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Introduction
Tumor cell metastasis is a multistep process that involves inva-
sion through the stroma, intravasation, extravasation, and colo-
nization of secondary sites (Steeg, 2003; Madsen and Sahai, 
2010; Valastyan and Weinberg, 2011). Invadopodia are actin-
rich protrusions that are formed by metastatic tumor cells to de-
grade the ECM and facilitate the invasive stages of metastasis 
(Yamaguchi et al., 2005; Eckert et al., 2011; Huttenlocher and 
Horwitz, 2011). Invadopodia initially form as precursor struc-
tures, which are enriched in actin regulators, including cortac-
tin, N-WASp, Arp2/3, cofilin, fascin, and others, but are not yet 
capable of degrading the ECM (Artym et al., 2006; Oser et al., 
2009; Li et al., 2010). The sodium/hydrogen exchanger 1 (NHE-1) 
is then recruited to invadopodium precursors to drive cofilin- 
dependent actin polymerization and matrix protease recruitment 
(e.g., MT1-MMP) for ECM degradation (Artym et al., 2006; 
Sakurai-Yageta et al., 2008; Magalhaes et al., 2011).

Although NHE-1 plays a critical role in regulating invado-
podium function by modulating intracellular pH (Busco et al., 
2010; Lucien et al., 2011; Magalhaes et al., 2011; Brisson et al., 
2013), the proteins that regulate its recruitment and activity at 
invadopodia remain poorly understood. In fibroblasts, NHE-1 is 
linked to the cytoskeleton by ezrin/radixin/moesin (ERM) proteins, 
and it interacts with multiple adhesion proteins including 51 
integrin, talin, and FAK to regulate cell adhesion and migration 
(Schwartz et al., 1991; Srivastava et al., 2008; Choi et al., 2013). 
As several groups have recently shown that focal adhesion proteins 
(e.g., 1 integrin, FAK, paxillin, and Hic-5) regulate invadopodial 
maturation (Nakahara et al., 1998; Mueller et al., 1999; Chan et al., 
2009; Linder et al., 2011; Branch et al., 2012; Pignatelli et al., 
2012b; Beaty et al., 2013), we investigated whether the focal 
adhesion protein talin might recruit NHE-1 to invadopodia.

Talin is a large, band 4.1 ERM (FERM) family protein 
that has been shown to play a critical role in structurally linking 
integrins to the actin cytoskeleton, stimulating “inside-out” integrin 
activation and regulating focal adhesion turnover (Jiang et al., 
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invadopodia for subsequent matrix degradation. Invadopodium 
stability was evaluated by measuring the mean lifetime of TagRFP-
cortactin– and GFP-Tks5–rich invadopodia in control and talin 
knockdown cells using time-lapse microscopy. We found that the 
lifetimes of both invadopodium precursors and mature invado-
podia are significantly reduced in talin-depleted cells (Fig. 1 G 
and Videos 1 and 2; P < 0.00013). Together, these data show that 
talin plays a role in the stabilization and maturation of invadopo-
dia, rather than the initial formation of invadopodium precursors.

The C-terminal actin binding site is 
necessary for talin localization and 
invadopodium maturation
Talin consists of two domains: a globular head domain and an 
elongated rod domain (Burridge and Connell, 1983; Molony  
et al., 1987; Gingras et al., 2008; Goksoy et al., 2008; Anthis  
et al., 2009; Elliott et al., 2010; Kim et al., 2012). The head do-
main activates integrins and contains binding sites for  integrin 
cytoplasmic tails, PI(4,5)P2, FAK, and actin, whereas the rod 
domain contains multiple binding sites for vinculin, as well as 
two more actin binding sites and a second integrin binding site 
(Burridge and Mangeat, 1984; Horwitz et al., 1986; Nuckolls  
et al., 1990; McLachlan et al., 1994; Hemmings et al., 1996; 
Xing et al., 2001; Goksoy et al., 2008; Gingras et al., 2009; 
Calderwood et al., 2013). To better understand whether the head 
or rod domain is required for talin recruitment to invadopodia, 
endogenous talin was knocked down using siRNA, and wild-type 
(WT) GFP-talin, GFP–talin head domain, or GFP–talin rod do-
main was expressed to a similar level (Fig. S1 C; Franco et al., 
2004; Simonson et al., 2006; Wang et al., 2011). Although WT 
GFP-talin and the GFP–talin rod domain are significantly en-
riched in invadopodia by 40–50% over background cytosolic 
levels, the talin head domain does not localize to invadopodia 
above background (Fig. 2, A and B).

To further characterize the mechanism of talin recruit-
ment to invadopodia, interactions with 1 integrin and actin 
were evaluated because both localize to the invadopodium 
core and bind to the talin rod domain (3 integrin does not lo-
calize to invadopodia; Franco et al., 2006; Moes et al., 2007; 
Gingras et al., 2008, 2009, 2010; Ellis et al., 2011; Beaty  
et al., 2013). Surprisingly, when the -helical structure of the 
integrin binding site in the R11 talin rod domain is mutated 
(L2094A/I2095A; LI/A), talin recruitment to invadopodia is 
unaffected (Fig. 2, A and B; Moes et al., 2007; Ellis et al., 
2011; Wang et al., 2011; Goult et al., 2013). To confirm this 
finding, 1 integrin was depleted in MDA-MB-231 cells using 
siRNA, and talin enrichment at invadopodia was measured. 
Consistent with the mutant data, talin is recruited to invadopo-
dium precursors in 1 integrin knockdown cells as efficiently 
as in control cells (Fig. S4, A and F). Introduction of a K2443D/
V2444D/K2445D (KVK/D) mutation into the C-terminal actin 
binding site of talin (R13 domain) has been shown to signifi-
cantly inhibit talin binding to actin (Gingras et al., 2008).  
To determine whether this binding event plays a role in talin re-
cruitment to invadopodia, GFP–talin rod–KVK/D was expressed 
in MDA-MB-231 cells. Results indicate that this mutation sig-
nificantly impairs talin localization to invadopodia (Fig. 2, A 

2003; Tadokoro et al., 2003; Tanentzapf and Brown, 2006;  
Srivastava et al., 2008; Huang et al., 2009). Talin is reported to 
be present in membrane protrusion fractions isolated from trans-
formed chicken embryo fibroblasts, suggesting that it may also be 
enriched in invadopodia in tumor cells (Mueller et al., 1992). 
Here, we evaluate the role of talin in regulating invadopodium 
function as well as tumor cell metastasis in vivo and explore the 
mechanism by which NHE-1 is recruited to invadopodia.

