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Kinetochore-localized BUB-1/BUB-3 complex

promotes anaphase onset in C. elegans
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and Arshad Desai'2
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he conserved Bub1/Bub3 complex is recruited to the

kinetochore region of mitotic chromosomes, where it

initiates spindle checkpoint signaling and promotes
chromosome alignment. Here we show that, in contrast to
the expectation for a checkpoint pathway component, the
BUB-1/BUB-3 complex promotes timely anaphase onset in
Caenorhabditis elegans embryos. This activity of BUB-1/
BUB-3 was independent of spindle checkpoint signal-
ing but required kinetochore localization. BUB-1/BUB-3
inhibition equivalently delayed separase activation and

Introduction

Kinetochores are multiprotein structures assembled on centro-
meres during mitosis to segregate chromosomes (Cheeseman
and Desai, 2008; Santaguida and Musacchio, 2009). Microtubule-
generated forces on kinetochores are counteracted by cohes-
ins, which hold sister chromatids together (Onn et al., 2008;
Nasmyth and Haering, 2009). Once all sister kinetochores
are bioriented, cohesin is proteolytically cleaved by separase
to separate sister chromatids. This transition from metaphase
to anaphase is controlled by the anaphase-promoting complex/
cyclosome (APC/C), a multisubunit E3 ubiquitin ligase (Pines,
2011; Primorac and Musacchio, 2013), and by phosphatases
that reverse mitotic phosphorylation events (Sullivan and Morgan,
2007). Significant progress is being made in understanding
APC/C mechanism and regulation (Primorac and Musacchio,
2013; Chang and Barford, 2014) and the contributions of phos-
phatases during mitotic exit (Sullivan and Morgan, 2007; Bollen
et al., 2009; Hunt, 2013; Wieser and Pines, 2015), but how ana-
phase onset is precisely coordinated with chromosome alignment
remains an important question.

Multiple mechanisms control APC/C activity. Increasing
Cdk1 activity is proposed to trigger cyclin degradation (Murray
and Kirschner, 1989; Félix et al., 1990). Consistent with this,
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other events occurring during mitotic exit. The anaphase
promotion function required BUB-1’s kinase domain, but
not its kinase activity, and this function was independent
of the role of BUB-1/BUB-3 in chromosome alignment.
These results reveal an unexpected role for the BUB-1/
BUB-3 complex in promoting anaphase onset that is dis-
tinct from its well-studied functions in checkpoint signaling
and chromosome alignment, and suggest a new mecha-
nism contributing to the coordination of the metaphase-to-
anaphase transition.

Cdk1 phosphorylation of APC/C subunits promotes interaction
with its coactivator Cdc20 (Peters et al., 1996; Kramer et al.,
2000; Kraft et al., 2003). APC/C activation is opposed by the
spindle assembly checkpoint, which inhibits the ability of Cdc20
to fully activate APC/C when unattached kinetochores are pres-
ent (Musacchio and Salmon, 2007; Lara-Gonzalez et al.,
2012). After attachment, checkpoint silencing enables progres-
sion into anaphase (Sacristan and Kops, 2014). Phosphorylation
of Cdc20 by Cdkl inhibits its ability to bind and activate
APC/C, which suggests that reversal of these phosphorylation
events is important for anaphase onset (Kramer et al., 2000;
Yudkovsky et al., 2000; Labit et al., 2012). Phosphatase activi-
ties are also important for reversing Cdk1 phosphorylation but
their control is less well understood. A PP2A regulatory path-
way involving Greatwall kinase and its substrates endosulphine
A and Arppl19, both PP2A inhibitors, has been implicated in
both entry and exit from mitosis (Gharbi-Ayachi et al., 2010;
Mochida et al., 2010). A phosphatase relay mechanism involv-
ing PP1 and PP2a that is important for mitotic progression has
also been recently described (Grallert et al., 2015).
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Here, we uncover a new role for two conserved checkpoint
components, Bubl kinase and its binding partner the WD40-
fold protein Bub3 (Hoyt et al., 1991; Roberts et al., 1994; Taylor
et al., 1998), in promoting anaphase onset. The Bub1/Bub3 com-
plex is recruited to kinetochores by binding to phosphorylated
repetitive motifs in the N terminus of Knll, a scaffold compo-
nent of the Knl1/Mis12 complex/Ndc80 complex (KMN) net-
work (London et al., 2012; Yamagishi et al., 2012; Shepperd
et al., 2012; Primorac et al., 2013). Kinetochore-localized
Bub1/Bub3 recruits other spindle checkpoint components in-
cluding Mad1/Mad2 and BubR1 (Sharp-Baker and Chen, 2001;
Gillett et al., 2004; Johnson et al., 2004; Vanoosthuyse et al.,
2004; London and Biggins, 2014; Moyle et al., 2014). Bub1 has
also been proposed to inhibit the APC/C by phosphorylation of
its activator Cdc20 (Tang et al., 2004).

