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A stable microtubule array drives fission yeast
polarity reestablishment upon quiescence exit
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Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment,
Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose
their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into
actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rear-
ranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified
proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly,
we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the
efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskel-
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eton structures that improve the swiftness of the transition back to proliferation.

Introduction

Microtubules (MT) are hollow cylindrical polymers that are es-
sential in all eukaryotic cells. They are formed by the non-co-
valent interaction of a- and fB-tubulin heterodimers. MTs are
nucleated at MT organizing centers (MTOCsSs) by a y-tubulin—
containing complex that acts as a MT template. As a MTOC
stays attached to MT, it stabilizes the so-called MT minus end
(Kollman et al., 2011). At the opposite end, the plus end, MTs
elongate by the addition of GTP tubulin. During assembly, the
B-tubulin-bound GTP is hydrolyzed and a stable GDP+Pi tubu-
lin intermediate is generated. The eventual Pi release causes a
change in tubulin—tubulin interaction that favors MT depolym-
erization (catastrophe) that can be rescued by de novo GTP tu-
bulin addition (Carlier and Pantaloni, 1981; Nogales and Wang,
2006; Alushin et al., 2014; Mitchison, 2014). In fact, MT plus
ends are thought to be protected from catastrophe by a stabiliz-
ing GTP tubulin “cap” (Mitchison and Kirschner, 1984; Horio
and Murata, 2014). Thus, MTs alternate periods of growth
and shrinkage, a behavior called dynamic instability (Mitchi-
son and Kirschner, 1984). In vivo, this dynamic is regulated
by plethora of MT-associated proteins (MAPs) that modulate
MT length by influencing the polymerization or depolymeriza-
tion rates and/or the catastrophe or rescue frequencies (Wade,
2009; van der Vaart et al., 2009; Horio and Murata, 2014). Fi-
nally, other MAPs are involved in MT organization into diverse
structures such as asters, spindles, or bundles, each of which is
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required for a particular cellular process. One of the key ques-
tions is therefore how cells can spatially and temporally con-
trol the assembly of distinct MT-containing structures to elicit
specific cellular functions.

Fission yeast has proven to be a powerful model to study
how different MT structures are constructed all along the
cell cycle (Hagan, 1998). Depending on the cell cycle stage,
Schizosaccharomyces pombe displays three different classes
of MTOCs. In mitosis, the spindle pole body (SPB), a yeast
MTOC equivalent to the centrosome, nucleates MTs that form
the mitotic spindle required for chromosome segregation. After
mitosis completion, an equatorial MTOC appears as a ring in
the cell center and nucleates a post-anaphase array of MTs in-
volved in cell septation during cytokinesis. After cell division,
the equatorial MTOC breaks down to form multiple interphase
MTOC:s that localize all around the nuclear membrane. The
SPB stays linked to the cytoplasmic face of the nuclear enve-
lope and can possibly nucleate interphase MT. Thus, in inter-
phase, fission yeast cells display three to five long MT bundles
that extend along the long axis of the cell (Hagan and Petersen,
2000; Sawin and Tran, 2006).

Interphase MT bundles are composed of about four dy-
namic antiparallel MTs (Drummond and Cross, 2000). The for-
mation of these structures relies on the Mtol/2 complex that
recruits and activates the y-tubulin—containing complex on the
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cytoplasmic face of the SPB, at nuclear membrane—associated
interphase MTOCs, and onto preexisting MTs, thus allowing
the nucleation of new MTs (Venkatram et al., 2004, 2005; Jan-
son et al., 2005; Samejima et al., 2005, 2010; Zimmerman and
Chang, 2005; Lynch et al., 2014). In the latter case, the newly
nucleated MT is pulled toward the minus end of the underneath
MT template via the motor activity of the kinesin-14 Klp2, until
Asel, a homodimeric MT bundling protein, acts as a brake
(Carazo-Salas et al., 2005; Carazo-Salas and Nurse, 2007; Jan-
son et al., 2007; Braun et al., 2009, 2011). The MT length is reg-
ulated by several MT plus end tracking proteins including Mal3
(the EB1 homologue) and Tipl (the Clip170 homologue), two
proteins that favor MT rescue (Beinhauer et al., 1997; Brun-
ner and Nurse, 2000; Busch and Brunner, 2004; Hoog et al.,
2013), Alp14 (a TOG orthologue) that has a MT polymerase
activity (Al-Bassam et al., 2012), and the kinesins-8 Klp5 and
Klp6 that promote catastrophe (Unsworth et al., 2008; Tischer
et al., 2009; Erent et al., 2012). This complex interplay between
diverse MAPs results in a typical interphase MT bundle orga-
nization, such as within the bundle the overlapping stable MT
minus ends are found near the nucleus whereas the dynamic
plus ends are extending toward the cell tips (see model in Fig. 8
A; Drummond and Cross, 2000; Piel and Tran, 2009; Hachet et
al., 2012). This dynamic arrangement enables the MT plus ends
to produce a balance of pushing forces that position the nucleus
at the center of the cell (Tran et al., 2001) and will ultimately
lead to a symmetrical cell division (Daga and Chang, 2005).

Interphase MT bundles have an additional physiological
function. Just after division, cells initiate growth at the preex-
isting cell end, the old end. Dynamic interphase MTs play an
active role in this process. Indeed, by touching the cell cortex,
growing MT plus ends deliver polarity factors to cell extremity.
One of these factors, the Kelch repeat—containing protein Teal,
docks onto its membrane-associated receptor, the prenylated
protein Mod5 (Snaith and Sawin, 2003). Once at the cell tip,
Teal recruits the Formin For3 and its associated partners, such
as Bud6, enabling the nucleation of actin filaments that will be
subsequently assembled into actin cables. Actin cables will then
serve as tracks for the myosin V—dependent polarized transport
of all the building blocks required for cell growth. Hence, in
interphase, MTs establish the site of polarized growth and mu-
tations that impinge on interphase MT bundle organization or
dynamics consequently affect cell shape (Chang and Martin,
2009; Martin, 2009; Hachet et al., 2012).

Like other eukaryotes, upon nutrient exhaustion, S. pombe
cells stop growth and proliferation and enter a temporary non-di-
viding state called quiescence (Sajiki et al., 2009). While qui-
escence may encompass very different physiological situations
depending on the nature of the exhausted nutrient (Costello et
al., 1986), it is clear that fission yeast quiescence establishment
is accompanied by profound modifications of the cell transcrip-
tome, proteome (Marguerat et al., 2012), and metabolome (Sa-
jiki et al., 2013) and by the acquisition of a variety of features
including an enhanced resistance to harmful external conditions
or the accumulation of storage molecules (Wei et al., 1993; Su
etal., 1996). We have previously shown that upon carbon source
exhaustion, the fission yeast proteasome exits the nucleus and
forms a specific cytoplasmic structure called proteasome stor-
age granule (Laporte et al., 2008). Such relocalization has also
been reported in budding yeast (Laporte et al., 2008). In addi-
tion, in Saccharomyces cerevisiae, actin filaments collapse into
actin bodies (Sagot et al., 2006), and various chaperones (Tapia
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and Morano, 2010; Liu et al., 2012), enzymes (Narayanaswamy
et al., 2009; Noree et al., 2010), or kinases (Shah et al., 2014)
are relocalized upon quiescence entry. Some of these reorgani-
zations have been observed in metazoans (Noree et al., 2010),
suggesting that they may be conserved among eukaryotes.

