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Beginning at the end: DNA replication within the

telomere

Susan A. Gerbi

Division of Biology and Medicine, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912

Using single molecule analysis of replicated DNA
(SMARD), Drosopoulos et al. (2015; J. Cell Biol. http://
dx.doi.org/10.1083/icb.201410061) report that DNA
replication initiates at measurable frequency within the
telomere of mouse chromosome arm 14q. They demon-
strate that resolution of G4 structures on the G-rich tem-
plate strand of the telomere requires some overlapping
functions of BLM and WRN helicase for leading strand
synthesis.

Double-strand breaks in DNA can wreak havoc in cells if not
repaired. Therefore, it was proposed that the ends of chromo-
somes may be specialized cap structures that are not recognized
as double-strand breaks, thus preventing cell cycle arrest, deg-
radation, and recombinational fusion (Muller, 1938; McClin-
tock, 1939). We now know that telomeres comprise the ends
of chromosomes and are essential for genome stability. Telo-
meres are composed of tandem head-to-tail repeats of a short
G-rich sequence; for example, human telomeres are 2-20 kb
of (TTAGGG), repeats. The chromosome ends are not blunt,
and the 3’ end (G-rich strand) overhangs in a single strand
that can invade the interior of the telomere to displace the in-
ternal G-rich sequence and form a T-loop structure (Griffith et
al., 1999; Cesare et al., 2003; Doksani et al., 2013), thus pro-
tecting the chromosome ends from being recognized by the
cell as double-strand breaks, in addition to protection by pro-
teins that bind the telomere.

Eukaryotic chromosomes are duplicated via semiconser-
vative replication with a leading (continuous synthesis for net
growth at the 3’ end of the nascent leading strand) and lagging
(discontinuous Okazaki fragment synthesis for net growth at
the 5" end of the nascent lagging strand) elongating strand as
shown in Fig. 1. In chromosomal semiconservative replication,
the short 5" RNA primer is removed from the nascent strand and
the gap is filled in by DNA that is ligated to the adjacent nascent
DNA. However, at the end of the chromosome, the gap after
removal of the 5’ terminal RNA primer on the lagging strand
cannot be filled in, and the chromosome may become shorter
with each ensuing round of replication. This has been termed
the end-replication problem (Watson, 1972; Olovnikov, 1973),
and telomerase helps to solve this problem (Greider and Black-
burn, 1987; Soudet et al., 2014).

Semiconservative replication occurs before the action of
telomerase. Previously it was thought that DNA replication
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began at an origin in chromosomal DNA adjacent to the telo-
mere repeats, with the replication forks moving bidirectionally
away from the subtelomeric origin (Fig. 1 A), thus replicating
the telomere. However, the question remained whether DNA
replication might initiate with some frequency within the telo-
mere itself (Fig. 1 B). This question has now been answered
in the affirmative in this issue by Drosopoulos et al., who used
single molecule analysis of replicated DNA (SMARD; Norio
and Schildkraut, 2001). In this approach, replicating cells are
sequentially labeled by two different nucleotide analogues that
are subsequently identified by immunofluorescence. For exam-
ple, in bidirectional replication, red signals from the first pulse
will be flanked at each end by green signals from the second
pulse. Earlier reports using SMARD had concluded that most
replication initiates at subtelomeric regions in the mouse and
human genome and rarely in the telomeres themselves (Sfeir
et al., 2009; Drosopoulos et al., 2012). In the recent study by
Drosopoulos et al. (2015), fluorescence in situ hybridization
(FISH) using probes from the telomere region allowed the rep-
lication pattern to be analyzed for a 320 kb genomic segment
from the end of mouse chromosome arm 14q. Due to the long
time (4 h) for the first (red) pulse, usually only red tracts of
signal within the telomere were seen, but since many such mol-
ecules did not have the red signal extend into the subtelomeric
region, it can be comfortably concluded that replication must
have initiated within the telomere (Fig. 1 B). Moreover, some
molecules did have red signal in the telomere flanked by green
signal, supporting this conclusion. Although in these cases there
was chromosome-proximal green signal, chromosome-distal
green signal was rarely seen. Thus, although there was limited
evidence for bidirectional replication originating in the telo-
mere, it is very clear that a replication origin can exist within the
telomere proper with a replication fork that extends over time
into the subtelomere. It remains to be investigated whether rep-
lication initiates at a relatively high frequency in the telomeres
of chromosomes other than 14q.