In addition to its role in the checkpoint, the Bub1/Bub3
complex contributes to chromosome alignment and segregation
(Warren et al., 2002; Vanoosthuyse et al., 2004; Meraldi and
Sorger, 2005; Fernius and Hardwick, 2007; Klebig et al., 2009).
Bubl phosphorylates histone H2A to create a binding site for
Shugoshin, which recruits protein phosphatase 2A (PP2A) and
Aurora B kinase to the inner centromere (Kawashima et al.,
2010; Yamagishi et al., 2010). In vertebrates, Bub1 also recruits
BubR1, CENP-E, CENP-F, and dynein, which contribute to proper
chromosome alignment (Sharp-Baker and Chen, 2001; Johnson
et al., 2004; Klebig et al., 2009).

Here we show that, in the early Caenorhabditis elegans
embryo, kinetochore-localized BUB-1/BUB-3 promotes ana-
phase onset, and that this function is independent of its roles
in spindle checkpoint signaling and chromosome alignment.
These results identify a new function embedded in the Bub1/
Bub3 complex and suggest a potential mechanism contribut-
ing to the coordination of chromosome alignment and ana-
phase onset.

Results and discussion

BUB-1/BUB-3 removal delays anaphase

onset independently of checkpoint signaling
Analysis of one-cell C. elegans embryos expressing GFP fu-
sions to label chromosomes and spindle poles revealed that
depletion of BUB-1 increased the time from nuclear enve-
lope breakdown (NEBD) to anaphase onset by ~50% (Fig. 1,
A and C). This was surprising because BUB-1 is required for
the spindle checkpoint, which restrains anaphase onset; thus, one
would not expect removal of BUB-1 to delay anaphase onset.
As BUB-1 also functions in chromosome alignment (Fig. S1 A),
one possible explanation is that partial penetrance of the
BUB-1 depletion resulted in improperly attached chromosomes
with sufficient residual BUB-1 to generate a spindle checkpoint
signal and delay anaphase onset, a scenario reported in multiple
mammalian Bubl RNAi experiments (Johnson et al., 2004;
Meraldi and Sorger, 2005; Klebig et al., 2009). As BUB-1 was
>94% depleted (Fig. 1 B), this seemed unlikely. However, to test
this further, we co-depleted BUB-1 and MAD-2 (also known
as MDF-2). MAD-2 depletion abrogates checkpoint signaling
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in C. elegans embryos (Essex et al., 2009; Espeut et al., 2012)
but did not suppress the anaphase onset delay resulting from
BUB-1 depletion (Fig. 1, A and C). Thus, the observed delay
in anaphase onset is not due to residual BUB-1 generating a
checkpoint signal.

BUB-1 associates with BUB-3 via a conserved binding
motif that follows its N-terminal TPR domain (Taylor et al.,
1998; Wang et al., 2001; Larsen et al., 2007). The BUB-1/BUB-3
complex docks onto phosphorylated motifs in the KNL-1 N
terminus (Primorac et al., 2013). A BUB-3 deletion mutant
(bub-3(0k3437), referred to as bub-3A; Fig. S1 B), exhibited a
comparable NEBD—-anaphase onset delay to that resulting from
BUB-1 depletion (Fig. 1 C and Fig. S1 C). BUB-1 kinetochore
localization (Fig. 1 D), as well as its overall protein levels
(Fig. S1 D), was significantly reduced in bub-3A. Conversely,
BUB-3 kinetochore localization was significantly disrupted
by BUB-1 depletion (Fig. 1 D), albeit without a reduction in
BUB-3 protein levels (Fig. S1 E). Thus, depletion of BUB-1
should be considered as perturbing the BUB-1/BUB-3 complex.