In this study, we show that fission yeast cytoskeletons
are completely reorganized upon quiescence entry. Indeed, we
primarily observed that the MT cytoskeleton is drastically re-
shaped as quiescent cells assemble a large SPB-associated MT
bundle composed of astonishingly stable antiparallel MTs. Im-
portantly, we also report that quiescence establishment comes
along with a massive rearrangement of the actin cytoskeleton
and the loss of cell polarity. We finally demonstrate that qui-
escent cell MT elongation is strictly required for cell polarity
reestablishment upon quiescence exit.

Results

Upon quiescence entry, S. pombe
reorganizes its MT cytoskeleton as a single
bundile linked to the SPB

Upon carbon source exhaustion, fission yeast cells leave the
cell cycle and enter quiescence from interphase (Bostock, 1970;
Costello et al., 1986). In these conditions, we have analyzed MT
organization in wild-type (WT) cells expressing the a-tubulin 2
(Atb2) fused to GFP. As expected, proliferating interphase cells
displayed two to five long cytoplasmic bundles composed of
4 = 1 MTs (Fig. 1, A and B; Hoog et al., 2007). Strikingly,
we observed that after carbon exhaustion, the number of MT
bundles progressively decreased (Fig. 1 A). Four days after car-
bon exhaustion, the majority of the cells displayed a single MT
bundle (Fig. 1 A and Fig. S1 A) that we named Q-MT bundle,
standing for quiescent cell MT bundle. This unique MT bun-
dle was composed of more than 15 MTs (Fig. 1 B) that were
not necessarily of the same length, as exemplified by the arrow
shape of the bundle extremities (Fig. S1 B). In fact, in ~15%
of the cells, the Q-MT bundle could display internal thickness
variations (Fig. S1 C). Importantly, by imaging cells coexpress-
ing GFP-Atb2 with the SPB-associated protein Sfil fused to
CFP and the nuclear membrane protein Cutl1 fused to RFP, we
observed that the Q-MT bundle was generally associated with
the SPB (>70% of the cells; Fig. 1, C, D, and G), even when
quiescence was prolonged (Fig. S1 D). Yet, MT bundles not as-
sociated with the SPB displayed the same length and intensity
than the SBP-associated ones (Fig. S1, E and F). EM analysis of
quiescent WT cells showed that within the Q-MT bundle MTs
were regularly spaced (Fig. 1, D-G; and Fig. S1 G). Finally,
the Q-MT bundle organization and localization within the cell
were confirmed by 3D models constructed using serial section
electron tomograms (Fig. 1 G).

The Q-MT bundle is composed of

stable MTs

In interphase cells, cytoplasmic MTs are known to be extremely
dynamic as they rapidly alternate periods of growth and shrink-
age (Fig. 2 A; Drummond and Cross, 2000). They are there-
fore very sensitive to drugs that inhibit MT polymerization
and cause dynamic MT disassembly, such as methyl benzim-
idazol-2-yl-carbamate (MBC) or thiabendazole (TBZ; Fig. 2 B;
Sawin and Nurse, 1998; Sawin and Snaith, 2004). In contrast, we
showed that in quiescent cells, the Q-MT bundle had a constant
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Figure 1. In quiescence, S. pombe assemble a unique MT bundle associated with the SPB. (A) Cells expressing GFP-Atb2 (green) and Sfi1-CFP (red) are
shown (top). The variation of the number of MT bundles per cell is presented as a function of time (bottom; glucose exhaustion is marked by a red dashed
line; n > 200 cells per time point). (B) The number of MTs per bundle increases upon quiescence entry (p-values are indicated; n > 100 cells per time point).
(C) The Q-MT bundle is associated with the SPB (N = 2 experiments and n > 100 cells). Examples of quiescent cells (5 d) expressing GFP-Atb2 (green),
Sfi1-CFP (red), and Cut11-RFP (blue). Bars, 2 pm. (D and E) The Q-MT bundle visualized longitudinally (D) and transversally (E) by freeze substitution EM in
WT cells (7 d). Green arrows point at MTs, red arrowheads point at the nuclear membrane, and a blue arrow indicates the SPB. (F) Distance distribution
between two MTs measured using images in E. (G) Using serial section electron tomograms, 3D models of @-MT bundles were designed. MTs are in green,
the nuclear membrane is in red, and the SPB is in blue. Two cells are shown using different view angles.

length (Fig. 2 A) and resisted against massive amounts of drugs
(Fig. 2 B) or a cold treatment known to cause the disassembly of
dynamic MTs (Fig. S2, A and B). Importantly, no fluorescence
was recovered after GFP-Atb2 photobleaching, demonstrating
that within the Q-MT bundle, not only MTs were stable but also
there was no MT sliding (Fig. 2 C). Of note, like cells entering
quiescence upon carbon source exhaustion, upon nitrogen star-
vation, cells also stabilized a unique MT bundle (Fig. S2 C).

MT stabilization is not primarily caused by

GTP depletion but rather involves the SPB

Tubulin binds GTP and can hydrolyze this nucleotide. The in-
fluence of the tubulin nucleotide status on MT dynamics in vivo
is still a mater of debate (Kueh and Mitchison, 2009). We have
analyzed the GTP concentration variation upon entry into qui-
escence after carbon exhaustion using high pressure ionic chro-
matography and observed a drastic decrease of the intracellular
pool of this nucleotide (Fig. 3 A). Mycophenolic acid (MPA)
is a drug that specifically inhibits inosine-5’-monophosphate
dehydrogenase, the enzyme that catalyzes the conversion of
inosine-5’-monophosphate into guanosine-5’-monophosphate
(Allison and Eugui, 2000), the GTP precursor. As in other or-
ganisms (Qiu et al., 2000), MPA treatment of proliferating S.
pombe cells caused GTP depletion (Fig. 3 B). The GTP drop

was reversed by addition of guanine in the medium, demon-
strating the specificity of MPA treatment (Escobar-Henriques
et al., 2001). Interestingly, MPA treatment did not significantly
affect MT growth or shrinkage rates (Fig. 3 C) nor the MT ca-
tastrophe and rescue frequencies (not depicted), excluding the
possibility that MT stabilization would be an immediate conse-
quence of GTP depletion upon quiescence entry.

