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A sharp end to sugary Wingless travels
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Drosophila melanogaster follicle stem cells are controlled
by Wingless (Wg) ligands secreted 50 pm away, raising
the question of how long-distance Wg spreading occurs.
In this issue of JCB, Wang and Page-McCaw (2014. J.
Cell Biol. http://dx.doi.org/10.1083/cb.201403084)
demonstrate a potential mechanism by which the heparan
sulfate proteoglycan Dally-like (Dlp) promotes Wg travel,
whereas matrix Mmp2 (Metalloproteinase 2) impedes it
by inactivating Dlp.

Tissues are maintained and patterned by stem cells that are con-
trolled in part by signals derived from their niches (Losick et al.,
2011). Follicle stem cells (FSCs), located in the germaria of each
ovariole in Drosophila melanogaster ovaries, give rise to the epi-
thelium that surrounds the egg chambers (Losick et al., 2011).
FSCs are regulated by several signaling pathways, including
Wingless (Wg), derived from the distal (<50 pm) terminal fila-
ments (TFs) and cap niche cells (Fig. 1; Losick et al., 2011).
Because this signaling is long range, an unresolved issue is how
Wg molecules spread. In this issue of JCB, Wang and Page-
McCaw provide new insights into this process by identifying the
heparan sulfate proteoglycan (HSPG) Dally-like (Dlp) and the
matrix metalloproteinase Mmp?2 as positive and negative regula-
tors of long-range Wg signaling in the germarium, respectively.

In the Drosophila wing imaginal disc, Wg has been pro-
posed to act as a morphogen, and a Wg gradient can be detected
50 pm from the source (Strigini and Cohen, 2000). The spread-
ing of Wg in the wing disc requires the glypican Dlp that binds
Wg and promotes Wg signaling in distal cells (Baeg et al., 2001,
2004; Kirkpatrick et al., 2004; Kreuger et al., 2004; Franch-
Marro et al., 2005; Han et al., 2005; Yan et al., 2009). In the
germarium, Wang and Page-McCaw (2014) find that Wg forms
a gradient with highest concentrations at the cap/TF cells,
whereas DIp forms an inverse pattern with higher levels closer
to the FSCs. They show that DIp loss of function led to a reduc-
tion in extracellular Wg level, Wg signaling activity, and FSC
proliferation, suggesting that, in the germarium as in the wing
disc, Dlp is involved in retaining Wg at the cell surface and pre-
venting its degradation.

In contrast, the authors found that extracellular Wg level
and signaling and FSC proliferation (number of stalk cells be-
tween follicles, phospho—histone H3 staining, and mitotic clone
frequency) are increased in Mmp2 mutant germaria. Matrix
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metalloproteinases (MMPs) are extracellular Zn**-dependent en-
dopeptidases that play pivotal roles in normal tissue remodeling
and disease. MMPs have been shown to act on ECM proteins,
including collagen, HSPGs, surface molecules, and signaling
proteins (Kessenbrock et al., 2010). Mmp2, like Wg, is pro-
duced in germarium apical cells. The function of Mmp2 in Wg
signaling is likely caused by its regulation of Dlp because DIp
accumulates in Mmp2 mutant germaria at the TF and mutations
in dlp suppress the Mmp2 mutant phenotype.

Previous studies have suggested that Dlp is regulated at
multiple layers. For example, in the wing disc, Dlp transcrip-
tion is modulated by Wg and Hippo signaling (Han et al., 2005;
Baena-Lopez et al., 2008), and Notum, a secreted member of
o/ hydrolase family, has been shown to cleave Dlp at the
level of its glycosylphosphatidylinositol anchor (Kreuger et al.,
2004). Wang and Page-McCaw (2014) demonstrate a novel
mechanism of Dlp regulation, whereby cleavage of Dlp at its
N-terminal domain by Mmp2 causes Dlp to relocalize from the
cell surface to intracellular vesicles, preventing its interaction
with Wg. This finding is of particular interest because the core
protein of glypicans, rather than their attached GAG chains,
interacts directly with various signaling molecules. For example,
the DIp core protein interacts with Wg and Hedgehog (Hh),
whereas the core protein of mammalian glypican-3 binds with
high affinity to Sonic Hh (Capurro et al., 2008; Yan et al., 2009,
2010). Moreover, both Drosophila and mammalian glypicans
are involved in Wnt, Hh, bone morphogenetic protein, FGF,
and JAK/STAT (Janus kinase/signal transducer and activator of
transcription) pathways (Filmus et al., 2008). Thus, uncovering
the regulation of glypicans has a major impact on our under-
standing of signaling transduction in normal development and
tumor progression.