BUB-1 depletion had no effect on interphase duration,
measured as the interval between anaphase onset in the one-
cell embryo and NEBD of the AB cell in the two-cell embryo
(Fig. 1 E); in contrast, the NEBD—anaphase onset interval was
delayed in the AB cell (Fig. 1 E), indicating that promotion of
timely anaphase onset by the BUB-1/BUB-3 complex is not
restricted to the first embryonic division. Thus, inhibition of the
BUB-1/BUB-3 complex delays anaphase onset, and this delay
is independent of spindle checkpoint signaling.

BUB-1/BUB-3 complex localization

to kinetochores is required for promotion

of anaphase onset

A significant pool of BUB-1/BUB-3 is retained on kinetochores
after bipolar attachment of chromosomes (Fig. 2 A; Jablonski
et al., 1998; Taylor et al., 2001; Gillett et al., 2004). To test
if the ability of BUB-1/BUB-3 to promote anaphase required
localization to kinetochores, we analyzed deletion mutants in
the phosphorylation-dependent BUB-1/BUB-3 docking motifs
in the KNL-1 N terminus (Fig. 2 B). The largest KNL-1 deletion
tested (A85-505) is expressed, localizes to kinetochores but
prevents BUB-1 kinetochore localization without affecting
BUB-1 protein levels (Fig. 2, C and D; Moyle et al., 2014), and
is checkpoint signaling—defective (Fig. S2 A). KNL-1(A85-505)
delayed anaphase onset to a similar extent as BUB-1 depletion
(Fig. 2, E and F). Two smaller nonoverlapping deletions within this
region (A85-290 and A291-505) both localized to kinetochores
but reduced BUB-1 kinetochore localization by approximately half
(Fig. 2 C; metaphase kinetochore BUB-1::GFP fluorescence inten-
sity of 56 = 17%; n = 11 for A85-290 and 40 + 16%; n = 16 for
A291-505, relative to wild-type [WT] KNL-1; data from Moyle
et al., 2014) and caused an intermediate delay in anaphase onset
(Fig. 2, E and F). Thus, kinetochore localization is required for
the BUB-1/BUB-3 complex to promote anaphase onset, and the
amount of kinetochore-localized BUB-1 influences the magnitude
of the NEBD-anaphase onset interval.

620z JequiedeQ z0 uo 3senb Aq 4pd-Ge0z1 102 a0l/096.8S L/L0S/¥/60z/4Pd-8lone/qol/Bio sseidny/:dpy woly pepeojumoq


http://www.jcb.org/cgi/content/full/jcb.201412035/DC1
http://www.jcb.org/cgi/content/full/jcb.201412035/DC1

A GFP::H2b; C

J-tubulin:GFP 1-Cell Embryo NEBD-Anaphase Onset Interval

e p<0.0001 p<0.0001
MR e
HA H 300- L 1
7:" 2001 .. 1 o o) I 0 R e o B
bub-1 bub-1 & mad-2 E
Control (RNAI) (RNAI) =
100
- _ Control mad-2 bub-1 bub-  Control bub-3
mad-2
B D BUB-1::GFP Kinetochore GFP::BUB-3 Kinetochore
Localization Localization
_-o:‘ 1 5 _I 1 I bub'1 1
o S
S =4
=
— - g .&,
2 ®
g 059 p<0.0001 p<0.0001
T = ) ™
g ] 1 M
(RNAi)
Po AB P, AB P,
W ) —( @ | @) = |
3105 _ _ " ~" “ .
Anaphase Onset NEBD Anaphase Onset
3208 _ ”’ “
1000 _ns. 300 p<0.0001
800 B B 250 h
B N2 bub-1 200
(RNA)) @ 600 )
IB:  ,p 625125 25 50 100 100 2 0 g™
14 = =100
10 LB |z L E R
Control bub-1 Control bub-1
1-Cell Embryo Anaphase AB Cell NEBD-Anaphase
Onset - AB Cell NEBD Onset Interval