Results
Talin stabilizes invadopodia to promote 
matrix degradation
To investigate the role of talin in regulating invadopodial func-
tion, we used the highly metastatic human breast carcinoma cell 
line MDA-MB-231, which has been shown to form invadopodia 
in vitro and spontaneously metastasize in mice (Artym et al., 
2006; Patsialou et al., 2009). To quantify invadopodium formation 
and matrix degradation, cells were plated on Alexa Fluor 405– 
labeled gelatin for 4 h before fixation and stained with invadopodial 
markers cortactin and Tks5. We found that talin localizes to the 
invadopodium core (protrusion) in MDA-MB-231 cells (Fig. 1 A). 
To determine when talin is enriched at invadopodia, cells were 
stimulated with EGF to induce the formation of nondegradative 
invadopodium precursors (Oser et al., 2010; Yamaguchi et al., 
2011). Talin becomes significantly enriched at the core of pre
cursors between 3 and 5 min of EGF stimulation, which coincides 
with the actin polymerization step of invadopodial maturation 
(Fig. S1, A and B; P < 0.036; Oser et al., 2009).

Next, we used siRNA directed against talin to selectively 
deplete the protein by 90–95% in MDA-MB-231 cells com-
pared with those transfected with control, nontargeting siRNA 
(Fig. 1 B). Mean cell area (spreading) is only slightly reduced 
and focal adhesion formation is not affected on gelatin, similar 
to what has been previously observed in mammary epithelial 
cells (Fig. S2; Wang et al., 2011). To evaluate whether talin 
knockdown affects invadopodium function, cells were plated on 
405-labeled gelatin. Talin-depleted cells have an 7-fold re-
duction in the number of mature (matrix-degrading) invadopo-
dia and an 3.6-fold reduction in the degradation area per cell 
relative to control cells (Fig. 1, C–E). To confirm this finding in 
another cell line, talin was stably knocked down in rat mam-
mary adenocarcinoma MTLn3 cells using shRNA and similar 
results were obtained (Fig. S3, A and B).

Invadopodia initially form as nondegradative invado
podium precursors that subsequently undergo actin polymeriza-
tion and recruit matrix proteases to develop into mature, matrix- 
degrading invadopodia. To test whether talin is required for the 
initial formation of invadopodium precursors, the EGF stimula-
tion assay was used. Interestingly, the number of invadopodium 
precursors formed in response to EGF is nearly identical in con-
trol and talin siRNA-treated cells (Fig. 1 F). Once invadopodium 
precursors form, the structure is stabilized by Tks5–PI(3,4)P2 
interactions, 1 integrin–mediated adhesion, and ongoing actin 
polymerization (Yamaguchi et al., 2005, 2011; Beaty et al., 2013; 
Sharma et al., 2013a). Because talin affects invadopodium matu-
ration, we hypothesized that it may be involved in stabilizing 
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that the C-terminal portion of the talin rod domain (R11–13) is 
critical for talin-mediated invadopodial maturation, and the talin 
head domain does not regulate invadopodium function.

The talin rod domain is required for NHE-1 
localization to invadopodia
NHE-1 increases pHi to affect the function of numerous cyto-
skeletal proteins in lamellipodia as well as invadopodia (Denker 
et al., 2000; Frantz et al., 2008; Srivastava et al., 2008; Busco  
et al., 2010; Magalhaes et al., 2011). An important step in inva-
dopodium maturation is the regulation of pHi by NHE-1 (Busco 
et al., 2010; Magalhaes et al., 2011). Given that talin enhances 
invadopodium stability and maturation, we hypothesized that talin 
may modulate the actin polymerization step in invadopodial 
maturation, specifically by regulating NHE-1 (Magalhaes et al., 
2011). Coimmunoprecipitation showed that endogenous talin in-
deed forms a complex with NHE-1 in MDA-MB-231 cell lysates 
(Fig. 3 A). Because the mechanism of NHE-1 recruitment to in-
vadopodia is not known, we evaluated whether talin may be im-
portant for this step. To this end, knockdown rescue experiments 

and B; P < 0.0019). Hence, talin binding to actin, not 1 integ-
rin, is required for its localization to invadopodia.

Next, we asked whether the talin head and rod domains as 
well as integrin and actin binding were required for invadopo-
dial maturation. MDA-MB-231 cells were again treated with 
either control or talin siRNA and transfected with GFP (vector 
control) or one of the GFP-tagged talin constructs. As expected, 
control GFP cells form significantly more mature invadopodia 
than talin knockdown GFP cells, which are essentially unable to 
form mature invadopodia (Fig. 2, A and C; P = 0.0034). Consis-
tent with the localization experiments, both WT GFP-talin and 
the GFP–talin rod domain rescue the invadopodium maturation 
defect, producing similar numbers of mature invadopodia as con-
trol GFP cells (Fig. 2). The GFP–talin head domain and GFP–
talin rod–KVK/D constructs are unable to rescue invadopodium 
maturation, and these cells form significantly fewer invadopo-
dia than the control, WT, and talin rod–expressing cells (Fig. 2, 
A and C; P < 0.048). Interestingly, despite localizing normally 
to invadopodia, the talin rod–LI/A mutant does not rescue inva-
dopodium maturation (Fig. 2). Together, these results indicate 