In mammals, as in the fly ovary, important production
sites for MMPs are the niche cells (Kessenbrock et al., 2010).
Reminiscent of the study by Wang and Page-McCaw (2014),
the HSPG syndecan-1 sequesters the chemokine CXCL1; upon
lung injury, MMP7 is up-regulated, cleaving syndecan-1 and
activating CXCL1, thereby inducing neutrophil migration
(Li et al., 2002). MMPs can also cleave insulin growth factor
(IGF) binding proteins (Fowlkes et al., 1995) and latent TGF-3
binding protein (Dallas et al., 2002), releasing active IGF
and TGF-f3, respectively. In addition, MMP3 binds or cleaves
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Figure 1. Regulation of FSCs by Mmp2 and the glypican Dlp in Drosophila germarium. Cap cells produce a long-range signal Wg to regulate the behavior
of FSCs. Dlp mediates the transport of Wg from the cap cells to the FSCs to promote their proliferation. Dlp and Wg form opposing gradients in the ger-
marium. Mmp2, expressed in the cap and TF cells, cleaves Dlp in its N-terminal domain and relocalizes Dlp from the cell surface to intracellular vesicles,
preventing its interaction with Wg. It remains to be determined what signals regulate Mmp2 activity and what other factors mediate Wg spreading in the
germarium. Also, Wg may be locally generated by escort cells (Sahai-Hernandez and Nystul, 2013). GSC, germline stem cell.

Wnt5b, a Wnt signaling inhibitor, increasing mammary stem
cell function (Kessenbrock et al., 2013). Therefore, the work
by Wang and Page-McCaw (2014) is relevant to mammalian
systems in which HSPGs and MMPs act on multiple signaling
pathways (Filmus et al., 2008; Kessenbrock et al., 2010).

The study by Wang and Page-McCaw (2014) raises sev-
eral questions. First, is Dlp cleavage by Mmp2 required in
vivo (only in vitro data were shown)? Second, given the evi-
dence from mammals and Drosophila that HSPGs and/or
MMPs affect numerous secreted factors (Filmus et al., 2008;
Kessenbrock et al., 2010; Wang et al., 2010), does Mmp2 or
DIp act on other signaling pathways to affect FSCs or other
cells or do they primarily act through Wg? Third, MMP activ-
ity is known to be regulated by proteinases, inhibitors, reac-
tive oxygen species, localization, ECM stiffness, and signaling
pathways (NF-kB, FGF, and leptin; Kessenbrock et al., 2010;
Wang et al., 2010). Is Mmp2 activated by these or other sig-
nals (e.g., nutrition and systemic factors)? Fourth, what are
the roles of Mmp2-Dlp interactions in other tissues? Fifth, is
Wg spreading in the ovary dependent on other Wg binding
factors, such as Swim, Watless, Lipophorin, or others (Mulligan
et al., 2012)? Sixth, it has been suggested that Wg may be pro-
duced by FSC-neighboring escort cells (Sahai-Hernandez and
Nystul, 2013). As a membrane-tethered form of Wg can re-
place the endogenous Wg protein in the wing disc (Alexandre
et al., 2014), it will be interesting to assess long-range Wg
signaling in the ovaries of these flies.

JCB « VOLUME 206 « NUMBER 7 « 2014

In conclusion, Wang and Page-McCaw (2014) demon-
strate beautifully the regulation of a signaling factor through
proteinase—HSPG interactions. MMPs (Kessenbrock et al., 2010)
and HSPGs (Blackhall et al., 2001) are altered in mammalian
tumors, raising the question whether they act through similar
mechanisms to influence tumor progression.
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