Figure 1. BUB-1 depletion delays anaphase onset independently of checkpoint signaling. (A) Images from time-lapse movies of one-cell C. elegans em-
bryos expressing GFP::H2b (arrow) and y-tubulin::GFP (arrowheads) for the indicated conditions. Time is given in seconds after NEBD. The asterisks mark
extra chromatin present due fo defective meiotic segregation. Bar, 5 pm. (B) Immunoblot of bub-1(RNAi) worms next to a dilution of control N2 worms.
Numbers indicate the amount loaded relative to the 100% lanes. a-Tubulin is a loading control. (C) Plot of mean NEBD-anaphase onset intervals for the
indicated conditions in one-cell embryos. Error bars indicate SD; red broken lines are control values; n is the number of embryos. (D) BUB-1 and BUB-3
kinetochore localization in bub-3A (leff) and bub-1(RNAI] (right), respectively; n is the number of embryos. The mean integrated fluorescence intensity at
kinetochores is plotted; error bars indicate the 95% confidence interval (Cl). Bars, 2 pm. (E) Schematic indicates the time infervals measured and plotted
below. Error bars indicate SD; red broken lines are control values; n is the number of embryos.
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Figure 2. Kinetochore Localization of BUB-1 is required to promote anaphase onset. (A) Images from a time-lapse sequence of a one-cell embryo express-
ing mCh::H2b and GFP::BUB-1. Time is given in seconds after NEBD. Bar, 5 pm. (B) Schematic of features of the KNL-1 N terminus. The deletions analyzed
are depicted below. (C) Representative images of BUB-1::GFP localization in the presence of indicated knl-1 transgenes, after depletion of endogenous
KNL-1. Bars, 2 pm. (D) Immunoblots of BUB-1, KNL-1, and a-tubulin, which serves as a loading control, for the indicated conditions. As part of the antigen
used to generate the KNL-1 antibody (aa 8-256; Desai et al., 2003) is deleted in the A85-505 mutant, the band intensities of WT and A85-505 KNL-1
cannot be compared. (E) Plot of mean NEBD-anaphase onset intervals for the indicated conditions in one-cell embryos. Error bars indicate SD; red broken
line is the control value; n is the number of embryos. (F) Plot of the mean delay in anaphase onset for the indicated conditions, generated by subtracting
matched mean control values and propagating errors. Error bars indicate the 95% CI. KNL-1 mutants and their matched control (WT) values are from D;
bub-1(RNAI), bub-3A and their matched control values are from Fig. 1 C.

BUB-1 depletion delays separase activation signal for these fusions is not detected in early embryos (Liu et al.,

and other mitotic exit events

BUB-1/BUB-3 may promote anaphase onset by promoting
APC/C activation or contributing to a pathway (e.g., activation
of Cdkl-countering phosphatases) that functions in parallel to
APC/C. While GFP fusions with Cyclin B (CYB-1; Liu et al.,
2004) and Securin (IFY-1; Wang et al., 2013) enable monitoring
of APC/C activation at meiosis I anaphase in C. elegans, GFP

JCB « VOLUME 209 « NUMBER 4 « 2015

2004; Wang et al., 2013; unpublished data), likely because the
~20-min interval between meiosis II anaphase and NEBD of the
first embryonic mitosis (Portier et al., 2007) is too short for GFP
maturation at 20°C. This technical issue prevented us from di-
rectly monitoring APC/C activity to test if kinetochore-localized
BUB-1/BUB-3 controls the timing of its activation. However,
we engineered a sensor for activation of separase, the protease
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Figure 3. BUB-1 depletion delays separase activation and other mitotic exit events. (A) Schematic of sensor used to monitor separase activation in one-ell

embryos. (B) Images from time-lapse sequences of strains coexpressing mCh:

:H2b and either the separase sensor or an uncleavable mutant. GFP imaging

at 5-s infervals was initiated ~50-80 s before anaphase onset; mCherry imaging was initiated earlier to score NEBD. Bar, 2 pm. (C) Plot of mean chro-
mosomal GFP fluorescence for the separase sensor and the uncleavable mutant, relative to sister separation onset. n is the number of embryos. Error bars
indicate the 95% Cl. (D) Plot of mean chromosomal GFP fluorescence of the separase sensor over time, for the indicated conditions. Error bars indicate the

95% Cl. (E) Schematic (top) and mean intervals from NEBD (bottom) of other
analyzed. Error bars indicate SD; red broken lines are control values.