Figure 1.  Talin localizes to invadopodia and is 
required for their stabilization and maturation. 
(A) Talin localizes to the invadopodium core in 
MDA-MB-231 cells plated on Alexa Fluor 405– 
labeled gelatin for 4 h. Representative con
focal images of talin and Tks5 staining. Red 
arrowheads denote mature invadopodia with 
colocalization of talin and Tks5 in the inva-
dopodium core. Inset shows magnified image 
of invadopodia in the box. Bars: (main panel)  
10 µm; (inset) 1 µm. (B) Western blot analysis of 
MDA-MB-231 cells transfected with control or 
talin1 siRNA (SMARTpool) for 96 h. Blots were 
stained for talin and GAPDH (loading control).  
(C–E) Steady-state invadopodial matrix degrada-
tion assay. (C) Representative images of MDA-
MB-231 cells stained for cortactin and Tks5. 
White arrowheads denote mature invadopo-
dia; blue arrowheads denote invadopodium 
precursors. Inset shows magnified image of inva-
dopodia in the box. Bars: (main panel) 10 µm;  
(inset) 1 µm. (D) Quantification of the number of 
mature invadopodia per cell. Mature invadopo-
dia are defined as cortactin-/Tks5-rich punctate 
structures colocalized with a matrix degradation 
hole. n > 52 cells; three independent experi-
ments. **, P < 0.0076. (E) Quantification of 
invadopodial matrix degradation area per cell. 
n > 52 cells; three independent experiments. 
**, P = 0.0017. (F) EGF stimulation assay. 
Quantification of the number of invadopodium 
precursors in MDA-MB-231 cells stimulated 
with 2.5 nM EGF for 0 (unstimulated) or 3 min. 
Precursors are defined as cortactin-/F-actin–rich 
punctate structures that do not colocalize with 
a matrix degradation hole. n > 58 cells; three 
independent experiments. **, P < 0.018.  
(G) Quantification of invadopodium precursor, ma
ture invadopodium, and mean (pooled) invado
podium lifetimes in MDA-MB-231 cells treated  
with control or talin siRNA and transfected 
with TagRFP-cortactin and GFP-Tks5 plated on 
405-labeled gelatin. Cells were imaged for 3 h  
using time lapse microscopy (see Videos 1 and 2).  
n > 46 precursors; n > 28 mature invadopo-
dia; three independent experiments. ***, P <  
0.00013. Error bars represent the SEM.
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to invadopodia, but the talin head domain and the LI/A and 
KVK/D talin mutants cannot (Fig. 3 C).

To assay NHE-1 function at invadopodia, we used the  
pH-sensitive dye 2,7-bis (2-carboxyethyl), 5 (and -6) carboxy-
fluorescein (BCECF; Frantz et al., 2008). Although the pHi at 
invadopodia of control cells is 7.05, it is significantly reduced 
in talin knockdown cells (pH of 6.8; Fig. 3 D; P = 0.012), 

were performed. NHE-1 is enriched in the invadopodium core 
in control GFP cells by 34% above cytosolic levels (Fig. 3,  
B and C). In talin-depleted GFP cells, however, NHE-1 levels at 
invadopodium precursors are significantly reduced and remain 
similar to the surrounding cytosol (Fig. 3, B and C; P = 0.022). 
Consistent with the invadopodium maturation data, WT GFP-talin 
and GFP–talin rod domain are able to rescue NHE-1 recruitment 

Figure 2.  The actin binding site in the talin rod domain is required for talin localization to invadopodia and matrix degradation. (A) Representative im-
ages of MDA-MB-231 cells plated on 405-labeled gelatin, showing that WT GFP-talin, the GFP–talin rod domain, and the talin rod-LI/A mutant localize to 
the cortactin-rich invadopodium core. Inset shows magnified image of invadopodia in the box. Bars: (main panel) 10 µm; (inset) 1 µm. (B) Quantification 
of talin enrichment at invadopodia relative to cytosolic levels in talin siRNA-treated cells expressing GFP-tagged talin constructs. n > 33 invadopodia; 
three independent experiments. *, P = 0.032; **, P = 0.015; ***, P < 0.0019. Cartoon depicting the domain structure of talin is shown, including the 
C-terminal integrin binding site 2 (IBS2) and actin binding site (ABS). (C) Quantification of the number of mature invadopodia per cell in cells treated 
with either control or talin siRNA and transfected with GFP or GFP-tagged talin constructs. n > 41 cells; three independent experiments. *, P < 0.048;  
**, P = 0.0093. Error bars represent the SEM.
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coimmunoprecipitate with NHE-1 in ventral structures (Magalhaes 
et al., 2011; Antelmi et al., 2013). Moesin is an ERM protein that 
is uniquely up-regulated in invasive subpopulations of MDA-MB-
231 cells in vivo (ezrin and radixin expression are unchanged) 
and is also up-regulated in invasive melanoma cells in which it 
promotes 3D matrix invasion (Estecha et al., 2009; Patsialou et al., 
2012). Here, we show that moesin and pan-phospho-ERM pro-
teins, but not ezrin or radixin, localize to invadopodia in MDA-
MB-231 cells and that moesin is required for NHE-1 localization 
to invadopodia (Fig. 4 A and S4, B–E). To determine if moesin 
or ezrin regulates invadopodium maturation, we selectively 
knocked them down using siRNA and plated cells on 405- 
labeled gelatin (Fig. 4 B and S4 G). Moesin-depleted cells form 
significantly fewer mature invadopodia compared with control 

similar to levels observed in NHE-1–depleted cells (Magalhaes 
et al., 2011), indicating that NHE-1 activity is diminished and 
hydrogen ions accumulate in the intracellular space at invado-
podia. Collectively, these data demonstrate that the C-terminal 
portion of the talin rod domain is essential for NHE-1 recruit-
ment to invadopodia, and talin is an important upstream regula-
tor of NHE-mediated modulation of pHi at invadopodia.

Talin binds directly to moesin in vitro and 
recruits a moesin–NHE-1 complex  
to invadopodia
We have previously shown that when the ERM binding site in 
NHE-1 is mutated, its localization to invadopodia is impaired, 
and phosphorylated ERM proteins have recently been shown to 

Figure 3.  Talin recruits NHE-1 to invadopodia and promotes NHE-1–dependent alkalinization of the intracellular space at invadopodia. (A) Coimmunopre-
cipitation of NHE-1 with talin. Cells were starved for 16 h and stimulated with 2.5 nM EGF. Endogenous talin was immunoprecipitated from MDA-MB-231 
cell lysates using the 8d4 talin antibody, and the resulting immunoprecipitates were subjected to Western blotting with anti–NHE-1 and talin antibodies. 
IgG served as a negative control; three independent experiments. (B and C) Talin regulates NHE-1 localization to invadopodia. (B) MDA-MB-231 cells were 
stained with phalloidin (F-actin), NHE-1, and cortactin. Inset shows magnified image of invadopodia in the box. Red arrowheads denote invadopodia. 
Bars: (main panel) 10 µm; (inset) 1 µm. (C) Quantification of NHE-1 enrichment at invadopodia in control and talin siRNA-treated cells transfected with GFP 
or a series of GFP-tagged talin constructs. n > 47 invadopodia; three independent experiments. *, P = 0.034; **, P < 0.029. (D) Quantification of mean 
intracellular pH at invadopodia (BCECF pH biosensor). n > 56 invadopodia; three independent experiments. **, P = 0.012. Error bars represent the SEM.
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active moesin (T558D), a mutation that disrupts its autoinhib-
ited conformation and enhances binding to F-actin, was expressed 
in control or talin siRNA-treated cells (Nakamura et al., 1995, 
1999; Fehon et al., 2010; Solinet et al., 2013). Although moesin 
T558D induces invadopodium maturation in control cells, the 
number of mature invadopodia in talin KD cells GFP or moesin-
GFP T558D are similar and significantly reduced relative to con-
trol cells (Fig. S5 B; P < 0.01). Together, these data demonstrate 
that talin is a novel moesin binding partner and functions up-
stream of moesin–NHE-1 to promote invadopodium maturation.

