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Introduction

Mammalian skin is a dynamic organ that provides protection 
against a variety of environmental insults. Damage to the skin 
caused by these stressors must be repaired through constant skin 
cell replacement. Skin integrity is maintained by a heteroge-
neous population of resident progenitor cells capable of self- 
renewal and production of diverse cell types that make up hair 
follicles, glands, and interfollicular epidermis (Ghazizadeh and 
Taichman, 2001; Ito et al., 2005; Fuchs, 2007; Jaks et al., 2010; 
Solanas and Benitah, 2013).

In addition to its role as a barrier, skin also houses multi-
ple somatosensory receptors, each tuned to detect different 
forms of mechanical stimuli. The Merkel cell–neurite complex 
is one such receptor located at the epidermal–dermal border of 
mammalian skin around whisker follicles, in hairy skin within 
specialized structures called touch domes and in glabrous (non-
hairy) skin of the hands and feet (Halata et al., 2003). Embryo-
logically, Merkel cells originate from epidermal progenitors 
and require expression of the basic helix-loop-helix transcrip-
tion factor Atoh1 for their specification (Maricich et al., 2009; 
Morrison et al., 2009; Van Keymeulen et al., 2009). Atoh1  

expression is maintained throughout development and in ma-
ture Merkel cells (Lumpkin et al., 2003).

Adult Merkel cells are postmitotic (Moll et al., 1995). 
However, quantitative, morphological, and fate-mapping stud-
ies suggest that Merkel cell numbers in adult hairy skin oscillate 
with the hair cycle, implying that Merkel cells turnover through-
out an organism’s lifespan (Nafstad, 1987; Moll et al., 1996a; 
Nakafusa et al., 2006; Van Keymeulen et al., 2009). Mitotically 
active progenitors are the likely source of new Merkel cells, as 
a small percentage of Merkel cells are labeled several days after 
administration of nucleotide analogues (Mérot et al., 1987; 
Vaigot et al., 1987; Mérot and Saurat, 1988; Woo et al., 2010). 
Recent work in hairy skin has suggested that these progenitors 
are either multipotent stem cells located in the hair follicle bulge 
region or bipotent progenitors found among the touch dome  
keratinocytes (Van Keymeulen et al., 2009; Woo et al., 2010; 
Doucet et al., 2013). Accurate identification of Merkel cell pro-
genitors is crucial because of the potential for these cells to act 
as the cellular origin of Merkel cell carcinoma (MCC), a rare 
but devastating disease that currently has no targeted therapies 
(Sidhu et al., 2005; Kuwamoto, 2011; Tilling and Moll, 2012).

R
esident progenitor cells in mammalian skin generate 
new cells as a part of tissue homeostasis. We sought 
to identify the progenitors of Merkel cells, a unique 

skin cell type that plays critical roles in mechanosensation. 
We found that some Atoh1-expressing cells in the hairy 
skin and whisker follicles are mitotically active at embry-
onic and postnatal ages. Genetic fate-mapping revealed 
that these Atoh1-expressing cells give rise solely to Merkel 

cells. Furthermore, selective ablation of Atoh1+ skin cells in 
adult mice led to a permanent reduction in Merkel cell 
numbers, demonstrating that other stem cell populations 
are incapable of producing Merkel cells. These data iden-
tify a novel, unipotent progenitor population in the skin 
that gives rise to Merkel cells both during development 
and adulthood.

Unipotent, Atoh1+ progenitors maintain the Merkel 
cell population in embryonic and adult mice
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Embryonic Merkel cell precursors express 

Atoh1  and are unipotent

Atoh1+ cells are first observed in trunk skin and whisker follicles 
at embryonic day 14.5 (E14.5) and increase in number through-
out late embryogenesis (Ben-Arie et al., 2000). We hypothesized 
that these early appearing Atoh1+ cells were progenitors respon-
sible for Merkel cell generation. To test this possibility, we lin-
eage traced Atoh1+ cells in Atoh1CreER-T2/+;ROSAtdTomato embryos. 
We limited recombination to the day of tamoxifen administra-
tion by administering a single low dose (10 mg/kg) to pregnant 
dams at E15.5 and then harvested tissue 1 (E16.5) or 3 (E18.5) d  
later. We found �Y71% more tdTomato+ cells/touch dome at 
E18.5 than at E16.5 (18.0 ± 1.2 vs. 10.5 ± 0.6; n = 20–30 touch 
domes/embryo from 3–6 embryos/age; P = 4 × 10�� 4, t test; Fig. 2,  
B–D), suggesting that Atoh1+ cells proliferated between these 
ages (Fig. 2 A). As expected, immunostaining for K8 demon-
strated that the mean number of Merkel cells per touch dome 
also increased between E16.5 and E18.5 (13.8 ± 0.7 and 21.3 ± 
0.8, respectively; P = 5.9 × 10�� 6, t test). The proportion of K8+ 
cells coexpressing K20 also increased between E16.5 and E18.5 
(22.9 ± 0.7% and 46.8 ± 2.6%, respectively; n = 3 mice/age;  
P = 9.3 × 10�� 4, t test; Fig. S1, B–C�). These data indicate that at 
least some Atoh1+ cells present at E15.5 are mitotically active 
and continue to divide after E16.5.