Kinetic analysis of MT stabilization upon entry into quies-
cence after carbon exhaustion revealed that as early as 6 h after
glucose depletion the MT bundle linked to the SPB was more
stable, i.e., resistant to the MT-destabilizing drug benomyl, than
other MT bundles present in the cell (Fig. 3 D). The stabilization
of the SPB-associated MT bundle fit with a non-random stabi-
lization prediction for both early (Fig. 3 E) and late quiescence
time points (Fig. S2 D). Collectively, these results indicated that
the SPB, rather than the GTP intracellular concentration, played
a major role in MT stabilization in quiescence.

A variety of MAPs colocalizes with the
Q-MT bundle and influences its length

or thickness

To get insights into the mechanism of Q-MT bundle formation,
we looked for MAPs colocalizing with this structure. First, we
found that astonishingly, in quiescent cells, Mtol and Mto2

Microtubule and actin remodeling in quiescent S. pombe ¢ Laporte et al.

101

G20z Jequiede( z0 uo 3senb Aq 4pd 620205102 Al/zZE065 |L/66/1/012/4pd-8joe/qol/Bi0"sseidnu//:dpy woy papeojumoq


http://www.jcb.org/cgi/content/full/jcb.201502025/DC1

102

A . Quiescence (7d)

Interphase i

\V]

length (um)
o

\ \

\
\

/ |

I

1

|

!

1

\
\

'
N

200 400 600
Time (s) Time (s)

i
'
]
'
'
'
1
v

\

N
\
1
{
i /
'
'
'
v
\
S

'
)
'
'
1
'
1
i
.

B Interphase Quiescence (4d)
DMSO MBC  TBZ

DMSO  MBC TBZ

€1 0 W

2 e 75

£ 4 n=172 n=291 n=155 8>

[&)] . . . o o 50

qc) 4 .-: ..:':':- ::-'::: aaa 9 (>)

— 2] n=73 n=132 n=153 % % B n=18

=0 — = - 0

DMSO MBC TBZ DMSO MBC TBZ 0 300 600 900 1200
Interphase Quiescence (4d) Time (s)

Figure 2. The Q-MT bundle is composed of stable MTs. (A) Q-MT bundles do not display detectable length variation. Variation of MT bundle length as
function of time in interphase and quiescent cells. Representative time-lapse movies are shown. Red and blue arrows point, respectively, at shrinking and
growing MTs. (B) Q-MT bundles are insensitive to treatments that destabilize dynamic MTs. The graph displays MT bundle length measured in interphase
and in quiescent cells (4 d) incubated 30 min with the indicated drugs. Representative cells are shown. (C) FRAP of GFP-Atb2 within a Q-MT bundle mea-
sured in quiescent cells (4 d). Error bars are SEM. Time is in seconds. The red box indicates the photobleached area. In all panels, cells are WT cells ex-
pressing GFP-Atb2, Sfi1-CFP, and Cut11-RFP. In A and C, only the GFP channel is shown, and in B GFP-Atb2 is in green and Cut1 1-RFP is in red. Bars, 2 pm.

were no longer found as dots around the nuclear envelope but or its destabilization (Fig. S3 C). However, in some mutants,
rather localized exclusively onto the Q-MT bundle (Fig. 4 A whereas the steady-state level of total a-tubulin remained con-
and Fig. S3 A). Line scan analyses revealed that Mto1/2 lo- stant (Fig. S3 B), the Q-MT bundle was either both thicker and
calized as dots that most likely mark the MT ends (Fig. 4 B longer (kip5Akip6A, alp7A, and disIA), just thinner (aselA), or
and Fig. S3 A), in agreement with Mto1/2 being a MT minus both shorter and thinner (mal3A and alpi4A; Fig. 4, E and F).
end binding complex (Sawin et al., 2004; Venkatram et al., These results indicated that MAPs involved in interphase MT
2004, 2005; Samejima et al., 2005; Janson et al., 2007). Sec- length regulation are also involved in shaping the Q-MT bundle
ond, the regular spacing between MTs within the Q-MT bundle in quiescence. Besides, mutants with an altered Q-MT shape
observed by EM (Fig. 1 E) strongly suggested the presence of did not display mortality in quiescence (Fig. S3 D) nor a cell
a MT bundling protein, and, accordingly, we found that Asel shape defect upon quiescence exit (Fig. S3 E), with the excep-
localized all along the Q-MT bundle (Fig. 4 C). In S. pombe, the tion of alpl4A cells (see the following paragraph and Fig. 7 C).
CLASP family member Clsl (Pegl) has been involved in MT
stabilization and is known to localize to the overlapping zone of The G-MT bundle rapidly elongates upon
interphase MT bundle (Bratman and Chang, 2007). Similarly, quiescence exit
in quiescent cells, we found that Cls1 localized with the denser In our experimental conditions, glucose exhaustion is responsi-
region of the Q-MT bundle (Fig. 4 C). Finally, the MT plus ble for cell entry into quiescence (Fig. S4 A). When quiescent
end tracking proteins Alp7 (the TACC protein orthologue) and cells were refed with rich medium, the Q-MT bundle rapidly
Alpl4 and Disl (two TOG-related proteins) localized as dots elongated from both extremities, a proof of the MT antipar-
that probably correspond to MT extremities within the Q-MT allel arrangement within the Q-MT bundle (Fig. 5 A and Fig.
bundle (Fig. 4 C), just like the MT minus end—directed kine- S4, B and C). In ~5 min, dynamic MTs polymerizing from the
sin-14 Klp2, although fewer and fainter Klp2 dots were de- Q-MT bundle touched the cell poles. Of note, tracking SPB
tected (Fig. 4 C). Of note, Mal3, the EB1 homologue, could not movement upon quiescence exit clearly demonstrated that the
be detected in quiescent cells (unpublished data). Q-MT bundle was attached to the SPB (Fig. S4 E). The MT plus
We then analyzed the effect of MAP encoding gene deletion end—tracking protein Alp14, although immobile onto the Q-MT
on the Q-MT bundle shape, stability, and formation. None of the bundle in quiescence (Fig. S4 F), was found at the tip of elon-
deletions tested resulted in the absence of MT bundle (Fig. 4 D) gating MTs upon quiescence exit (Figs. 5 B and S4 F). In con-
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als and methods for details). For all graphs, means and SD are indicated. Bars, 2 pm.

trast, the minus end—associated protein Mto2 stayed immobile
on the elongating Q-MT bundle (Fig. S4 G). Later (>15 min),
new MT bundles were assembled de novo at the nuclear periph-
ery. Interestingly, as for other quiescent cell-specific structures
(Laporte et al., 2011, 2013), the sole addition of glucose onto
quiescent cells trigged both Q-MT bundle elongation and as-
sembly of new interphase MT bundles at the nuclear periphery
(Fig. 5 A). Importantly, these two MT rearrangements occurred
even if de novo protein synthesis was inhibited by cyclohexim-
ide (CHX; Fig. 5 A). Yet, as expected, cells treated with CHX
did not elongate upon refeeding (Fig. S4 D). This experiment
demonstrated that the MT cytoskeleton remodeling upon quies-
cence exit did not need de novo tubulin synthesis.