that acts downstream of APC/C activation to cleave cohesin
and separate sister chromatids (Uhlmann et al., 2000), based on
our identification of a separase cleavage site in the N-tail of the
CENP-A-related protein CPAR-1 (Monen et al., 2015). To cre-
ate a mitotic separase sensor, we fused GFP to the N terminus
of a chimeric protein in which the CPAR-1 N-tail was placed in
front of the histone fold domain of the major C. elegans CENP-A—
related protein HCP-3 (HCP-3 HFD; Fig. 3 A). GFP signal of

mitotic exit events scored in time-lapse sequences. n is the number of embryos

this sensor was observed on metaphase chromosomes but was
progressively lost starting 15 s before visible chromatid separa-
tion (Fig. 3, A-C). Mutation of two key residues in the predicted
cleavage motif (Sullivan et al., 2004) abrogated the signal loss
of the sensor (Fig. 3, B and C), confirming that separase cleav-
age liberated GFP from chromatin. Expression of the sensor did
not affect NEBD—-anaphase onset interval or embryo production/
viability (Fig. S2, B and C).

Promotion of anaphase onset by BUB-1/BUB-3 ¢ Kim et al.
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Analysis of sensor-expressing embryos revealed that sep-
arase activation was delayed by BUB-1 depletion to the same
extent as anaphase onset (Fig. 3 D). Once initiated, the kinetics
of sensor chromosomal signal loss was not significantly differ-
ent between the control and the BUB-1 depletion (Fig. 3 D).
Thus, kinetochore-localized BUB-1/BUB-3 controls the timing
of separase activation relative to NEBD. To determine if the
delay induced by BUB-1 depletion was limited to control of sep-
arase or represented a general delay in mitotic exit, we exam-
ined the timing of two other events that follow sister chromatid
separation: cytokinesis onset and chromosome decondensation
(Fig. 3 E). Both were delayed in the BUB-1 depletion relative to

JCB « VOLUME 209 « NUMBER 4 « 2015

NEBD (Fig. 3 E), indicating that kinetochore-localized BUB-1/
BUB-3 does not act solely to control separase activation but in-
stead functions in a pathway that is broadly relevant for trigger-
ing mitotic exit.

Anaphase onset promotion requires the
BUB-1 kinase domain but is independent

of its kinase activity

To identify features of BUB-1/BUB-3 required to promote ana-
phase onset, we focused on BUB-1, using single-copy RNAi-
resistant transgenes (Fig. 4 A; Moyle et al., 2014). Both untagged
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(Fig. 4 C) and mCherry-tagged (not depicted) bub-1 transgenes
fully rescued the 100% penetrant lethality of the bub-1(0k3383)
mutant (Fig. S3 A; referred to as bub-1A). However, the
C-terminal mCherry-tagged BUB-1 led to a modest increase in
the NEBD-anaphase onset interval (Fig. S3 B), which suggests
that the C-terminal part of BUB-1, which harbors its kinase do-
main, may be important for anaphase promotion. Deletion of
the kinase domain led to a delay equivalent to that observed for
BUB-1 depletion (Fig. S3 B), leading us to characterize muta-
tions in the kinase domain (Fig. 4 A; Moyle et al., 2014). The
K718R;D847N mutant, which abrogates kinase activity by al-
tering residues involved in ATP and magnesium binding, fails
to localize MAD-1 to kinetochores and is checkpoint-defective;
in contrast, the D814N mutant, which abrogates kinase activity
by mutating the catalytic aspartate of the “HxD” motif, recruits
MAD-1 and supports checkpoint signaling (Moyle et al., 2014).
Both mutants were expressed equivalently to WT BUB-1 in a
bub- 1A background (Fig. 4 B) and rescued the lethality of bub-1A
(Fig. 4 C; Moyle et al., 2014); mCherry-tagged versions lo-
calized normally to kinetochores (Fig. S3 C). Whereas the WT
bub-1 transgene restored the NEBD-anaphase onset interval to
that in controls (Fig. 4, D and E; compare to Fig. 1, A and C), the
D814N mutant led to a mild extension of the NEBD—anaphase
onset interval (Fig. 4, D-F), and the K718R;D847N mutant ex-
hibited delays in anaphase onset, separase activation, cytokine-
sis onset, and chromosome decondensation comparable to those
resulting from BUB-1 depletion (Fig. 4, D-G; and Fig. S3 D).
We conclude that the anaphase promotion function of BUB-1/
BUB-3, while largely independent of BUB-1 kinase activity, is
dependent on a properly structured BUB-1 kinase domain.

