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The cell cortex of animal cells is a thin, interconnected network 
of actin filaments and myosin motors directly underneath the 
plasma membrane (Clark et al., 2013). This network controls 
cell shape and provides mechanical stiffness to the cell surface 
(Salbreux et al., 2012). Unlike other mechanical elements of the 
cell such as intermediate filaments and the microtubule cyto-
skeleton, which are both arrayed throughout the cytoplasm, the 
close association of the actin cortex with the membrane allows 
the cell to resist hydrostatic pressure (Stewart et al., 2011).  
Superimposed on the cell cortex are many other types of actin-
rich structures with important and specific cellular functions. 
Lamellipodia and filopodia are protrusive and adhesive struc-
tures with rapidly polymerizing actin that provide the force to 
distend the cell membrane (Pollard and Borisy, 2003; Gupton 
and Gertler, 2007) and may be anchored into the actin cortex 
(Bornschlögl et al., 2013). Microvilli, found in tightly packed 
arrays on the apical surfaces of polarized epithelial cells, increase 
the surface area of the cell exposed to the lumen to enhance ab-
sorption and secretion. Microvilli contain parallel bundles of 
actin filaments and exhibit exquisite length control at their bases 
(Wayt and Bretscher, 2014), which are connected into a special-
ized domain of the cell cortex, the myosin-rich “terminal web” 
(Mooseker and Tilney, 1975; Mooseker, 1983).

Although this stereotypical arrangement of microvilli is 
common in fully polarized, confluent layers of epithelial cells, 
many physiological conditions cause epithelia to break down 
or undergo epithelial–mesenchymal transitions (EMT). During 
embryogenesis, wound healing, and other tissue repair, EMT 
is accompanied by reorganization of the cytoskeleton and cell 
polarity to generate motility (Nelson, 2009; Lamouille et al., 
2014). Under such conditions, the activity or fate of the microvilli 

Polarized epithelial cells create tightly packed arrays of 
microvilli in their apical membrane, but the fate of these 
microvilli is relatively unknown when epithelial cell polarity 
is lost during wound healing. In this issue, Klingner et al. 
(2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb 
.201402037) show that, when epithelial cells become 
subconfluent, actomyosin contractions locally within the 
apical cortex cause their microvilli to become motile over 
the dorsal/apical surface. Their unexpected observations 
may have implications for epithelial responses in wound 
healing and disease.
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array are largely unknown. In this issue, Klingner et al. dem-
onstrate that, when epithelia cells become subconfluent, their 
microvilli become longer and more sparsely spaced (Fig. 1,  
B and D) when compared with the shorter, more densely packed 
microvilli observed in confluent cells (Fig. 1, A and C). Inter-
estingly, the authors found that microvilli on subconfluent cells  
became much more motile and exhibited dynamic and coordi-
nated movements within the plane of the apical membrane, yet 
still were enriched in characteristic microvilli proteins such as 
ERM proteins and EBP50 (Morales et al., 2004; Fehon et al., 
2010). These motions were powered by an isotropic array of my-
osin II motors at the apical cell membrane. Like the cortex found 
in dividing cells (Clark et al., 2014), Klingner et al. (2014) find 
that the apical actomyosin cortex is under apparently isotropic 
tension. The authors demonstrated that the microvilli morphol-
ogy and kinetic behavior were induced by stimuli such as wound 
healing or hepatocyte growth factor–induced migration, which 
suggests that increased microvilli dynamics may be a normal 
physiological response during EMT or cell migration.

The obvious question that remains is: what effects do 
increased microvilli dynamics have on the epithelial cells? 
Other types of actin-rich protrusions exhibit active movement 
important to their functions for the cell. For example, filopodia 
dynamics enable cells to sense both soluble and matrix-bound 
signals for directional guidance and migration (Gupton and 
Gertler, 2007; Heckman and Plummer, 2013). Similar to micro-
villi in their actin organization, stereocilia undergo deformation 
in response to mechanical stimuli to transmit signals required 
for mechanosensation and hearing (Fettiplace and Kim, 2014), 
and active movement by the stereocilia themselves may be in-
volved in hearing adaptation in some species (Strimbu et al., 
2012). In the case of microvilli, Klingner et al. (2014) find that 
microvilli on subconfluent cells can specifically bind to and 
move collagen-coated beads in an integrin-dependent manner, 
whereas the microvilli of confluent cells could not. Even more 
intriguing, epithelial growth factor (EGF) was trapped and/or 
bound by the dynamic microvilli of subconfluent epithelial 
cells (Fig. 1, bottom), whereas confluent epithelial cells bound 
EGF more poorly. These observations raise the interesting pos-
sibility that, as epithelial cells undergo EMT, they may become 
even more sensitive to additional signaling events that amplify 
their migratory response, which could aid in wound healing or  
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its organization in the context of most nondividing cells.  
Klingner et al. (2014) demonstrate that careful and quantita-
tive descriptions can still be used to provide new insights, here 
into the dynamic apical cortex and associated microvilli of 
epithelial cells during cell migration or wound healing.
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EMT signals may also play deleterious roles in kidney fibrosis 
(Zeisberg et al., 2003) or tumor metastasis via “hybrid cells,” 
which can incorporate both mesenchymal and epithelial cell 
characteristics (Lu et al., 2013). Another potential consequence 
for enhanced microvilli dynamics in wounded epithelia could 
be enhanced virus uptake by the apical microvilli (Fig. 1, bot-
tom), which has also been shown to be myosin II dependent  
(Lehmann et al., 2005). Whether these broad-reaching specula-
tions turn out to be true or not, the data from Klingner et al. 
(2014) demonstrate that dynamic microvilli and the associated 
apical cortex in subconfluent cells likely have a role distinct from 
the function of the static microvilli array in confluent epithelia.

“Descriptive” has become an epithet in modern biology, 
carrying with it the implication that a descriptive investiga-
tion lacks a testable hypothesis. However, much of our un-
derstanding of biology has been founded in visualization and 
careful description of biological processes. One area of cell 
biology that remains ripe for careful quantitative description 
is the investigation of the actin cortex in various cell contexts. 
While we have appreciated the role of this contractile net-
work in cell migration and division for many decades (Bray  
and White, 1988), we still lack a detailed understanding of 

Figure 1.  Transition to subconfluence in epi-
thelial cells alters microvilli morphology and 
activity. Confluent cell microvilli are more verti-
cally oriented than those in subconfluent cells. 
(A and B) Color-coded height projections of 
confocal images of GFP-LifeAct (labels actin) 
in the apical microvilli of epithelial cells either 
in confluent (A) or subconfluent (B) conditions. 
As shown in the schematic on top, blue colors 
indicate distal z planes, green intermediate  
z planes, and red apical membrane proximal 
z planes, so that combined colors represent 
a vertical structure found in multiple z planes, 
with white showing structures spanning all 
three planes. Microvilli are more sparsely 
spaced on subconfluent cells than on conflu-
ent cells. (C and D) Scanning electron micro-
graphs of epithelial cells either confluent (C) 
or subconfluent (D) to show microvilli morphol-
ogy and density. A–D have been reproduced 
from Klingner et al. (2014). See the article for 
further details. Bars, 2 µm. The bottom panel 
shows a diagram of epithelial cells in the con-
fluent (left) or subconfluent (right) wound edge. 
Microvilli, shown in orange, are bound into 
the apical acto-myosin cortex, shown in blue. 
In subconfluent cells, the longer, more motile 
microvilli may enable enhanced binding and 
uptake of virus (V) or growth factors (GF).
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