These findings raise the question of whether the origin
for DNA replication coincides with the simple sequence repeat
found in telomeres or instead if it coincides with some other se-
quence that might be interspersed within the telomere. The for-
mer is suggested by a study with Xenopus cell-free extracts that
could assemble the pre-replication complex and undergo some
DNA replication on exogenous DNA containing exclusively telo-
meric repeats (Kurth and Gautier, 2010). Similar conclusions that
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Figure 1. DNA replication at the end of chro-
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mosomes. (A) DNA replication can initiate
within the subtelomeric region with replication
forks (green arrows) progressing bidirection-
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through this region. In each panel, leading
nascent strand synthesis is indicated by a blue
line with a single arrowhead; lagging nascent
strand synthesis is indicated by a blue line with
- multiple arrowheads. At the top of each panel,
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(IdU, red), and the dotted green line indicates
the signal seen for replication extension during
the second pulse (CldU, green). (B) On some
DNA molecules from mouse chromosome 14q,
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DNA replication initiates within the telomere
itself. In practice, the second (green) pulse was
often not observed in the telomere. (C) Par-
tially overlapping functions of BLM and WRN
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DNA replication can initiate in the simple DNA repeats found
in centromeres where replication bubbles have been observed in
Drosophila virilis by electron microscopy have been reached (Za-
kian, 1976), and a recent study suggests that DNA replication ini-
tiates within human alpha-satellite DNA (Erliandri et al., 2014).
Replications forks move slowly through telomeric DNA
(Ivessa et al., 2002; Makovets et al., 2004; Miller et al., 20006;
Sfeir et al., 2009) due to the high thermal stability of GC-rich
telomeric DNA as well as its propensity to form stable second-
ary structures, such as G-quadruplex (G4) DNA, which can pose
problems for DNA replication (Lopes et al., 2011; Paeschke et
al., 2011). Various helicases help solve this problem; for ex-
ample, Pifl helicase helps to unwind G4 (Paeschke et al.,
2013). Bloom syndrome helicase (BLM) and the Werner syn-
drome helicase (WRN) have also been implicated in assisting
telomere replication: BLM suppresses replication-dependent
fragile telomeres (Sfeir et al., 2009), and WRN suppresses de-
fects in telomere lagging strand synthesis (Crabbe et al., 2004).
Drosopoulos et al. (2015) now report that leading strand synthe-
sis that initiates within the telomere has a slower rate of progres-
sion into the subtelomere in BLM-deficient cells as visualized
by SMARD. Moreover, there was a higher frequency of repli-
cation initiation in the 14q subtelomere of the BLM-deficient
cells, originating closer to the telomere than in BLM-proficient
cells. These observations suggest that dormant replication ori-
gins in the 14q subtelomere can be activated when fork progres-
sion is impeded in BLM-deficient cells (Fig. 1 C). Drosopoulos
et al. (2015) also found an increase in subtelomeric replication
initiation when replication fork progression from the telomere
was hindered by aphidicolin, as an alternate means to activate
dormant origins by replication stress. When cells were treated
with the G4 stabilizer PhenDC3, 14q subtelomeric origin firing
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helicases are used to resolve G-quadruplex
(G4) DNA (blue structure) that can form on
the G-rich parental strand of the telomeres. In
cells deficient of BLM and/or WRN helicase,
progression of the nascent leading strand in
the telomere is impaired; the slowed replica-
tion forks are indicated by red arrows. The
resulting replication stress is accompanied by
activation of dormant replication origins in
the subtelomere. The cartoon is not drawn to
scale, and the infrequently used subtelomeric
replication origin in C is closer to the telomere
than the subtelomeric origin in A.

increased further in BLM-deficient cells. Collectively, the data
suggest a slowdown of progression of leading strand synthesis
from an origin in the 14q telomere (using the G-rich parental
strand as the template) when G4 structures cannot be resolved
in BLM-deficient cells. As further support for a role of BLM
helicase to remove G4 structures, there was increased staining
in BLM-deficient cells by the BG4 antibody (Biffi et al., 2013)
against G4 in the whole genome and especially in telomeres.

WRN helicase can unwind G4 in vitro (Fry and Loeb,
1999; Mohaghegh et al., 2001). When Drosopoulos et al. (2015)
used SMARD to analyze replication in cells doubly deficient
of both BLM and WRN, they found a marked decrease of red
replication signal in 14q telomeres, suggesting some functional
overlap between BLM and WRN with regard to leading strand
synthesis off the G-rich strand of telomeres. Supporting this
conclusion, there was more G4 staining by the BG4 antibody in
cells doubly deficient of both BLM and WRN than in cells de-
ficient of just BLM or just WRN. This is the first direct demon-
stration in vivo of a contribution of BLM and WRN helicases
in the resolution of G4 structures, which is especially needed
for progression of leading strand synthesis that initiates in telo-
meres and is copied from the G-rich strand.
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