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Cell biology is an enormously broad discipline that examines 
cell structure and function, as well as interactions between the 
cell and its environment. Studying cell biology during develop-
ment offers one of the most dynamic, process-rich, and physi-
ologically relevant settings for understanding the functions of 
cells. Thus, many seminal findings on cell signaling, the cell 
cycle, cell migration, cell polarization, and programmed cell 
death have been discovered in developmental contexts.

One component of a cell’s environment, the extracellu-
lar matrix, is both of the cell and outside the cell, and its rela-
tionship with cells is therefore complex. In vitro studies have 
suggested roles for extracellular matrix in directing cell shape, 
differentiation, survival, and migration (Hay, 1981; Bernfield 
and Banerjee, 1982; Hadley et al., 1985; Goodman et al., 1989). 
Specific functions for extracellular matrix have been difficult to 
establish in vivo, however, because of the challenge of exam-
ining cell–matrix interactions in animals. Many vertebrate tis-
sues encased with matrix are situated deep inside the organism 
and are inaccessible to light microscopy. Matrix components in 
most animals have also not yet been functionally tagged with 
fluorescent molecules to follow their dynamics in situ. Further-
more, genetic loss of many extracellular matrix components 
in animals leads to a cascade of diverse cell biological defects 
where the specific mechanism that initiated the perturbation is 
unclear (Rozario and DeSimone, 2010). Yet, advances in imag-
ing techniques and the ability to perform complex genetic ma-
nipulations are helping to make progress in our understanding 
of the extracellular matrix in vivo. Here I present one example 
of how we are learning more about the cell biology of extracel-
lular matrix from studies during development.

I am particularly fascinated by the basement membrane, a 
thin, dense, cell-associated form of extracellular matrix that un-
derlies epithelia and endothelia and surrounds fat, muscle, and 
Schwann cells (Yurchenco, 2011). The emergence of basement 
membrane coincided with the appearance of multicellularity in 
animals, suggesting that basement membranes were a prereq-

uisite for formation of tissues and multicellular life (Ozbek et 
al., 2010; Hynes, 2012). Basement membranes are highly con-
served and are composed of a core set of approximately six pro-
teins or protein assemblies, including laminin, type IV collagen, 
perlecan, and nidogen. Work from cell culture and developing 
embryos have indicated that basement membranes are initially 
built on a polymeric network of secreted laminin molecules, 
which binds to sulfated glycolipids as well as integrin and dys-
troglycan receptors on the cell surface (Hohenester and Yurch-
enco, 2013). This laminin lattice serves as a template for the 
addition of other basement membrane components, including 
type IV collagen, which has the unique ability to self-associate 
with intermolecular covalent bonds that are thought to provide 
basement membranes with their tensile strength and stability 
(Khoshnoodi et al., 2008; Fidler et al., 2014).

Basement membranes are generally thought of as sta-
tionary matrices that protect tissues from mechanical stresses, 
provide filtration and barrier functions, and act as a reservoir 
for growth factors (Yurchenco, 2011). Recent studies in visu-
ally accessible developmental systems, however, are revealing 
that basement membranes are dynamic scaffoldings that play 
instructive roles in tissue morphogenesis. For example, live im-
aging in Drosophila melanogaster using GFP-tagged type IV 
collagen has shown that tissue-specific regulation of basement 
membrane collagen has an important role in shaping numer-
ous organs during development (Haigo and Bilder, 2011; Pas-
tor-Pareja and Xu, 2011). Optical highlighting of laminin and 
type IV collagen in Caenorhabditis elegans larvae and collagen 
in cultured mouse salivary gland buds has also revealed that 
entire sheets of basement membrane move to facilitate tissue 
attachment and organ growth (Ihara et al., 2011; Harunaga et 
al., 2014; Matus et al., 2014). Work in developmental contexts 
has also shown regulated laminin deposition in coordinating 
polarized tissue formation and localized nidogen and perlecan 
accumulation in directing axon guidance and dendrite branch-
ing (Kim and Wadsworth, 2000; Rasmussen et al., 2012; Liang 
et al., 2015). Finally, work in my laboratory using tissue shift-
ing and photobleaching of GFP-tagged laminin has identified a 
new adhesion system (B-LINK) that links neighboring tissues 
by connecting their adjacent basement membranes (Morrissey 
et al., 2014). These studies during development have uncovered 
the dynamic nature of basement membranes and the manner in 
which their remodeling actively directs specific cell behaviors 
and tissue formation events (summarized in Fig. 1).