The Atoh1 + lineage separates from other 

skin lineages in late embryogenesis

Embryonic Atoh1+ cells are derived from the Keratin 14 (K14) 
lineage (Morrison et al., 2009; Van Keymeulen et al., 2009). 
Given our data suggesting that the Atoh1+ population expanded 
between E16.5 and E18.5, we wondered when Atoh1��  skin pre-
cursor cells stopped producing Atoh1+ Merkel cell precursors. 
We administered high-dose tamoxifen to E15.5 Atoh1CreER-T2/+; 
ROSAtdTomato mice and harvested tissue at P28 (n = 2) and P168 
(n = 1). If Atoh1��  cells contributed to the Merkel cell lineage 
after E15.5, we expected to find a large proportion of K8+/tdTo-
mato��  cells. However, we found that the vast majority of K8+ 
cells were tdTomato+ at P28 and P168 (94.4 ± 0.04% and 95% 
K8+/tdTomato+ cells in touch domes; 98.9 ± 0.5% and 93.0% 
K8+/tdTomato+ cells in whisker follicles, respectively; >250 
hairy skin and >500 whisker follicle K8+ cells counted/mouse; 
Fig. 2, E–G). Conversely, no K8+/tdTomato+ cells were found in 
E18.5 K14CreER/+;ROSAtdTomato embryos that received tamoxifen at 
E16.5 or E17.5 (>250 hairy skin and >500 whisker follicle K8+ 
cells counted/mouse, n = 2 mice/age; Fig. 2, H–H��). Tamoxifen 
administration at E14.5, when Atoh1+ cells first arise from the 
K14 lineage, did yield a subset of K8+/tdTomato+ cells at E18.5 
(Fig. S2). These data suggest that the full complement of Atoh1+ 
Merkel cell progenitors are created in a 2–3-d period beginning 
with the appearance of the first Atoh1+ cells in the skin at E14.5.

A subset of Atoh1 + cells in hairy skin 

express mitotic markers

To confirm that a population of Atoh1+ cells was mitotically 
active, we examined several mitotic markers in Atoh1CreER-T2/+; 
ROSAtdTomato and Atoh1GFP mice (Lumpkin et al., 2003). We 
verified that the Atoh1GFP and Atoh1CreER-T2/+;ROSAtdTomato alleles 

Because Atoh1 expression is required by mitotic precursors 
of other Atoh1-lineal cell populations such as cerebellar granule 
cells, dorsal commissural interneurons, and secretory cells of the 
gut (Akazawa et al., 1995; Helms and Johnson, 1998; Yang et al., 
2001), we hypothesized that the immediate Merkel cell progeni-
tor would likewise express Atoh1. We used multiple techniques 
in different in vivo genetic mouse models to lineage trace and ex-
amine the proliferative capacity of Atoh1+ cells in hairy skin dur-
ing embryogenesis and adulthood. We found that a subpopulation 
of Atoh1+ cells proliferates, contributes solely to the generation 
of Merkel cells, and cannot be replaced by other resident stem/
progenitor cells in the skin. Our data identify a new progenitor 
population that is uniquely responsible for the generation and 
maintenance of Merkel cells.

