'-GG-
ACATTATCCTGCAGCGTACCAG-3'; shotgun T7 reverse, 5-CAT
CGTCCACGTTGGAGTCTGTGTC-3'.

PCR products were used as templates for the T7 transcription
reactions with the 5x MEGAscript T7 kit (Ambion). After injection,
embryos were incubated at 18°C in a humidified chamber for 18 h, and
then heated at 35°C for 90 min on a hot plate. Stage 14—15 embryos
were transferred to a drop of heated halocarbon 0il 27:700 on a covers-
lip, mounted on an oxygen-permeable membrane (YSI), and wounded
and imaged as indicated in the Time-lapse imaging section. To quantify
the degree of E-cadherin knockdown upon dsRNA treatment, control
yellow white syncytial embryos were injected with shg dsRNA or water
and aged at 18°C. Embryos were then washed off the coverslip with
heptane and fixed and stained with antibodies against E-cadherin and
Dlg (see Quantification of E-cadherin expression levels).

Quantitative image analysis

Image analysis was done in SIESTA (Fernandez-Gonzalez and Zal-
len, 2011), custom software developed in our laboratory using Mat-
lab (MathWorks) and DIPImage (Delft University of Technology). To
delineate the wound margin, we used the semiautomated LiveWire
algorithm implemented in SIESTA (Fernandez-Gonzalez and Zallen,
2013), in which the user traces the wound margin with the mouse while
the algorithm automatically identifies the brightest pixels that follow
the trajectory of the mouse. To calculate rates of wound closure, a line
was automatically fit to the wound area curve, starting at the initial
time point after closure began. The time at which wound closure began
was calculated as the time of maximum wound area. The end of the
fast phase of wound closure was determined as the time in which the
correlation coefficient between the wound area curve and the fitted line
was <0.98 (Fernandez-Gonzalez and Zallen, 2013). For experiments in
which wound closure was disrupted and there was no fast phase, the
rate of closure was calculated between the mean time points in which
the fast phase began and ended for the corresponding controls.

To quantify fluorescence at the wound margin, we measured the
mean fluorescence of the pixels under a 3-pixel-wide wound outline.
Intensity values were background subtracted using the image mode as
the background value and corrected for photobleaching by dividing by
the mean image intensity at each time point. Total fluorescence was
calculated as the product of mean fluorescence by wound perimeter. In-
tensities were normalized to the mean pixel value in the four time points
(1-2 min) before wounding to quantify relative accumulation at the
wound margin. Maximum fold enrichment was calculated by averaging
the maximum mean or total fluorescence for each one of the movies
considered. We quantified the presence of actin-rich structures in rescue
experiments by measuring the 90th percentile of the pixel values at the
wound margin, instead of the maximum pixel intensity, which is more
sensitive to acquisition noise. Similar results were obtained using 70—
99th percentiles. Intensities were normalized to the prewounding values.

Analysis of fluorescence dynamics along individual cell edges
was done as previously described (Zulueta-Coarasa et al., 2014). In
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brief, individual interfaces between wounded and adjacent cells were
delineated using the LiveWire annotations. Each interface was divided
into 1,000 evenly spaced points and fluorescence was quantified at each
of these points using linear interpolation. To account for variation in
edge length, points were averaged according to their relative position
along the edge. Interface intensity was calculated as the mean of the
central 200 points. All intensities were normalized to the values before
wounding. Quantification of protrusive activity was done by measur-
ing the fraction of pixels within a 2.4-um-wide ring inside the wound
whose pixel value was greater than the mean image intensity plus 1
standard deviation (for GFP:moesin) or 2.25 standard deviations (for
actin:RFP; Zulueta-Coarasa et al., 2014).

Statistical analysis

We compared sample variances using the F-test. To compare mean
sample values, we used Student’s 7 test for populations with equal or
unequal variances (based on the F-test results), applying Holm’s cor-
rection when more than two groups were considered (Glantz, 2002).
For the rescue experiments, time curves were compared using the area
under the curve between 20 and 40 min after wounding as the test sta-
tistic. Error bars indicate SEM.

Online supplemental material

Fig. S1 shows membrane and cytoplasmic dynamics during embryonic
wound repair. Fig. S2 shows that dynasore treatment does not induce
apoptosis. Fig. S3 shows that blocking clathrin-mediated endocytosis
reduces wound closure rate and that myosin and actin accumulation
at the wound margin are impaired in shi”! embryos at the restrictive
temperature. Fig. S4 shows that calcium and actomyosin contractility
are required for clathrin accumulation at the wound margin and that
thapsigargin treatment impairs wound closure and E-cadherin removal
from the wound edge. Fig. S5 shows that overexpressing p120-catenin
increases junctional E-cadherin and impairs wound closure. Videos
1-4 show accumulation of myosin (Video 1), clathrin (Video 2), dy-
namin (Video 3), and ARF6 (Video 4) at the wound margin. Video 5
shows that dynasore treatment prevents rapid wound closure. Video 6
shows that wound closure is impaired in shi**! embryos at the restrictive
temperature. Video 7 shows that BAPTA treatment prevents release of
calcium in the epidermis upon wounding. Video 8 shows that calcium
signaling is required for the localization of dynamin to the wound mar-
gin. Video 9 shows that calcium signaling is required for E-cadherin re-
moval from the wound edge. Online supplemental material is available
at http://www.jcb.org/cgi/content/full/jcb.201501076/DC1.
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