Talin is required for actin polymerization  
at invadopodia
Given that talin promotes invadopodium maturation by regulat-
ing NHE-1 function, we hypothesized that talin-depleted cells 
may have impaired actin polymerization, as this is a key step in 
the transformation of an invadopodium precursor into a mature, 
matrix-degrading invadopodium. Recent work has shown that 
cofilin severs F-actin to form barbed ends that are used to elon-
gate filaments required to support dendritic nucleation by Arp2/3 
(DesMarais et al., 2004; Pollard, 2007; Frantz et al., 2008; 
Beaty et al., 2013). During the early stages of invadopodium 
precursor formation, cortactin sequesters cofilin, inactivating it 
(Oser et al., 2009). NHE-1 disrupts this inhibitory interaction by 
increasing the pHi, allowing cofilin to be released and sever actin 
filaments to drive actin polymerization (Magalhaes et al., 2011).

To quantify actin barbed end formation, the barbed end 
assay was used to measure the incorporation of biotinylated 
actin into actively polymerizing filaments within invadopodium 
precursors (Chan et al., 1998; Oser et al., 2010). A peak of 
barbed end formation occurs after 3 min of EGF stimulation in 
MDA-MB-231 cells (Oser et al., 2010). In control cells, EGF 
induces a significant increase in cofilin-dependent barbed end 
formation at invadopodium precursors, whereas EGF-stimulated 
barbed end formation is abrogated in talin and moesin knock-
down cells (Fig. 5; P < 2.4 × 107). Similar results were ob-
served in MTLn3 cells, suggesting that talin and moesin are 
necessary for the cofilin-dependent actin polymerization step in 
invadopodial maturation (Fig. S3 C).

Talin is essential for tumor cell invasion, 
intravasation, and lung metastasis
Because invadopodia promote tumor cell invasion through the 
stroma (Eckert et al., 2011; Huttenlocher and Horwitz, 2011;  
Gligorijevic et al., 2012), we hypothesized that talin would be re-
quired for tumor cells to migrate through a dense 3D ECM. To 
test this, an inverted 3D invasion assay was used (Caswell et al., 
2007; Tuomi et al., 2009; Deakin and Turner, 2011). Cells were 
plated on the bottom of a transwell and stimulated to invade into 
3D ECM, consisting of type I collagen and Matrigel, by a chemo-
tactic gradient (Nyström et al., 2005; Gaggioli et al., 2007). Talin 
knockdown reduces 3D ECM invasion by 60% compared with 
control cells, indicating that talin is required for invasive cell mi-
gration in a physiologically relevant 3D ECM (Fig. 6 A).

To evaluate the role of talin in regulating mammary tumor 
cell motility and metastasis in vivo, MTLn3 mammary adeno-
carcinoma cells stably expressing either control or talin shRNA 

cells, whereas ezrin knockdown has no effect on invadopodia 
(Fig. 4 C; P = 0.017). Thus, we show that moesin promotes in-
vadopodium maturation by recruiting NHE-1.

Because both talin and moesin are required for NHE-1  
localization to invadopodia, we hypothesized that talin may recruit 
moesin in complex with NHE-1 (Magalhaes et al., 2011). In sup-
port of this, we found that endogenous talin coimmunoprecipi-
tates with moesin, but not ezrin, in MDA-MB-231 cell lysates 
(Fig. 4 D). To determine if talin binds directly to moesin, we puri-
fied recombinant His-tagged talin and GST-tagged moesin as 
described previously (Calderwood et al., 1999; Gonzalez-Agosti 
et al., 1999; Xing et al., 2001; Bakolitsa et al., 2004). Full-length, 
N-terminal (amino acids 1–322; moesin-N), and C-terminal GST-
moesin fragments (amino acids 307–577; moesin-C) were fused 
to glutathione agarose beads for in vitro binding assays (Bravo-
Cordero et al., 2013). To map the moesin binding site on talin, 
the following recombinant talin fragments were generated: talin 
head domain, talin rod R1–5 domains, talin rod R6–10 domains, 
and talin rod R11–dimerization domain (DD; Goult et al., 2013).

The talin head, rod R1–5, and rod R6–10 domains do not 
bind any of the moesin proteins; however, the C-terminal talin 
rod R11-DD binds strongly to full-length moesin and moesin-N,  
with lower affinity for moesin-C (Figs. 4 F and S5 C). To fur-
ther characterize the moesin binding site on talin, talin rod R11, 
R12, and R13-DD domain recombinant proteins were gener-
ated. Talin R12 bound to all of the moesin constructs, whereas talin 
R13-DD bound primarily to full-length moesin and moesin-N 
and R11 weakly bound moesin-N only (Fig. 4 F). Because the 
LI/A and KVK/D mutations are located in the moesin binding 
site, we generated recombinant talin R11-DD fragments that 
contain the LI/A and KVK/D mutations to evaluate the effect of 
disrupting R11 and R13 on talin binding to moesin, respectively. 
We found that both of these mutations dramatically impair talin 
binding to moesin in vitro (Fig. S5 C). Thus, we have identified 
a novel direct binding interaction between talin and moesin, in 
which the C-terminal region of the talin rod domain (R11-DD) 
binds to the N-terminal FERM domain of moesin (Fig. 4 G).

To determine if talin is required for moesin localization to 
the invadopodium compartment, cells were treated with either 
control or talin siRNA and GFP or GFP-tagged talin constructs 
were expressed. We found that moesin is significantly enriched 
in invadopodia by 40% relative to the surrounding cytosol; 
however, its localization is impaired in talin knockdown cells 
(Fig. 4 E). Moesin recruitment to invadopodia is rescued by WT 
GFP-talin and GFP–talin rod domain, but not by the R11 and 
R13 mutants (LI/A or KVK/D, respectively), which were shown 
to disrupt moesin binding in vitro (Fig. 4, E and F; and Fig. S5 C). 
Because the LI/A mutant also affects integrin binding, 1 inte-
grin was knocked down and moesin enrichment was quantified. 
Moesin localization to invadopodia is significantly impaired  
in 1 integrin knockdown cells (Fig. S4 A; P = 0.007). Collec-
tively, these data indicate that 1 integrin promotes talin-mediated 
moesin recruitment to invadopodia via its C-terminal R11 and 
R13 domains.