Results

Adult Merkel cell precursors express Atoh1  

and are unipotent

Several lines of evidence suggest that mature Merkel cells have  
a finite lifespan, implying that they are replaced by precursor 
cells located in the skin (Moll et al., 1996a; Nakafusa et al., 2006; 
Van Keymeulen et al., 2009; Doucet et al., 2013). To determine 
whether these precursors were Atoh1+, we lineage traced Atoh1+ 
cells in postnatal day 21–28 (P21–P28) Atoh1CreER-T2/+;ROSALacZ 
mice by administering high-dose tamoxifen (250 mg/kg) for a  
consecutive 3 d during the growth phase (anagen) of the first  
hair cycle. We found Xgal+ (5-bromo-4-chloro-indolyl-�B-d- 
galactopyranoside) cells only in the expected locations for Merkel 
cells in the hairy skin and whisker pads 3 (n = 3) and 9 (n = 1) mo 
after tamoxifen administration (Fig. 1, A–B��), times after the 
completion of multiple hair cycles (Alonso and Fuchs, 2006). To 
confirm that these �B-galactosidase (�B-Gal)+ cells were Merkel 
cells, we coimmunostained for �B-Gal and the Merkel cell marker 
Keratin 8 (K8; Fig. 1, C–D�; Vielkind et al., 1995). 3 mo after 
tamoxifen administration, 93.5 ± 1.7% and 99.2 ± 0.4% of K8+ 
cells in hairy skin and whisker follicles coexpressed �B-Gal, re-
spectively; these percentages were 91.5% and 98.1% at 9 mo 
(≥200 hairy skin and ≥500 whisker follicle K8+ cells counted/
mouse; Fig. 1 E). All �B-Gal+ cells were also K8+, and nearly all 
K8+ cells (99.0 ± 0.4%, ≥150 K8+ cells/mouse, n = 3 mice) were 
also Keratin 20+ (K20; Fig. S1, A–A�� ), in agreement with other 
studies (Eispert et al., 2009; Lesko et al., 2013). These data sug-
gest that adult Merkel cells arise from Atoh1+ progenitors.

Previous studies concluded that K8+ cells are postmi-
totic (Vaigot et al., 1987; Mérot and Saurat, 1988; Moll et al., 
1996b; Woo et al., 2010). Therefore, we were surprised that 
we never found �B-Gal+/K8��  cells in Atoh1CreER-T2/+;ROSALacZ 
mice. To determine whether this might be an issue with the  
�B-Gal reporter, we examined K8 expression in the Atoh1 lineage 
by administering high-dose tamoxifen to P21 Atoh1CreER-T2/+; 
ROSAtdTomato mice and harvesting tissue 1 wk later. We found 
that all tdTomato+ cells were also K8+ but that 1.15 ± 0.5% of 
tdTomato+ cells expressed very low levels of K8 (>150 tdTo-
mato+ hairy skin cells/mouse, n = 3 mice; Fig. 1, F–G��). This 
suggested that K8+ cells could proliferate (see next section).
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Gerdes, 2000). GFP+/Ki67+ cells were present at all ages. The 
percentage of GFP+ cells that were also Ki67+ peaked at E14.5 
in whisker follicles and at E16.5 in hairy skin and then decreased 
as the animals aged, reaching �Y1% at P21 (>500 cells/region/
mouse, n = 2 mice/age; Fig. 3, B and D). GFP+/Ki67+ cells also 
expressed low levels of K8 (Fig. 3, E–E�� ), consistent with our 
finding in Atoh1CreER-T2/+;ROSAtdTomato mice that all tdTomato+ 
cells were also K8+. A subset of GFP+ cells also expressed the 
M-phase marker phosphohistone H3 (PH3), suggesting that they 

labeled the same cells by generating Atoh1CreER-T2/+;Atoh1GFP/+; 
ROSAtdTomato/+ mice, administering high-dose tamoxifen by oral 
gavage at P21, and analyzing skin at P28. We found that 100% of 
GFP+ cells were tdTomato+ and that 98.6 ± 0.87% of tdTomato+ 
cells were GFP+ (>150 hairy skin K8+ cells/mouse, n = 3 mice; 
Fig. S3). Thus, these alleles are effectively interchangeable.

We immunostained hairy skin and whisker follicles from 
E14.5, E15.5, E16.5, E17.5, P0, and P21 Atoh1GFP mice for 
Ki67+, a marker of dividing cells (Fig. 3, A–D; Scholzen and 

Figure 1. Adult Merkel cell precursors express Atoh1 and are unipotent. In this and all figures, dosing and harvest paradigms are shown above the perti-
nent panels. (A–B��) Xgal staining of hairy skin (A and B) and whisker follicles (A�� and B��) shows the presence of labeled cells 3 (A and A��; n = 3 mice) and 
9 (B and B��; n = 1 mouse) mo after tamoxifen. Insets in A and B are individual touch domes. (A�� and B��) Counterstain is Nuclear Fast red. (C–D�) Touch 
domes (C–C�) and whisker follicles (D–D�) immunostained for K8 and �B-Gal. (E) Percentages of K8+ cells that coexpress �B-Gal at 3 (n = 3) and 9 (n = 1) 
mo after tamoxifen (TMX). Error bars show SEM. (F–G��) Hairy skin from a tamoxifen-treated P28 Atoh1CreER-T2/+;ROSAtdTomato mouse immunostained for K8 
(n = 3 mice). tdTomato+ cell (arrows) that appears to be K8��  at exposure times that identify other K8+ cells (F–F��) in fact expresses low levels of K8 (G–G��). 
Bars: (A and B, main images) 1 mm; (A and B, insets) 100 µm; (A�� and B��) 100 µm; (C–G��) 50 µm.
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