We then wonder whether, upon quiescence exit, Q-MT
bundle elongation was caused by the polymerization of free cy-
toplasmic tubulin or if it required the depolymerization of the
MTs embedded into the Q-MT bundle. Cell treatment with both
CHX and TBZ revealed that within the first 30 min after cell re-
feeding neither the fluorescence nor the length of the quiescent
cell Q-MT bundle was affected (Fig. 5 C), indicating that within
this time frame the Q-MT bundle did not depolymerized. This
was confirmed by the absence of variation of the Q-MT bundle
fluorescence intensity for at least 20 min after cell refeeding in
the presence of CHX alone (Fig. S4 H). Obviously, a TBZ treat-
ment prevented de novo interphase MT bundle formation at the
nuclear membrane. As a control, we showed that inhibiting MT
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indicated mutants.

polymerization upon quiescence exit did not influence Q-MT
bundle stability. Indeed when quiescent cells were refed with
new medium in the presence of CHX, and afterward incubated
10 min with MBC (Fig. S4 I), Q-MT bundle length and fluores-
cence intensity stayed constant for at least 20 min, whereas MT
dynamic was clearly recovered. In fact, Q-MT bundles start to
disassemble only 1 h after cells refeeding (Fig. S4 I). Collec-
tively these data demonstrated that a free tubulin pool was pres-
ent in quiescent cell cytoplasm and that MT elongation upon
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, P < 107 Blue and red asterisks shows positive and negative difference, respectively. Bars, 2 pm.

quiescence exit was caused by free tubulin polymerization at
the Q-MT bundle extremities.

S. pombe cells lose their polarity and
assemble actin bodies in quiescence

In actively dividing S.pombe, MTs deposit polarity factors, such
as Teal, to the cell tip to allow polarized growth (Chang and
Martin, 2009; Martin, 2009; Piel and Tran, 2009; Hachet et al.,
2012). In quiescent S. pombe cells, Teal was no longer detected
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at the cell tips but was rather localized onto the Q-MT bundle
(Fig. 6 A). Tipl, a MT plus end tracking protein of the CLIP170
family, was also lost from cell extremities but couldn’t be de-
tected in quiescent cells (Fig. 6 A). We made a similar observa-
tion for active Cdc42 (CRIB domain), the exocyst components
Ex070 and Sec8 (Fig. 6 B), the myosin V myo52, the polarity
factor Pobl (Fig. S5 A), and the formin For3 (not depicted). In-
terestingly, in quiescent S. pombe, no actin cable or patch were
found. Instead, we observed a big cytoplasmic F-actin—contain-
ing structure (Fig. 6 C). This structure displayed all the char-
acteristics described for actin bodies in quiescent S. cerevisiae
(Sagot et al., 2006): they do not have a particular size or shape
(Fig. 6 C), they are resistant to Latrunculin A (not depicted),
and they contain a specific set of actin binding proteins such as
fimbrin (Fim1; Fig. 6 C), capping protein (Acp2; Fig. 6 C), and
drebrin (Aapl; Fig. S5 A), but not Bud6, Vrpl, Crnl, Arp5, or
End4 (Fig. S5 A). These observations indicated that upon glu-
cose exhaustion—induced quiescence entry, S. pombe cells lose
their polarity and entirely reorganize their actin cytoskeleton.

Q-MT bundle elongation is required

for polarity reestablishment upon
quiescence exit

Upon quiescence exit, we found that cells rapidly repolarized.
Indeed, within minutes, Teal returned to the cell tips (Fig. 7 A)
asdid Tip1 and Pob1 (Fig. S5 B). In parallel, actin bodies quickly
disassembled and actin patches reassembled at the cells extrem-
ities (Fig. 7 A, Fim1, Acp2, and Appl; and Fig. S5 B, Bud6).
Of note, Teal repolarization could occur even if de novo protein
synthesis was inhibited (Fig. S5 C) but, as expected, it was im-
paired in a mod5A mutant (Snaith and Sawin, 2003; Fig. S5 D).

To decipher the potential role of the Q-MT bundle in cell
repolarization upon quiescence exit, cells exiting quiescence
were treated with MBC, a drug that prevents MT bundle elonga-
tion and de novo interphase MT bundle formation at the nuclear
periphery (Figs. 5 C and S5 C). In these conditions, we found
that repolarization of Teal and the actin components Fiml,
Acp2, and Appl was impaired in >60% of the cells and dras-
tically delayed in the remaining 40% (Fig. 7 A). At later time
points, these polarity defects translated into major cell shape
defects (Fig. 7 B) that were not observed in the control exper-
iments done with proliferating cells. This strongly suggested
that Q-MT bundle elongation and the return to dynamic MT
was required for polarity reestablishment upon quiescence exit.

Interestingly, we found that quiescent alp/4A cells were
incapable of Q-MT elongation and interphase bundle reassem-
bly upon refeeding (Fig. 7, C and D). This later defect was
not the result of an impaired relocalization of Mtol/2 onto
the nuclear membrane (Fig. S5 E). This demonstrated that
Alpl4 was required for Q-MT bundle elongation. Further, as
MBC treated cells, alpl4A cells displayed a strong cell shape
defect upon quiescence exit (Fig. 7 C), another proof of the
involvement of the Q-MT bundle elongation in cell repolar-
ization upon quiescence exit.

To definitively address this point, we used mtolA, a mu-
tant known to be unable to nucleate cytoplamic MTs (Sawin et
al., 2004). Interestingly, after 5 d, mtolA cells do not assemble
a bona fide Q-MT bundle but instead display a unique long and
thin MT-containing structure composed of MTs that are sen-
sitive to a cold treatment (Fig. 7, E and F). As mtolA cells are
unable to nucleate cytoplasmic MTs, a shift back to 30°C after
a cold treatment did not allow de novo MT polymerization (Fig.
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Figure 6. Quiescent S. pombe cells have lost their polarity and reorganized their actin cytoskeleton into actin bodies. Cells expressing either Atb2-GFP or
the polarity markers Tea1-GFP or Tip1-GFP (A), GFP-CRIB or the exocyst component Exo70-GFP or Sec8-GFP (B), or Fim1-GFP or Acp2-GFP (C) are shown
upon entry into quiescence. F-actin filaments were detected by Alexa-Phalloidin staining (C, bottom). Red arrows point at actin bodies. Bars, 2 pm.