The anaphase onset promotion function of
the BUB-1/BUB-3 complex is independent
of its role in chromosome alignment

Bubl kinase activity is important for the recruitment of Shugoshin
family proteins via histone H2a phosphorylation (Kawashima
et al., 2010; Ricke et al., 2012). However, neither depletion nor
mutation of SGO-1, the only C. elegans member of the Shugoshin
protein family, resulted in a NEBD-anaphase onset delay (Figs. 5 A
and S3, E-G). Together with the mild effect of the D814N mutant
(Fig. 4, D-F), this result suggests that the promotion of anaphase
onset by the BUB-1/BUB-3 complex is independent of the BUB-1-
phosphoH2a—Shugoshin pathway.

BUB-1 depletion or blocking BUB-1/BUB-3 kinetochore
targeting using A85-505 KNL-1 led to significant chromosome
segregation errors and 100% embryonic lethality; in contrast, no
segregation errors were observed in the K718R;D847N mutant,
which exhibited normal embryonic viability in the bub-1A back-
ground (Figs. 4 C and 5 B). This conclusion was further sup-
ported by localization analysis of HCP-1—one of two functionally
redundant C. elegans proteins with weak similarity to CENP-F
(Moore et al., 1999; Cheeseman et al., 2005). Consistent with
prior work (Encalada et al., 2005), HCP-1 was largely delocalized
from kinetochores after BUB-1 depletion; in contrast, HCP-1
was normally localized in the K718R;D847N mutant (Figs. 5 C
and S3 H). Load-bearing kinetochore-microtubule attachments were
also normal in the K718R;D847N mutant. In the one-cell embryo,

quantitative analysis of spindle elongation functions as a mea-
sure for the formation of load-bearing kinetochore—microtubule
attachments, as the cortex generates pulling forces on astral
microtubules that are resisted by kinetochore—microtubule attach-
ments in the spindle (Oegema et al., 2001). Tracking spindle pole
separation after NEBD revealed delayed load-bearing attachment
formation after BUB-1 depletion (Fig. 5 D, left; the delay is evi-
dent in the “bump,” which indicates premature separation of the
spindle poles followed by recovery to control metaphase spindle
length), a nearly identical profile was observed in the A85-505
KNL-1 mutant that prevents BUB-1/BUB-3 kinetochore recruit-
ment (Fig. 5 D, left). In contrast, the K718R;D847N mutant did
not delay attachment formation; instead, there was an extended
plateau at metaphase spindle length (Fig. 5 D, right). Thus,
K718R;D847N BUB-1, while delaying anaphase onset to nearly
the same extent as BUB-1 depletion, does not exhibit the chro-
mosome segregation defects observed after BUB-1 depletion.

Conclusion

Here we describe a new function for kinetochore-localized BUB-1/
BUB-3 complex in promoting anaphase onset, which adds to its
known roles in checkpoint signaling and chromosome alignment.
The conclusion that this new function is independent of check-
point signaling was supported by four perturbations that inhibit
checkpoint signaling: co-depletion of MAD-2, deletion of bub-3,
removal of the docking site on kinetochores for BUB-1/BUB-3,
and the K718R;D847N mutant in the BUB-1 kinase domain.
Comparison of BUB-1 kinase active site mutants revealed that
the anaphase promotion function resides in the kinase domain but
is largely independent of kinase activity. Perturbation of BUB-1/
BUB-3 delays but does not block anaphase onset, indicating that
BUB-1/BUB-3’s anaphase promotion activity functions in paral-
lel to other mechanisms triggering anaphase onset. These paral-
lel mechanisms likely involve many complex phosphorylation
events on APC/C, primarily dependent on Cdk1 (Fig. 5 E; Kraft
et al., 2003; Labit et al., 2012).