Conversely, moesin knockdown does not affect talin local-
ization to invadopodia, suggesting that talin is upstream of moesin 
in the NHE-1 pathway (Fig. S5 A). To confirm this, constitutively 
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Figure 4.  Moesin localizes to invadopodia in a talin-dependent manner to promote invadopodium maturation. (A) Moesin localizes to invadopodia. 
Representative TIRF images of moesin and Tks5 staining in cells plated on 405-labeled gelatin. Bars: (main panel) 10 µm; (inset) 1 µm. (B) Western blot 
analysis of MDA-MB-231 cells transfected with control or moesin siRNA (SMARTpool) for 72 h. Blots were stained for moesin and GAPDH (loading control). 
(C) Quantification of the number of mature invadopodia per cell in control and moesin- and ezrin-depleted cells. n > 56 cells; three independent experi-
ments. **, P = 0.017. (D) Coimmunoprecipitation of moesin with talin. Cells were starved for 16 h and stimulated with 2.5 nM EGF. Endogenous talin 
was immunoprecipitated from MDA-MB-231 cell lysates using the 8d4 talin antibody, and the resulting immunoprecipitates were subjected to Western 
blotting with anti-moesin, anti-ezrin, and anti-talin antibodies. The amount of talin immunoprecipitated in each of the two experiments is shown as a control. 
IgG served as a negative control for the immunoprecipitation; three independent experiments. (E) Quantification of moesin enrichment at invadopodia in 
control and talin siRNA-treated cells and then transfected with a series of GFP-tagged talin constructs. n > 46 invadopodia; three independent experiments. 
***, P < 0.0023. Error bars represent the SEM. (F) In vitro direct binding pulldown assay with His-tagged talin and GST-tagged moesin (latter fused to 
agarose beads). Western blots are stained for talin (TD77, R11-DD) or anti-His. Three independent experiments. (G) Schematic of the talin–moesin bind-
ing interaction. The moesin N terminus binds to talin domains R11-DD (with higher affinity for R12 and R13-DD than R11). The talin R12 domain, but not 
R13-DD, also binds to the moesin C terminus. Solid gray lines indicate binding sites for 1 integrin, actin, and moesin; dashed line over R11 indicates 
lower affinity binding.
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these cells are unable to efficiently invade the surrounding ECM 
because of defects in invadopodium and possibly adhesion  
formation (Fig. 6 E and Videos 3 and 4; Zhang et al., 2008).  
To determine if the impaired lung metastasis in talin knockdown 
mice was caused by decreased intravasation, cardiac puncture of 
the right atrium was performed to evaluate the number of circula
ting tumor cells in the blood (Wyckoff et al., 2000; Helzer  
et al., 2009; Roussos et al., 2011; Patsialou et al., 2012). Mice 
bearing control tumors have eight times more circulating tumor 
cells than those with talin shRNA tumors (Fig. 6 F). Collec-
tively, these results indicate that talin promotes tumor cell pro-
trusion formation, motility, and intravasation into the blood, 
leading to enhanced metastasis to the lung.

Discussion
In this study, we describe a novel signaling axis involving talin, 
moesin, and NHE-1. Although talin is dispensable for the initial 
stages of invadopodium precursor formation, it plays a critical 
role in invadopodium stabilization and matrix degradation. The 
talin R12 and R13-DD domains (and R11 to a lesser extent) bind 
directly to the moesin FERM domain in vitro, and these domains 
are required for moesin–NHE-1 recruitment and invadopodium 

and Dendra2 (to visualize tumor cells) were injected into the 
mammary glands of severe combined immunodeficiency mice 
(Fig. 6 B; Linder et al., 2011; Bravo-Cordero et al., 2012). After 
4 wk, the mice were sacrificed, and the lungs and tumors were 
harvested. Spontaneous tumor cell dissemination to the lung was 
quantified by counting the number of Dendra-positive tumor 
cells in each lung lobe, an assay that differentiates dissemina-
tion from tumor growth at the distant site (Goldberg et al., 1999; 
Cameron et al., 2000; Roussos et al., 2011). Although the pri-
mary talin shRNA tumors were larger, we found that control mice 
have six times more metastatic tumor cells in the lung than talin 
shRNA mice, similar to what has been shown previously in Arg 
knockdown breast tumors and glioblastoma multiforme cells 
(Fig. S5 D and Fig. 6, C and D; Dhruv et al., 2013; Gil-Henn  
et al., 2013).

For tumor cells to spread to distant organs, they must migrate 
through the stroma and degrade the endothelial basement mem-
brane to enter a blood vessel, both of which require invadopodium-
mediated matrix degradation (Cardone et al., 2005; Eckert et al., 
2011; Bravo-Cordero et al., 2012; Gligorijevic et al., 2012; 
Roh-Johnson et al., 2013). Intravital multiphoton imaging dem-
onstrates that talin-depleted tumor cells have impaired protru-
sion formation and tumor cell motility in vivo, suggesting that 

Figure 5.  Free actin barbed end formation is impaired in talin- and moesin-depleted cells. (A and B) Barbed end formation assay. (A) Representative im-
ages of control and talin-depleted cells stained for barbed ends (anti-biotin), cortactin, and Arp2. Invadopodium precursors are defined as cortactin-/Arp2-rich 
punctate structures. Blue arrowheads denote invadopodium precursors. Inset shows magnified image of invadopodia in the box. Bars: (main panel) 10 µm; 
(inset) 1 µm. (B) Quantification of barbed end intensity within invadopodium precursors after stimulation with 2.5 nM EGF for 0 (unstimulated) or 3 min.  
n > 80 invadopodia; three independent experiments. *, P = 0.0247; ***, P < 4.52 × 104. Error bars represent the SEM.
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induce invadopodium precursor formation (Lucien et al., 2011; 
Díaz et al., 2013), which occurs in a 1 integrin– and talin- 
independent manner (Fig. 7, stage 1). Talin is initially recruited 
to precursors by binding to actin via its C-terminal I/LWEQ 
actin binding domain, which is independent of binding to 1 in-
tegrin or moesin (Fig. 7, stage 2). Because the integrin binding 
site in the talin rod domain (integrin binding site 2) reinforces 
the linkage between integrins and the actin cytoskeleton and is 
thought to preferentially bind activated, high-affinity integrins 
(Moes et al., 2007; Rodius et al., 2008; Ellis et al., 2011), talin 
likely stabilizes invadopodia by binding to 1 integrin to anchor 
the invadopodium precursor structure to the ECM for initiation 
of the maturation process. Talin binding to 1 integrin also en-
hances the talin–moesin interaction, resulting in moesin enrich-
ment at invadopodia (Fig. 7, stage 3). Moesin, in turn, recruits 
NHE-1 to invadopodia to disrupt the inhibitory, pH-dependent 
interaction between cortactin and cofilin and induce cofilin-
Arp2/3–dependent actin polymerization (Fig. 7, stage 3; Oser  
et al., 2009; Magalhaes et al., 2011). Actin polymerization fur-
ther stabilizes the invadopodium, and MT1-MMP and other 