7 E and not depicted). Using this mutant, we were able to get rid
of MTs in quiescence and address the phenotype of cells exiting
quiescence in the absence of MTs. As shown in Fig. 7 (E and F),
the vast majority of the cold-treated mtolA cells exiting quies-
cence without MT exhibit strong polarity and shape defects (see
also Fig. S5 F). Collectively, these results demonstrated that the
Q-MT bundle elongation and the recovery of dynamic MTs are
involved in polarity reestablishment upon quiescence exit.

Discussion

In this study we have shown that when fission yeast cells enter
quiescence after carbon source exhaustion, they remodel their
MT cytoskeleton into a unique MT bundle (Q-MT bundle). This
Q-MT bundle is composed of more than 15 stable and regularly
spaced antiparallel MTs. Importantly, this structure is associ-
ated with the SPB, a MTOC that seems to be involved in Q-MT
bundle MT stabilization (Figs. 1, 2, and 3). We have also ob-
served that the actin cytoskeleton is drastically reshaped as cells
disassemble actin patches and cables and assemble actin bodies
(Fig. 6), stable F-actin—containing structures (Sagot et al., 2006).
In parallel, polarity markers, such as Cdc42, the exocyst com-
ponents, and Teal, are lost from cell tips (Fig. 6). All these rear-
rangements result in a loss of cell polarity in quiescence. When
cells exit quiescence, the Q-MT bundle immediately elongates
from both extremities and actin bodies dissociate (Figs. 5 and
7). Within an hour, a typical interphase organization is restored,
i.e., three to four thin and dynamic MT bundles extend along the
long axis of the cell, actin patches and cables assemble at cell
tips, and cells start to grow in a polarized manner.

What are the molecular mechanisms
involved in Q-MT bundle formation?

Upon quiescence establishment, the SBP-associated MT bun-
dle rapidly becomes more stable compared with other MT bun-
dles present in the cell cytoplasm (Fig. 3 D, t + 6 h). Within
<2 d after carbon exhaustion, the SPB-associated MT bundle is
fully resistant to treatments that destabilize dynamic MTs. This
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stabilization will be discussed below. As a second step toward
Q-MT bundle formation, we propose that the binding of Mto1/2
onto the SPB-associated MTs allows the nucleation of new MTs
(Fig. 8 A, step 2). The displacement of the equilibrium toward
de novo MT nucleation by Mtol/2-activated y-tubulin onto the
stable SPB-associated MT bundle may be favored by the con-
comitant loss of Mto1/2 affinity for the nuclear envelope (Fig. 4
A). As aresult, new MTs would pile up onto the SPB-associated
MT bundle that progressively thicken, helped by MT bundling
activities, including the one of Asel (Loiodice et al., 2005; Ya-
mashita et al., 2005) and Clasp (Bratman and Chang, 2007; Fig.
8 A, steps 3 and 4). Interestingly, MAPs that regulate the thick-
ness and the length of interphase MT bundles also influence
the Q-MT bundle shape (Fig. 4). Indeed, both in interphase and
in quiescence, MT bundles are shorter in a mal3A mutant (Be-
inhauer et al., 1997; Fig. 4, D to F) or longer in a klp5AkIp6A
mutant (West et al., 2001; Fig. 4, D to F), in agreement with the
molecular activities of these proteins that, respectively, promote
MT rescue or catastrophe (Unsworth et al., 2008; Tischer et al.,
2009; Erent et al., 2012). Alp14 has a MT polymerase activity
in vitro (Al-Bassam et al., 2012) and, accordingly, alp14A cells
display both shorter interphase MT bundles (Al-Bassam et al.,
2012) and shorter Q-MT bundles (Fig. 4, D-F). Furthermore,
just like interphase MT bundles in proliferating alp7A cells
(Zheng et al., 2006), the Q-MT bundle is longer in quiescent
alp7A cells (Fig. 4, D-F). Finally, consistent with Asel bun-
dling activity (Loiodice et al., 2005), we found that the Q-MT
bundle is thinner in quiescent aselA cells (Fig. 4, D-F). The
Q-MT bundle formation may therefore hypothetically rely on
a self-assembling mechanisms similar to the one proposed for
interphase MT bundles (Carazo-Salas and Nurse, 2006; Daga
et al., 2006; Carazo-Salas and Nurse, 2007; Janson et al., 2007;
Subramanian and Kapoor, 2012).

How to explain MT stability in quiescence?

During proliferation, nearly 100% of the cells display SPB-as-
sociated MTs. In quiescence, ~75% of the Q-MT bundles are
associated with the SPB (Figs. 1 C and S1 D). We have never
directly observed a Q-MT bundle “detaching” from the SBP.
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Therefore, whether free Q-MT bundles result from SPB detach-
ment events or if their stabilization occurred independently of
the SPB remain an open question. Yet, whether they are SPB as-
sociated or not, Q-MT bundles have an apparent constant length
and contain MTs that are insensitive to treatments that destabi-
lize dynamic MTs (Figs. 2, S1 [E and F], and S2 [A and B]).

The molecular events leading to MT stabilization within
the Q-MT bundle are still unknown. We can speculate that an
enhanced MT cross-linking activity specifically associated with
the Q-MT bundle may prevent its depolymerization. Upon
quiescence entry, the SPB-associated bundle may recruit pro-
teins that will either modify the bundling activity of known MT
cross-linkers, such as Asel, or load quiescence-specific MT
bundling proteins that remain to be identified.

However, an increased MT bundling activity does not ex-
plain why MTs apparently do not elongate. We cannot rule out
that residual polymerization/depolymerization cycles occur at
the MT plus ends. In this scenario, MT elongation would be
undetectable using classic fluorescence microscopy because the
equilibrium between growth and shrinkage would be displaced
toward depolymerization, for example, through the activation of
a MT depolymerase. An alternative possibility could be that upon
quiescence entry, a MT plus end “capper” would be recruited
specifically onto the SPB-associated Q-MT bundle. Although
no MT-capping activity has been identified to date, we can en-
vision that a MT plus end tracker, such as a TOG domain—con-
taining protein, for example, could lock MT plus ends, thereby
preventing tubulin addition. Finally, the absence of detectable
MT elongation in quiescent cells could result from the lack of
free polymerizable tubulin. However, we have clearly shown
that a free tubulin pool is present in the quiescent cell cytoplasm.
Indeed, upon cell refeeding, the Q-MT bundle elongates, even
if the de novo protein synthesis is inhibited (Fig. 5, A and C).
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This elongation occurs without any detectable Q-MT bundle de-
polymerization (Figs. 5 C and S4, H and I). Could the quiescent
cell-free tubulin pool be unable to polymerize? We have shown
that quiescence entry is associated with a drastic decrease of the
GTP intracellular pool. Yet, an artificial GTP concentration drop
does not influence MT dynamic (Fig. 3, A—C), at least within
early time points. Further, in vitro experiments have demon-
strated that GDP tubulin can polymerize given that few GTP
tubulin dimers are present (Valiron et al., 2010). As GTP seems
not to be involved, we can speculate that in quiescent cells, free
tubulin cannot add on MT ends either because of a posttrans-
lational modification or a tubulin dimer sequestering protein.