A role for BUB-1/BUB-3 in promoting anaphase appears
counterintuitive, given the long-standing focus on BUB-1/BUB-3
as the kinetochore scaffold for the checkpoint signal that in-
hibits anaphase onset. We speculate that conversion of a key
kinetochore-localized negative regulator of anaphase into a posi-
tive promoter once necessary conditions, e.g., proper kinetochore-
microtubule attachment, have been met, could aid coupling
completion of chromosome alignment to activation of separase
and sister separation (Fig. 5 E). Our inability to monitor APC/C
activation leaves open the question as to the mechanism up-
stream of separase activation in which BUB-1/BUB-3 acts
to promote anaphase onset. An appealing possibility is that
kinetochore-localized BUB-1/BUB-3 promotes APC/C activa-
tion (Fig. 5 E, top right). Bubl is known to bind the APC/C
activator Cdc20, and, while prior work has focused on the
significance of this interaction in checkpoint signaling and
Bubl degradation (Tang et al., 2004; Kang et al., 2008; Di Fiore
etal., 2015), our results raise the possibility that Cdc20 binding
could contribute positively to APC/C activation. An alternative
possibility is that BUB-1/BUB-3 functions in a pathway, such
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Figure 5. The anaphase promofion func- A
tion of BUB-1 can be uncoupled from its role

in chromosome alignment. (A) Plot of mean NS
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as activation of a phosphatase, that acts in parallel with APC/C
to promote anaphase onset (Fig. 5 E, bottom right). Future work
is needed to distinguish between these possibilities.

Materials and methods

C. elegans strains

C. elegans strains used in this study are listed in Table S1 and were main-
tained at 20°C. RNAi-resistant bub-1 and knl-1 transgenes, together with
information on their recoded regions, have been described previously
(Espeut et al., 2012; Moyle et al., 2014). For the RNAi-resistant bub-1 trans-
genes, the short (44-bp) intron 5 was deleted and 122 bp of exon 5 and
all of exon 6 were recoded. For RNAi-resistant knl-1 transgenes, exon 4
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was recoded. The bub-1 transgenes were fransferred into pCFJ151
(FrekjeerJensen et al., 2008), a vector used to generate insertion at the
attTi5605 locus on Chr I, before injection into strain EG4322. The pres-
ence of transgenes and of engineered mutations was confirmed by PCR
and sequencing. For the separase sensor, the CPAR-1 NHail (2-159 aa)
and HCP-3 histone-fold domain (187-288 aa) were amplified from ge-
nomic DNA and fused together. GFP was inserted after the start codon and
followed by a GGRAGSGGRAGSGGRAGS linker, inserted into pCFJ151,
and injected into the strain EG6429. GFP::H2b; vy-tubulin::GFP, mCherry::
H2b, BUB-1::GFP, and GFP::HCP-1 markers were transferred into trans-
genic strains by mating before analysis.

RNA-mediated interference (RNAi)
Double-stranded RNAs (dsRNAs) used in this study are listed in Table S2.
For imaging, the dsRNA was injected into L4 worms and incubated for
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38-43 h at 20°C. For double and triple RNAi, RNAs were mixed in equal
ratios, with final concentrations of >0.7 mg/ml for each dsRNA.

Immunoblotting

For immunoblotting, worms from an NGM+OP50 agar plate were washed
with M9 (22 mM KH,POy4, 42 mM NayHPO,, 86 mM NaCl, and T mM
MgSO427H,0) supplemented with 0.1% Triton X-100. After adding 100 pl
of sterile glass beads to the ~100 pl of pelleted worms and 50 pl of 4x
sample buffer (40% glycerol, 240 mM Tris-HCI, pH 6.8, 8% SDS, 0.04%
bromophenol blue, and 5% B-mercaptoethanol), samples were boiled
and vortexed.

For immunoblotting after RNAi, L4 worms were injected with dsRNA
and incubated for 40-42 h at 20°C. Worms were transferred into 500 pl
of M9 and washed with 1 ml of M9 + 0.1% Triton X-100. 4x sample buffer
was added and worms were lysed in an ultrasonic water bath for 10 min
at 70°C; the final sample was comprised of 1 worm/pl. Samples were
loaded onto 8% SDS gels, transferred fo nitrocellulose, probed with 1 pg/ml
affinity-purified anti-BUB-1 (rabbit; antigen was BUB-1 [aa 287-661]; Desai
et al., 2003) and anti-KNL-1 (rabbit; antigen was KNL-1 [aa 8-256];
Desai et al., 2003), anti-BUB-3 (rabbit; antigen was BUB-3 [aa 189-329];
Essex et al., 2009), anti-SGO-1 (rabbit; antigen was SGO-1 [aa 128-308]; gen-
erated in this study), or anti—a-tubulin (mouse monoclonal DM1-a; Sigma-

Aldrich) antibodies.