maturation (i.e., actin polymerization and matrix degradation). 
Furthermore, talin is essential for tumor cell invasion through 
3D ECM, intravasation, and spontaneous lung metastasis in vivo. 
As invadopodia degrade the ECM at sites of transendothelial 
migration in vitro and along blood vessels in vivo (Gligorijevic 
et al., 2012; Roh-Johnson et al., 2013), impaired invadopodium 
maturation likely accounts for the reductions in intravasation 
and metastasis in talin-depleted tumors in vivo, although we can
not exclude that talin also regulates in vivo focal adhesion forma
tion (Zhang et al., 2008; Geraldo et al., 2012).

Recently, there is increasing evidence that focal adhesion 
proteins regulate tumor cell invasion by promoting invadopo-
dium maturation (Branch et al., 2012; Pignatelli et al., 2012b; 
Beaty et al., 2013). 1 integrin and talin localize to the invado-
podium core and are required to stabilize the structure (Beaty  
et al., 2013). Interestingly, talin binding to 1 integrin is not re-
quired for its initial recruitment, but this interaction is essential 
for invadopodium maturation. Given this data, we propose the 
following model of talin-dependent invadopodium maturation 
(Fig. 7): growth factors and other extracellular cues (e.g., hypoxia) 

Figure 6.  Talin promotes mammary tumor 
cell invasion, intravasation, and lung metas-
tasis. (A) Inverted 3D ECM invasion assay. 
MDA-MB-231 cells were treated with control 
or talin siRNA and plated on the bottom of 
transwell filters and allowed to migrate into the 
3D collagen/Matrigel matrix over the course 
of 4 d. The relative invasion index was quanti-
fied as the number of cells migrating above 
60 µm/the number of cells below 30 µm.  
n > 30 cells; three independent experiments.  
**, P < 0.029. (B) Western blot analysis 
of MTLn3 cells stably expressing control or 
talin shRNA. Blots were stained for talin and 
GAPDH (loading control). (C and D) Spontane-
ous lung metastasis assay. (C) Representative 
fields of lungs from severe combined immuno-
deficiency mice harboring MTLn3-Dendra2 tu-
mors expressing either control or talin shRNA. 
Bar, 200 µm. (bottom) Maximum intensity pro-
jection multiphoton image of control and talin 
shRNA metastatic MTLn3 tumor cells (green) 
that have extravasated into the lung paren-
chyma (second harmonic collagen; blue). 
Bars, 40 µm. (D) Quantification of the number 
of metastatic tumor cells per lung lobe in con-
trol or talin shRNA mice. n = 5 mice; ***, P = 
6.4 × 105. (E) Quantification of the number 
of motile cells and protrusions per 100-µm  
field (see Videos 3 and 4). *, P < 0.036.  
(F) Quantification of the number of circulating 
tumor cells per millimeter of blood in control or 
talin shRNA mice. n = 5 mice; *, P = 0.045. 
Error bars represent the SEM.
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et al., 2009). Although it appears that the talin–1 integrin inter-
action enhances talin–moesin binding (Fig. S4 A), future work 
will be required to determine if these binding interactions are 
competitive or cooperative.

Cellular modulation of intracellular and extracellular pH is 
central to tumor cell migration and invasion (Putney et al., 2002; 
Cardone et al., 2005; Webb et al., 2011; Amith and Fliegel, 2013). 
We provide evidence that talin is a novel upstream regulator of 
moesin–NHE-1 subcellular distribution and activity. Although 
the present study centers around talin-mediated regulation of 
NHE-1 at invadopodia, it will be interesting to explore whether 
this interaction is relevant at other structures including lamellipo-
dial focal complexes and whether adhesion-based talin–NHE-1 
complexes locally modulate intracellular pH in response to ECM 
stiffness and other extracellular cues to guide cell migration.

proteases are recruited to degrade the ECM (Fig. 7, stage 4; 
Mueller et al., 1999; Yamaguchi et al., 2005; Artym et al., 2006; 
Clark et al., 2007; Sakurai-Yageta et al., 2008).

Talin and moesin are members of the FERM superfamily 
of proteins, which contain homologous FERM domains in  
the globular head domain, followed by elongated rod-like do-
mains (Xing et al., 2001; Fehon et al., 2010; Shattil et al., 2010; 
Calderwood et al., 2013). Similar to the heterotypic interaction 
between the FERM family protein merlin and ezrin (Grönholm 
et al., 1999), in vitro binding assays indicate that talin and moe-
sin bind in an antiparallel fashion, such that the talin C terminus 
(R11-DD) binds to the moesin FERM domain (N terminus).  
Interestingly, the moesin binding site on talin overlaps with both 
the integrin binding site 2 (R11-12) and F-actin binding sites 
(R13-DD; McLachlan et al., 1994; Hemmings et al., 1996; Gingras 