A major gap in our understanding of cell biology is how 
cells generate and interact with their surrounding extra-
cellular matrix. Studying this problem during development 
has been particularly fruitful. Recent work on the base-
ment membrane in developmental systems is transforming 
our view of this matrix from one of a static support struc-
ture to that of a dynamic scaffold that is regularly remod-
eled to actively shape tissues and direct cell behaviors.
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Developmental studies are poised to address many 
remaining fundamental questions on the cell biology of 
basement membranes. Basement membrane structure, compo-
sition, and assembly are still poorly understood and are pri-
marily inferred from indirect biochemical and reconstitution 
studies. Developmental models will continue to be invaluable 
in validating biochemical studies. This is illustrated by recent 
work confirming the importance of the enzyme peroxidasin in 
creating sulfilimine cross-links in type IV collagen networks 
that are critical for basement membrane stability during fly, ze-
brafish, and C. elegans development (Gotenstein et al., 2010; 
Bhave et al., 2012; Fidler et al., 2014). In contrast, genetic 
loss of nidogen in C.  elegans and mice, which was thought 
from biochemical analysis to be critical in bridging type IV 
collagen and laminin networks, has revealed that nidogen 
is not essential in connecting these two networks (Kim and 
Wadsworth, 2000; Hohenester and Yurchenco, 2013). In ad-
dition, live visualization of fluorescently tagged basement 

membrane components in transparent animals such as C. el-
egans and zebrafish will allow rapid and expanded forward 
genetic screens to determine mechanisms regulating basement 
membrane assembly and maintenance. As proteomic and ex-
pression profiling studies have revealed >200 matrix or ma-
trix-associated basement membrane proteins, the complexity 
and regulation of basement membranes is likely vast (Manabe 
et al., 2008; Uechi et al., 2014).

Developmental systems can also be used to address 
how basement membranes grow. This will be especially rel-
evant with mechanically active tissues such as muscles. One 
experimentally accessible model is the C.  elegans pharynx, 
a highly contractile organ (which beats ∼200 times/minute) 
encased in a basement membrane that expands dramatically 
during development (Fig.  2; Avery and Horvitz, 1989). How 
basement membranes balance tissue support, type IV colla-
gen cross-linking, and dramatic expansion during develop-
ment remains an open question.

Figure 1.  The basement membrane is a dynamic scaffold. During development, basement membranes assemble, grow, constrict tissues, and are actively 
remodeled to regulate diverse cellular behaviors and morphogenetic processes, including tissue polarity, tissue shaping, and tissue linkage.

Figure 2.  The basement membrane encasing the C. elegans foregut (pharynx) grows dramatically during development. (A) A differential interference 
contrast image of an embryo with the pharynx outlined. The pharynx is a basement membrane-encased contractile feeding organ that grinds and pumps 
food (bacteria) posteriorly into the intestine. (B and C) 3D-rendered isosurfaces of type IV collagen::mCherry show the approximately threefold increase in 
basement membrane surface area during pharyngeal growth from the L1 (B) to L4 (C) larval developmental stage. Bars, 5 µm. Images courtesy of R. Jaya-
dev (Duke University, Durham, NC).
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An additional important area that requires further investi-
gation is how basement membranes respond to physical forces. 
Analysis of mutants in genes encoding basement membrane 
components and a limited number of biophysical studies sug-
gests that basement membranes mechanically support tissues 
(Pöschl et al., 2004; Candiello et al., 2007; Halfter et al., 2013). 
With the ability to visualize load across proteins with FRET-
based tension sensors (Grashoff et al., 2010; Meng et al., 2011) 
it should be possible to probe individual basement membrane 
molecules in optically clear animals to identify components that 
support load and when these proteins experience mechanical 
stress (e.g., growth, tissue deformation, contractions).

Live imaging of cell–basement membrane interactions 
during development will also allow a clearer understanding of 
the roles basement membrane components, associated growth 
factors, proteases, and receptors have in regulating diverse cel-
lular behaviors (Hynes, 2009; Yurchenco, 2011). Thus, rather 
than complex endpoint phenotypes, live cell approaches allow 
examination of normal and disrupted cellular behaviors as 
they occur. For example, using live imaging we have shown 
that the integrin cell–matrix receptor has independent func-
tions in both mediating cell–basement membrane attachment 
and establishing a specialized cell membrane domain that di-
rects invasion through the basement membrane (Hagedorn et 
al., 2009; Wang et al., 2014).

Finally, I expect that broad analysis of organismal de-
velopment and physiology will continue to provide significant 
findings in cell–matrix biology. This is illustrated by studies 
showing dramatic changes in basement membrane accumula-
tion during aging, and the findings that enhanced expression 
of matrix remodeling components increase organismal lon-
gevity (Candiello et al., 2010; Ewald et al., 2015). CRISPR/
Cas9-mediated genome editing will also allow functional and 
live-cell analysis of cell–matrix interactions outside of current 
model systems, especially in basal metazoans such as translu-
cent Cnidarian and Ctenophore embryos (Ikmi et al., 2014). 
These technical advances, and a wide experimental net, will 
bring a more comprehensive understanding of the fascinat-
ing, fundamental, and ancient interactions of cells and their 
surrounding extracellular matrix. This will have profound 
importance to human health, as numerous inherited diseases 
are caused by mutations in basement membrane components 
and changes in basement membrane structure are associated 
with the pathogenesis of diseases such as diabetes, hyper-
tension, Alzheimer’s, and cancer (Tsilibary, 2003; Zlokovic, 
2008; Van Agtmael and Bruckner-Tuderman, 2010; Lu et al., 
2012; Kelley et al., 2014).
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