Q-MT bundle elongation upon
quiescence exit
Whatever the mechanism responsible for the absence of MT
dynamics in quiescence, Q-MT bundle elongation is rapidly
triggered by glucose upon quiescence exit. This swift event,
which does not depend on de novo protein synthesis, proba-
bly relies on signaling cascades involving nutrient catabolism
(Laporte et al., 2011). Interestingly, we have shown that Q-MT
bundle elongation requires Alp14 (Fig. 7, C and D), a protein
displaying MT polymerase activity (Al-Bassam et al., 2012).
In interphase, Alp14 is not strictly required for MT elongation,
probably because its absence is compensated by a protein with
a similar activity. In quiescence, this compensating activity may
be inhibited or absent. Consequently, Alp14 would be needed
for feeding the elongating Q-MT bundle plus ends upon quies-
cence exit. This is in agreement with the observation that Alp14
stays poised onto the Q-MT bundle plus ends in quiescence and
follows MT elongation upon quiescence exit (Fig. 5 B).
Importantly, we have demonstrated that Q-MT bundle
elongation and the recovery of MT dynamics is necessary for an

G20z Jequiede( z0 uo 3senb Aq 4pd 620205102 Al/zZE065 |L/66/1/012/4pd-8joe/qol/Bi0"sseidnu//:dpy woy papeojumoq



efficient quiescence exit (Figs. 7 and 8 B). Indeed, cells in which
the Q-MT bundle elongation is inhibited either pharmacologi-
cally or by the deletion of Alp14 exhibit profound cell shape
defects. In these cells, polarity markers relocalize to unspecific
cortical regions, leading to a random actin repolarization and
ultimately to a branched or triangular cell shape (Fig. 8 B).
This abnormal cell repolarization upon quiescence exit is a
functional proof of the cell polarity loss in quiescence. Further,
it explains the long standing observation that mutants impaired
for MT dynamic or polarity factors, such as fea/A mutant, ex-
hibit more T-shaped cells after a starvation period than during
proliferation (Browning et al., 2000; Snaith and Sawin, 2003;
Sawin and Snaith, 2004; Fig. 7).

Why would cells need to reorganize

their cytoskeletons upon quiescence
establishment?

We have previously shown that when budding yeast cells enter
quiescence after glucose exhaustion, they assemble a stable MT
bundle emanating from the SPB (Laporte et al., 2013). Yet, in
contrast to the fission yeast cytoplasmic Q-MT bundle, the S.
cerevisiae stable MT array is nuclear and composed of parallel
MTs (Laporte et al., 2013; Laporte and Sagot, 2014). We do not
know what the rationales for these structural differences are,
and a wide range of speculations based on various physiological
differences between these two species can be drawn. It is in-
triguing that in both yeasts SPB-associated MTs are stabilized.
Could the SPB be a platform that integrates nutritional signals
and translates them into MT cytoskeleton reorganizations?

All quiescent cells need to preserve their ability to pro-
liferate and must produce a healthy progeny (Coller, 2011;
O’Farrell, 2011). For microorganisms competing for an envi-
ronmental niche, quiescence exit must be efficient to guarantee
the prevalence of the species. Upon quiescence entry, we have
shown that S. pombe and S. cerevisiae cells reorganize both
their MT and their actin cytoskeletons to form stable structures
(Sagot et al., 2006; Laporte et al., 2013; this study). Whether
these reorganizations are just a passive consequence or actively
participate in the process of quiescence establishment is a crit-
ical question (Daignan-Fornier and Sagot, 2011a,b). Actin and
tubulin are very abundant proteins required for cell growth and
division. The degradation or the damaging of these proteins in
quiescence would require their resynthesis to allow prolifera-
tion resumption. This step would need a large amount of amino
acids and energy and would require some time that may nega-
tively impinge on the swift reentry into the proliferation cycle.
Protein damage might to be a major cause of cell death during
a long-term nonproliferative state. Might actin and tubulin be
better protected from external damages when packed up into
stable polymers rather than as free monomers in the cytoplasm?
To definitively address the requirement for actin bodies and sta-
ble MT-containing bundles for yeast cell survival in quiescence,
conditional mutants or experimental procedures to transiently
disassemble these structures in quiescence need to be found.

Nevertheless, here, we have uncovered a physiological
function for a quiescent cell-specific structure, as we have
shown that fission yeast Q-MT bundle elongation is mandatory
for an efficient quiescence exit. As such, this structure clearly
participates in the fitness of S. pombe, a single-celled eukary-
ote in competition with numerous other species. Moreover, our
study sheds light on the conservation of the reorganization and
stabilization of both the actin and the MT cytoskeletons upon

quiescence establishment in two phylogenetically distant unicel-
lular eukaryote species. One obvious direction for future studies
is to address this conservation in multicellular organisms.

Materials and methods

Strains and growth conditions

Table S1 lists the S. pombe strains used in this study. Strains were pro-
vided by F. Chang (Columbia University College of Physicians and Sur-
geons, New York, NY), J.P. Javerzat (Centre National de la Recherche
Scientifique, Bordeaux, France), P. Nurse (The Francis Crick Institute,
London, UK), A. Paoletti (Institut Curie, Paris, France), P. Perez (Uni-
versidad de Salamanca, Salamanca, Spain), K. Sawin (University of
Edinburgh, Edinburgh, UK), V. Sirotkin (State University of New York
Upstate Medical University, Syracuse, NY), T. Toda (London Research
Institute, London, UK), P. Tran (Institut Curie, Paris, France), and J.Q
Wau (The Ohio State University, Columbus, OH). All tagged genes are
under the control of their endogenous promoters. For all experiments,
yeast cells were grown in liquid YPDA medium at 30°C as described
previously (Laporte et al., 2008) except for Fig. S1 A and Fig. 3 B for
which strains were grown in YE5S+A or in synthetic dextrose medium
(2% [wt/vol] glucose, 0.17% [wt/vol]) nitrogen base, and 0.5% [wt/vol]
ammonium sulfate] with 0.2% (wt/vol) casamino acids (Difco Labora-
tories) supplemented with tryptophan and uracil (SD casa WU), respec-
tively. For nitrogen starvation (Fig. S2 C), proliferating cells in EMM?2
were washed five times with water, and then transferred in EMM2-N
medium at the same cell concentration. For cold treatment, cells were
shifted at 4°C for the indicated time, and then shifted back to 30°C
and imaged. For drug treatments, cells were incubated with 0.5 mg/ml
MBC (Sigma-Aldrich), 0.2 mg/ml benomyl (Sigma-Aldrich), 1 mg/ml
TBZ (Sigma-Aldrich), or 180 uM CHX (Sigma-Aldrich) for the indi-
cated time. These concentrations are 10 times higher than the one com-
monly used with proliferating cells. For quiescence exit in the presence
of drugs, cells were preincubated 1 h in the presence of the drug before
quiescence exit. For quiescence exit in the sole presence of glucose,
cells were washed twice with water, inoculated at ODg,, = 2 in a solu-
tion containing 2% glucose, and incubated at 30°C. Cell viability was
addressed after cell incubation for 5 min in a solution containing 0.2%
of methylene blue (Sigma-Aldrich) and 2% sodium citrate (Sigma-Al-
drich), pH 7. In this study, all experiments were at least duplicated and
for each time point, unless specified, >200 cells were scored.

