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Megakaryocyte rupture for acute platelet needs
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Circulating platelets were thought to arise solely from the
profrusion and fragmentation of megakaryocyte cytoplasm.
Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi
.org/10.1083/jcb.201410052) show that platelet release
from megakaryocytes can be induced by interleukin-1a
(IL-1a) via a new rupture mechanism, which yields higher
platelet numbers, occurs independently of the key regula-
tor of megakaryopoiesis thrombopoietin, and may occur
during situations of acute platelet need.

Platelets, small anucleate cells that circulate in the blood stream,
are essential for normal hemostasis but also play major roles
in inflammation, immunity, wound healing, tumor metastasis,
and the development and maintenance of lymph vessels (Leslie,
2010). Hence, reduced platelet numbers and/or impaired plate-
let function, as found in the context of numerous pathologies
or upon pharmacological intervention, may have a negative
impact on a large variety of physiological processes and under
certain circumstances can become life threatening (Sachs and
Nieswandt, 2007).

Platelets are continuously produced by fragmentation of
the cytoplasm of their giant polyploid precursors in the bone
marrow, the megakaryocytes. Recent studies using intravital
two-photon microscopy of the bone marrow confirmed the for-
mation of long protrusions of megakaryocytes termed proplate-
lets in vivo, which extend into bone marrow sinusoids where
larger cytoplasmic fragments, so-called preplatelets, are shed
and further mature within the circulation ultimately giving rise
to platelets (Junt et al., 2007; Zhang et al., 2012; Bender et al.,
2014). Calculations of platelet consumption and production in
humans and mice suggested that platelet production via proplate-
let formation is sufficient to maintain platelet count in normal
physiology (Kaufman et al., 1965; Junt et al., 2007). However,
this mechanism may not be efficient enough to produce suf-
ficient platelet numbers under conditions of increased platelet
consumption, such as inflammation/infection, immune throm-
bocytopenia, or traumatic blood loss. In this issue, Nishimura
et al. have now identified an interleukin-la (IL-1a)-induced
rupture-type mechanism for platelet production that yields
~20-fold higher numbers of released platelet particles as com-
pared with the classical mechanism of proplatelet formation dur-
ing the same period of time (Fig. 1). This work provides for the
first time an explanation of how megakaryocytes can maintain
platelet mass equilibrium and quickly restore platelet numbers
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under pathological conditions associated with increased platelet
turnover. Even though the platelets released by megakaryocyte
rupture were mildly enlarged in size, they were functionally in-
distinguishable from proplatelet-derived platelets.

The IL-1a procytokine is expressed in virtually all non-
hematopoietic cells, but also in platelets, and is involved in
inflammatory processes, modulation of immune responses, and
hematopoiesis. IL-1a is released from damaged endothelial
cells and activated platelets, where it triggers the recruitment of
immune cells (Rider et al., 2013). As the work from Nishimura
et al. (2015) indicates, this cytokine may also stimulate throm-
bopoiesis and rupture-type platelet release from megakaryo-
cytes to compensate for platelet loss and restore platelet mass
equilibrium. This could explain why supplementing cancer
patients experiencing chemotherapy-induced thrombocytope-
nia with IL-1a accelerated platelet count recovery (Gordon and
Hoffman, 1992; Smith et al., 1993). These findings are of par-
ticular importance when considering the development of IL-1a
inhibitors to dampen inflammatory processes.

The technical optimization of the temporal and spatial reso-
lution of two-photon intravital microscopy in combination with an
elegant series of experiments using a broad variety of knockout
mouse models allowed Nishimura et al. (2015) to observe and
characterize this alternative mechanism of platelet formation. The
mechanism strongly resembles key features of FasL-induced apop-
tosis, including activation of Caspase-3, disorganization of the cy-
toskeleton, and membrane blebbing. However, in stark contrast to
typical FasL-induced apoptosis, rupture-type platelet formation is
relatively quick (within an hour vs. >80 min) and results in the re-
lease of a large number of phosphatidylserine-negative particles.
These particles carry an increased content of (31-tubulin, which is
reminiscent of disorganized a- and B-tubulin expression, and has
not been described for apoptotic cells (Fig. 1). The increased for-
mation of membrane blebs was accompanied by a reduction in
megakaryocyte membrane stiffness that could be reverted by cas-
pase inhibitors. The activation of Caspase-3 represents a central
step in rupture-type platelet release, as Caspase-3—deficient mega-
karyocytes could not use this alternative pathway for platelet pro-
duction. Future studies will be required to determine how IL-1a
modulates megakaryocyte membrane stiffness and to identify the
mechanisms that distinguish rupture-type platelet release from typ-
ical FasL-induced apoptosis.
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Figure 1. Platelet production in normal physiology and upon acute platelet needs. In normal physiology (left), platelets are continuously produced by
megakaryocytes via the classical process of proplatelet formation. Under these conditions, thrombopoietin (Thpo) drives megakaryopoiesis by signaling
through its receptor c-Mpl, but Thpo is dispensable for proplatelet formation, which is a cell-autonomous process and presumably regulated by the vascular
niche. Inhibition of Caspase-3 and a well-organized orchestration of microtubule dynamics (green) are prerequisites for proper proplatelet formation and
protrusion into bone marrow sinusoids, where preplatelets are released and further mature within the circulation. Proplatelet formation is a rather slow
process with low yields of platelets per period of time but is sufficient to compensate for the continuous loss of aged platelets. Under conditions of increased
platelet loss or consumption (right), e.g., as a result of excessive blood loss or in the setting of infection/inflammation, this mechanism might not be sufficient
to ensure appropriate platelet supply. Under these conditions, interleukin-1a (IL-1c) levels increase rapidly and trigger rupture-type platelet formation via its
receptor IL-1R1 on megakaryocytes. IL-1a signaling leads to a deregulated expression and organization of 8 1-tubulin (green) as well as to the activation of
Caspase-3, which in turn leads to a reduction of megakaryocyte membrane stiffness. Together, these processes lead to the formation of multiple membrane
blebs that are predominantly released into bone marrow sinusoids to quickly replenish platelet numbers.
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