Figure 7.  Model of invadopodium maturation. (stage 1) The invadopodium precursor assembles in response to growth factor stimulation (core structure 
consists of actin, cortactin [Cttn], cofilin, N-WASp, Arp2/3, and Tks5). During this time, kinases (Src and Arg) are also recruited. Between stage 1 and 2, 
Tks5 anchors the core structure to PI(3,4)P2 at the invadopodium core (surrounding membrane not shown; Sharma et al., 2013a). (stage 2) After growth 
factor stimulation, Arg binding to 1 integrin disrupts the Arg autoinhibited conformation and growth factor receptors induce Src-dependent Arg phos-
phorylation on tyrosine 439 (Y439), resulting in full Arg kinase activation and phosphorylation of Y421 on cortactin (Beaty et al., 2013). Nck1 localizes to 
invadopodia by binding to phosphorylated cortactin and N-WASp (Oser et al., 2010). Talin is recruited to invadopodia in an integrin- and moesin (msn)- 
independent manner by binding to actin via its C-terminal I/LWEQ binding site. (stage 3) Talin binds to 1 integrin, which enhances the interaction between 
the talin rod domain (R11-DD) and the moesin FERM domain, to recruit a complex of moesin–NHE-1 to invadopodia. NHE-1 increases the intracellular pH 
to disrupt the inhibitory pH-dependent interaction between cortactin and cofilin, allowing active cofilin to be released. Cofilin severs F-actin to generate free 
actin barbed ends and new filament elongation. (stage 4) The new cofilin-generated filaments support dendritic nucleation by the Nck1–N-WASP–Arp2/3 
complex. This actin polymerization, in turn, induces invadopodial membrane protrusion. MT1-MMP is locally delivered to invadopodia and activated to 
degrade the ECM either directly or indirectly through activation of pro-MMP-2 and -9 zymogens (Sakurai-Yageta et al., 2008).
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and secondary antibodies in blocking buffer, each for 1 h. Cells were then 
imaged in PBS at room temperature using the DeltaVision Core Microscope 
(Applied Precision; CoolSnap HQ2 camera, 60× NA, 1.4 oil objective, 
standard 4-channel filter set, and softWoRx software), laser scanning con-
focal microscope (LSM5 LIVE DuoScan; Carl Zeiss; 63× NA, 1.4 oil objec-
tive, AIM 4.2), or total internal reflection fluorescence microscope (TIRF; 
IX71; Olympus; Andor iXon Camera, 60× NA, 1.45 oil objective, Meta-
Morph; Gu et al., 2012).

Invadopodial lifetime assay
MDA-MB-231 cells were treated with control or talin siRNA for 72 h, trans-
fected with TagRFP-cortactin and GFP-Tks5 for 24 h, and then plated on 
405-labeled gelatin for 1.5 h before imaging. Cells were imaged in L15/10% 
FBS in a 37°C heated chamber using the DeltaVision Core Microscope 
(Applied Precision). GFP and RFP channels were acquired every 2 min, 
whereas 405-labeled gelatin was acquired every 10 min using a custom 
macro in the softWoRx software. Movies were acquired for 3 h. Cortactin-/ 
Tks5-rich invadopodium lifetimes were quantified in ImageJ using Invado-
podia Tracker plugin (Sharma et al., 2013b). Precursors were defined as 
cortactin-/Tks5-rich structures that did not colocalize with a matrix degra-
dation hole, whereas mature invadopodia were defined as the structures 
that did colocalize with degradation holes.

Quantitative immunofluorescence
For quantitative immunofluorescence, cells from each sample were imaged 
using the same laser intensity and exposure time. Protein enrichment was 
quantified in ImageJ using background-subtracted images by measuring the 
mean fluorescent intensity (MFI) within the invadopodium core divided by the 
MFI in the surrounding cytosol: (protein of interest MFIinvadopodia  BG/protein 
of interest MFIsurrounding cytosol  BG)  1 (Ellis et al., 2011; Beaty et al., 2013).

Intracellular pH measurements
Intracellular pH was measured as described previously (Frantz et al., 
2008). In brief, the BCECF dye was resuspended in anhydrous DMSO (Life 
Technologies), and MDA-MB-231 cells were loaded with 5 µM BCECF in 
serum-free L15 media for 30 min. BCECF was imaged using a custom built 
TIRF microscope using 490- or 440-nm excitation and fixed emission at 
535 nm. A ratio of the 490 nm/440 nm emission was used to calculate 
pH. BCECF emission ratios were calibrated by treating cells with a high K+ 
media (105 mM KCl, 20 mM CaCl2, 1 mM MgSO4, 10 mM Hepes,  
10 mM glucose, and TRIS for pH adjustment) with 10 µM nigericin at a se-
ries of different pH values (6.6, 6.8, 7, 7.2, and 7.4) and measuring the 
490/440 nm emission (per the manufacturer’s instructions). BCECF pH 
values obtained from imaging control and talin siRNA-treated cells were 
calibrated according to the manufacturer’s instructions and as described 
previously (Frantz et al., 2008).

Coimmunoprecipitation and Western blotting
For coimmunoprecipitation experiments, MDA-MB-231 cells were starved and 
then stimulated with EGF for 3 min. Cells were washed with PBS and lysed 
using the following IP buffer: 20 mM Tris, pH 7.6, 100 mM NaCl, 1 mM 
EDTA, 10% glycerol, and 1% NP-40 with protease and phosphatase inhibitor 
cocktails, modified from Pignatelli et al. (2012a). Lysates were centrifuged at 
14,000 rpm for 10 min at 4°C and then cleared with protein A/G beads 
(Santa Cruz, Biotechnology, Inc.) for 20 min. Lysates were then incubated with 
the 8d4 talin antibody for 9 h before the beads were added for 9 h. The beads 
were washed, and the samples were run on an SDS-PAGE gel. Blots were 
probed for NHE-1, moesin, or ezrin. Protein was then transferred to nitrocellu-
lose paper, blocked using Odyssey solution (LI-COR Biosciences) and immuno
stained. All primary and secondary antibodies were diluted in Odyssey 
blocking solution and detected using the Odyssey scanner.

Direct binding assay
GST-moesin constructs were fused to glutathione-Sepharose beads as de-
scribed previously (Bravo-Cordero et al., 2013). In brief, GST-moesin 
(pGEX4T1, tac promoter) was expressed in Escherichia coli and purified 
using glutathione-agarose beads. Talin fragments constituting the talin 
head domain (aa 1–433), talin rod R1–5 (aa 434–1,203), talin rod R6–
10 (aa 1,205–1,971), or talin rod R11-DD (aa 1,975–2,541), R11 (aa 
1,975–2,140), R12 (aa 2,141–2,291), and R13-DD (aa 2,300–2,541) 
were generated by PCR, excised with BamHI or SalI and NotI, and cloned 
into the pET30a vector (EMD Millipore). The resulting constructs were ex-
pressed in E. coli BL21, and protein expression was induced with 0.2 mM 
IPTG as described previously (Xing et al., 2001). Recombinant his-tagged 
talin protein was then purified using a HisTALON column according to  
the manufacturer’s instructions (Takara Bio Inc.). Protein concentration was 

Materials and methods
Cell culture
MDA-MB-231 cells were obtained from American Type Culture Collection 
and cultured in DMEM/10% FBS. MTLn3 cells were cultured in MEM/5% 
FBS. For EGF stimulation experiments, MDA-MB-231 cells were starved for 
16 h in 0.5% FBS and 0.8% BSA in DMEM, and then for 10 min in L15 
media/0.345% BSA. Cells were then stimulated with 2.5 nM EGF. MTLn3 
were starved for 4 h in L15 media/0.345% BSA and then stimulated with 
5 nM EGF.