Metabolomics

High pressure ionic chromatography experiments were done as de-
scribed previously (Hiirlimann et al., 2011). In brief, cellular extracts
were prepared by an ethanol extraction. Cells were harvested by rapid
filtration, immediately dropped into 5 ml ethanol/10 mM Hepes, pH
7.2 (4/1 vol/vol), and incubated at 80°C for 3 min. Samples were
evaporated using a rotavapor apparatus. Residues were resuspended
in water and insoluble particles were eliminated by centrifugation.
Separation of metabolites was performed on a CarboPac PA1 column,
linked to a chromatography workstation (ICS3000; Dionex), using a
sodium hydroxide/sodium acetate (50-800 mM) gradient. Nucleotide
derivatives were detected with a UV diode array detector (Ultimate
3000RS; Dionex). MPA (Sigma-Aldrich) was used at the final concen-
tration of 100 ug/ml. Guanine was used at the final concentration of 0.3
mM in 0.1 M sodium hydroxide.

Cell staining
For immunofluorescence experiments, cells were harvested by rapid
filtration and fixed by washing the filter with methanol at —20°C. Cells
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were further processed for immunofluorescence as described previ-
ously (Mata and Nurse, 1997). Anti-tubulin staining used the TAT1
monoclonal tissue culture supernatant (gift of K. Gull, Sir William
Dunn School of Pathology, Oxford, UK; Woods et al., 1989) at 1:15
followed by Alexa Fluor 488—goat anti-mouse secondary antibody
(Molecular Probes) at 1:500.

For actin phalloidin staining, cells were fixed 1 h with freshly
made paraformaldehyde (3.8% final [Sigma-Aldrich] in PEM [0.1 M
Pipes, | mM EGTA, and 1 mM MgSO,, pH 6.9, with 5 N sodium hy-
droxide]), vortexed every 10 min for 1 h at 70°C, and then centrifuged
5 min at 3,000 rpm. Cells were then washed twice with PEM and resus-
pended in 1.5 ml PEM + 1% Triton X-100. Proliferating and quiescent
cells were incubated for 30 s and 3 min, respectively. Samples were
then washed twice in 1.5 ml PEM and resuspended for 24 h at 4°C in
PEM containing 1/10 V of Alexa Fluor Phalloidin (Invitrogen). Finally,
cells were washed twice, resuspended in a mounting solution contain-
ing 70% glycerol and 5 mg/l paraphenylenediamine, and imaged at
room temperature as described previously (Sagot et al., 2006).

For MT behavior after cold experiment (Fig. S2 A), samples were
fixed 1 min with formaldehyde (3.8% final; Sigma-Aldrich), washed,
resuspended in a mounting solution as above, and imaged.

Fluorescence microscopy

Cells were observed in a fully automated inverted microscope (Ax-
iovert 200M; Carl Zeiss) equipped with a stage (MS-2000; Applied
Scientific Instrumentation), a 300-W xenon light source (Lambda LS;
Sutter Instrument), a 100x 1.4 NA Plan-Apochromat objective, and
a five-position filter turret. For GFP imaging, we used a FITC filter
(excitation, HQ487/25; emission, HQ535/40; beam splitter, Q5051p).
For RFP imaging, we used a Cy3 filter (excitation, HQ535/50; emis-
sion, HQ610/75; beam splitter, Q565lp). For CFP imaging, we used
a CFP filter (excitation, HQ436/20; emission, HQ480/40; beam split-
ter, 455dclp). For YFP imaging, we used a YFP filter (excitation,
HQ500/20; emission, HQ535/30; beam splitter, Q5151p). All the filters
were purchased from Chroma Technology Corp. Images were acquired
using a CoolSnap HQ camera (Roper Scientific). The microscope,
camera, and shutters (Uniblitz) were controlled by SlideBook software
5.0 (Intelligent Imaging Innovations). Images are, unless specified, 2D
maximal projection of Z-stacks performed using a 0.3-um step. For live
cell imaging, 2 ul of the cell culture were spotted onto a glass slide and
immediately imaged at room temperature.

For fluorescence intensity measurement (Figs. 1 B, 4 F, S1 F, and
S4 1), aline scan (il) of n pixel width (three to eight, depending on the
binning acquisitions parameters) containing both GFP signal and back-
ground was drawn along MTs using ImageJ software. A line of 2n pixel
width at the same location was drawn to calculate the intensity of the
surrounding background (i2). The real intensity (ir) was calculated as
follow: ib = (i2 X Area i2) — (il x Areail) and ir =il — [ib/(Area i2 —
Area 1)]. To calculate the number of MTs per structure, individual MT
fluorescence was determined by three methods: the fluorescence inten-
sity was measured in proliferation cell on either one MT growing or on
the nonoverlapping or overlapping region of the spindle, described to
contain 11 MTs (Ding et al., 1993). According to these measurements
for a single MT, fluorescence intensity measured upon quiescence entry
was converted in MT numbers.

To measure MT length (Figs. 4 E and S1 E), positions of the
MT-containing structure extremities were followed over time and com-
pared with a fixed point in the cell using MTrack] plugin (ImageJ). Eu-
clidian distances (D) between two positions over time were calculated
asD = \/[(x2 —x1)* + (y2 — y1)*]. In time-lapse series (Fig. 2 A), the
first measured length was set to zero. The same protocol was applied
to measure MT dynamics (Fig. 3 C) and SPB movement in quiescence
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and upon exit (Fig. S4 E). To measure MT dynamics, four z-frames
were acquired every 4 s on proliferating cells treated or not with MPA
(2 h). After using a rolling average filter (i.e, the MT extremity fix-
point length [w] is the mean of w — 1, w, and w + 1 values), the length
was plotted over time and growth/shrinkage speed was calculated over
a 300-s observation period.