Imaging and quantification

For imaging of one- and two-cell embryos, hermaphrodite adult worms
were dissected into M9 buffer (22 mM KH,PO,, 42 mM Na,HPO,, 86 mM
NaCl, and T mM MgSO,*7H,0), and embryos were transferred to 2%
agarose pads positioned on a microscope slide and covered with an 18 x
18 nm coverslip.

Imaging of strains expressing GFP::H2B;y-tubulin::GFP was per-
formed on a deconvolution microscope (DeltaVision; Applied Precision/GE
Healthcare) controlled by a softWoRx workstation (DeltaVision; Applied
Precision/GE Healthcare) equipped with a charge-coupled device camera
(CoolSNAP; Roper Scientific) with 5 x 2 pm z stacks, 2 x 2 binning, and
a 60x 1.3 NA U-Plan-Apochromat objective lens (Olympus) at 10-s inter-
vals and 100-ms exposure at 18°C. Acquired sequences were processed
and analyzed using Image] (Fiji) and MetaMorph software (Molecular De-
vices). Pole tracking was performed by clicking on the center of each spin-
dle pole and measuring the distance between them from NEBD onwards.
NEBD was scored as the frame where free histone signal in the nucleus
equilibrates with the cytoplasm, which is just before abrupt chromosome move-
ment starts. Anaphase onset was scored as the first frame with visible
separation of sister chromatids. Lagging chromatin was scored as visible
threads of GFP::H2b signal between separating chromatid masses.

For all other strains, images were acquired on a spinning disc confo-
cal system (Revolution XD Confocal System; Andor Technology) controlled
by iQ software (Andor Technology) and a spinning disk confocal scanner
unit (CSU-10; Yokogawa Electric Corporation) mounted on an inverted
microscope (TE2000-E; Nikon) equipped with 100x or 60x 1.4 NA Plan-
Apochromat lenses, and ouffitted with an electron multiplication back-thinned
charged-coupled device camera (iXon; Andor Technology) at 20°C.

To monitor BUB-1::GFP localization in the KNL-1::mCh mutants, a
5 x 2-ym z series, with 1 x 1 binning, was acquired every 20 s, with 200-ms
and 300-ms exposure times for GFP and mCherry, respectively. For the sepa-
rase sensor assay, mCh::H2B was monitored by acquiring 5 x 2 pm z-series,
with 2 x 2 binning, every 20 s with 200-ms exposure time from NEBD to
chromosome alignment. Then images for mCh::H2B and the GFP::Sensor
were acquired as a 5 x 2-pm z series every 5 s with 200-ms exposure for
GFP and for mCherry. To monitor GFP::HCP-1 localization, a 5 x 2-pm
z series, with 1 x 1 binning, was acquired every 20 s, with 50-ms exposure
for GFP and 300-ms exposure for mCherry. To monitor GFP::BUB-3 localiza-
tion, a 5 x 2-pm z series, with 1 x 1 binning, was acquired every 20 s, with
200-ms exposure for GFP and 200-ms exposure for mCherry.

To quantify fluorescence, sequences were analyzed using Image)
(Fiji). Z stacks were projected, a rectangular box was drawn around the
entire chromosome set for each frame, and the integrated intensity in the
box was recorded. Then the box was expanded by 5 pixels on each side,
and the integrated intensity was measured. The signal and area difference
between the expanded box and the original box were used to calculate the
average background signal per pixel. The integrated chromosomal GFP in-
tensity in the original box was then calculated by subtracting the back-
ground signal.

All p-values were calculated using unpaired t tests in GraphPad
Prism (GraphPad Software).

Online supplemental material

Fig. S1 shows two additional examples of bub-1(RNAi] and characteriza-
tion of the bub-3(0k3437) mutant. Fig. S2 shows the checkpoint signaling
defect of KNL-1(A85-505) and the lack of an effect of the separase sensor
on fertility, viability, or NEBD-anaphase onset duration. Fig. S3 shows char-
acterization of the bub-1(0k3383) mutant, BUB-1 kinase domain variants,
and the sgo-1(tm2443) mutant. Table S1 lists C. elegans strains used in this
study and Table S2 lists oligos used to generate dsRNAs. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/jcb
.201412035/DC1.
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