FRAP experiment (Fig. 3 C) was done as previously described
(Laporte et al., 2013). Experiments were done on an inverted micro-
scope (DMI 6000; Leica) equipped with a spinning disk confocal
head (CSU-X1; Yokogawa Electric Corporation), a QuantEM camera
(Photometrics), and a scanner FRAP system (Roper Scientific). The
diode lasers used were at 408 and 491 nm. The objective used was
an HCX PL APO CS 100x oil with 1.4 NA. The Z-stacks were done
with an objective scanner (Piezo P721.LLQ; Physik Instrumente).
This system was controlled by MetaMorph software (Molecular De-
vices). Recovery from photobleaching was monitored in time-lapse
mode. Fluorescence recovery was corrected for background noise
and continuous photobleaching using the Image] software. Fluores-
cence was then normalized using a rolling average filter (i.e, the flu-
orescence intensity y is the mean intensity of y — 1, y, and y + 1).
The fluorescence was then normalized to the one measured before
bleach (Vavylonis et al., 2008).

For line scan analysis (Fig. 4, B and C; and Fig. S3 A), the real
measured intensities (ir) were set to percent, with 100% being the max-
imum calculated along the line. Slopes were manually aligned to zero,
with zero being when ir > 0. The same protocol was applied to compare
the different slopes after line scan analysis (Fig. S1, B and C).

Mander’s colocalization coefficients (Fig. 4 A) were calculated
using ImageJ software as described in Jimenez et al. (2014). In brief,
Z-stacks were first maximum projected and cells were individually se-
lected in both GFP and RFP channels. The same threshold was applied
for each channel and signals were binarized (i.e., pixel < threshold = 0
and pixel > threshold = 255). The percentages of GFP pixel (Mto2-GFP
signal) that colocalize with RFP pixel (RFP-Atb2 signal) were deter-
mined using the JACoP plugin (Bolte and Cordelicres, 2006).

For Q-MT bundle fluorescence measurements upon quiescence
exit (Fig. S4 H), a line scan of 8-pixel width was drawn along Q-MT
bundle using ImagelJ software. The fluorescence intensities were mea-
sured in function of time and were corrected for photobleaching. Pho-
tobleaching was measured on Q-MT bundles in quiescence images
with the same acquisitions conditions.

To calculate the theoretical stabilization of MT upon quiescence
entry, we started with the mean number (N) of MT bundles observed
for cells before treatment (i.e., for 6 h after carbon exhaustion [Fig. 3 E]
the mean number of MT bundle per cell N was 2.7 and for 42 h [Fig. S2
D] N was 3.3). We noted nj_gng, the initial percentage of cells with only
a single MT bundle. We noted 0,y pefore AN Niyypii-afier, the percentage of
cells with more than one MT bundle observed before and after benomyl
treatment, respectively. For each time point, A, i 1S equal to Nyu-vefore
— Npuii-afier- FOT the random stabilization model, we considered that 1/N
of the MT bundle is stabilized, regardless of the association with the
SPB. Thus, for each time point, the prediction of the percentage of cells
that should display a single MT bundle associated for the SPB is (1/N
X A muiti) + Digingle- FOr the nonrandom stabilization, we considered that
only the MT bundle associated with the SPB is stabilized. Thus, for
each time point, the prediction of the percentage of cells that should
display a single MT bundle associated for the SPB is (A .mu) + Nicsingle-

EM

Freezing, freeze substitution (Fig. 1, D and E), and immunostaining
(Fig. S1 G) were performed as described previously (Laporte et al.,
2013). In brief, cells were washed with glycine, and then with fetal
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calf serum, and incubated with polyclonal rabbit anti-Tatl (the Try-
panosoma brucei a-tubulin) antibodies diluted 1:250 (a gift of K. Gull;
Woods et al., 1989). After a wash with Tris-buffered saline containing
0.1% bovine serum albumin, cells were incubated for 45 min at room
temperature with anti-mouse IgG conjugated to 10-nm gold particles
(BioCell Laboratories, Inc.). For freeze substitution, yeast were depos-
ited on a copper grid (400 mesh) coated with Formvar. Grids were im-
mersed in liquid propane held at —180°C by liquid nitrogen and then
transferred in a 4% osmium tetroxide solution in dry acetone at —82°C
for 72 h. Grids were then shifted to room temperature and washed three
times with dry acetone. Cell were stained with 1% uranyl acetate and
then washed once with dry acetone. Samples were gradually unfiltered
with araldite (Fluka). Ultra-thin sections were contrasted with lead ci-
trate and observed in an electron microscope (80 kV; 7650; Hitachi) at
the EM facility of the Bordeaux Imaging Center.

For tomography analysis (Fig. 1 G), 150-nm-thick sections were
placed on formvar-coated 150-mesh copper grids and poststained 1 min
with lead citrate 2% in water. Images were acquired using a Spirit Twin
(FEI Tecnai) operated at 120 kV. Images were recorded with a 4k Eagle
charge coupled device camera system (FEI Tecnai) at a nominal mag-
nification of 30,000 (sample D7) or 26,000 (sample C10) using a —65 to
65 tilt for Cell 1 or a —65 to 39 for Cell 2 with 2° increments. Tomog-
raphy tilt series were taken using the batch tomography software (FEI
Tecnai). They were then aligned, cropped, and binned using the ETomo
program from the IMOD suite. The 3D tomography reconstructed vi-
sualization was done using Amira Resolve RT 5.2.0.

For MT distance measurements between two MTs (Fig. 1 F), the
centroid of each MT was determined and the Euclidian distance was
determined as D = {y/[(x2 — x1)? + (y2 — y1)*]}. This distance was then
subtracted for the two MTs’ radiuses (~22 nm). Gaussian fit on these val-
ues was then determined using GraphPad Prism (GraphPad Software).

Miscellaneous

Glucose concentration was measured using the b-Glucose/D-Fructose
UV test kit (Roche). Adel3 polyclonal antibodies were raised in rabbit
using the purified full-length S. cerevisiae protein (Takara Bio Inc.).

Online supplemental material

Fig. S1 describes the shape of the Q-MT bundle and its detection by
EM using immunogold labeling with anti-tubulin antibodies. Fig. S2
analyzes the Q-MT bundle resistance to a cold treatment and its sta-
bilization with time in quiescence after carbon or nitrogen exhaustion.
Fig. S3 provides the localization of Mto1-GFP onto the Q-MT bundle.
It shows Western blot quantifying the tubulin steady-state amounts, the
Q-MT bundle resistance to benomyl, and the viability of MAP mutants
in quiescence. Fig. S4 shows MT elongation at Q-MT bundle extrem-
ities and Q-MT bundle stability upon quiescence exit. It also shows
Q-MT bundle anchoring at the SPB and Alp14-GFP localization during
the quiescence exit process. Fig. S5 displays polarity marker localiza-
tion upon quiescence entry and exit in WT and mutant backgrounds or
in the presence of drugs. Table S1 lists the S. pombe strains used in this
study. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.201502025/DC1.
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