Antibodies and reagents
The 8d4 talin-1/-2 antibody was purchased from Sigma-Aldrich (mouse). 
The Cortactin (goat), Tks5 (rabbit), Arp2 (rabbit), and GAPDH (rabbit) anti
bodies were obtained from Santa Cruz Biotechnology, Inc. The moesin anti
bodies were purchased from BD (mouse) and Cell Signaling Technology. 
The ezrin antibodies were obtained from Santa Cruz Biotechnology, Inc. 
(mouse) and Cell Signaling Technology (rabbit). The radixin and goat poly-
clonal internal talin antibodies were obtained from GeneTex (rabbit). The 
pan-phospho-threonine-ERM antibody was obtained from Cell Signaling 
Technology (rabbit). The chicken C-terminal (aa 639–815) NHE-1 antibody 
was a gift from D. Barber (University of California San Francisco, San 
Francisco, CA) and was used for Western blotting (Yan et al., 2001). The 
NHE-1 antibody used for immunofluorescence was obtained from Alpha 
Diagnostics (rabbit; NHE11-A). The TA205 talin head antibody was ob-
tained from Enzo Life Sciences (mouse). The anti-His antibody was pur-
chased from Thermo Fisher Scientific (mouse). The 1 integrin antibody 
(mouse) was purchased from BD. The FITC–anti-biotin antibody (mouse) 
was purchased from Jackson ImmunoResearch Laboratories, Inc. All Alexa 
Fluor secondary antibodies used were obtained from Molecular Probes. 
BCECF was obtained from Life Technologies.

DNA constructs, RNAi, and transfection
The GFP-talin constructs were obtained from Addgene (pEGFP-C1, CMV 
promoter; plasmids 26724, 32856, and 32855; A. Huttenlocher, University 
of Wisconsin, Madison, WI). The moesin-GFP constructs were also obtained 
from Addgene (pEGFP-N1, CMV promoter; plasmids 20677 and 20677; 
S. Shaw, National Cancer Institute, Besthesda, MD). The talin rod-GFP construct 
was subsequently mutated using site-directed mutagenesis (Quickchange I; 
Agilent Technologies), using the following primers: 5-CCAAGGCCCT
GGGTGACGCCGCCAGCGCTACGAAGGCTG-3 and 5-CAGCCTTCG-
TAGCGCTGGCGGCGTCACCCAGGGCCTTGG-3 (L2094A/I2095A 
mutant) or 5-CTCAGCTCCTGGTAGCTTGCGATGACGATGCAGATCAG-
GACTCTGAGGC-3 and 5-GCCTCAGAGTCCTGATCTGCATCGTCATC-
GCAAGCTACCAGGAGCTGAG-3 (KVK/D mutant). The talin template 
(pJ6; rat -actin promoter) used to generate the His-tagged talin fragments 
was provided by D. Calderwood (Yale University, New Haven, CT). The 
GST-tagged full-length moesin and N- and C-terminal fragments were pur-
chased from Addgene (pGEX4T1, tac promoter; plasmids 11637, 11638, 
and 11639; V. Ramesh, Massachusetts General Hospital, Boston, MA). 
TagRFP-cortactin was described previously (N1-TagRFP, CMV promoter; 
Oser et al., 2009) and GFP-Tks5 was provided by S. Courtneidge (Burn-
ham Institute for Medical Research, La Jolla, CA; pEGFP-C1, CMV pro-
moter; Stylli et al., 2009). The Dendra2 construct has been described 
previously (pEGFP-C1, CMV promoter; Kedrin et al., 2008). Talin, moesin, 
ezrin, and 1 integrin siRNA were purchased from Thermo Fisher Scientific 
(siGENOME SMARTpool and siGENOME, respectively). All MDA-MB-231 
transfections were performed by resuspending 106 in a 100-µl Lonza kit V 
transfection solution with either 2 µg DNA or 2 µM siRNA. Fluorescent pro-
teins were allowed to express for 24 h before imaging. Cells were trans-
fected with siRNA for 72 or 96 h.

Invadopodial matrix degradation assay, immunofluorescence,  
and fixation protocols
Gelatin (Sigma-Aldrich) was labeled with Alexa Fluor 405 (Invitrogen) accord-
ing to the manufacturer’s protocol (Sharma et al., 2013b). Mattek dishes 
were coated with a thin, 50-nm layer of gelatin as described previously 
(Mader et al., 2011; Magalhaes et al., 2011). In brief, dishes were treated 
with 50 µg/ml poly-l-lysine for 20 min and coated with 0.2% gelatin (in 
PBS) with 1:40 405-labeled gelatin for 10 min. Dishes were treated with 
0.01% glutaraldehyde for 15 min and then treated with 5mg/ml sodium 
borohydride for 15 min. MDA-MB-231 cells were plated on 405-gelatin 
for 4 h (MTLn3 cells, 16 h) before fixation with 4% PFA. Cells were permea-
bilized with 0.1% Triton X-100 (or 0.5% Triton X-100 for talin staining) for 
5 min, blocked with 1% FBS/1% BSA in PBS, and then stained with primary 
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MDA-MB-231 cells throughout the paper. Fig. S2 shows the effect of talin 
knockdown on cell spreading and focal adhesion formation. Fig. S3 shows 
that talin is required for barbed end formation and invadopodial matrix  
degradation in MTLn3 cells, similar to MDA-MB-231 cells (see Figs. 1 and 5).  
Fig. S4 shows that 1 integrin does not affect talin localization to in-
vadopodia, but is required for moesin and NHE-1 enrichment (via the 
talin–moesin interaction; Figs. 3 and 4). Fig. S4 also shows that phos-
phorylated ERM proteins localize to invadopodia, but ezrin and radixin 
do not and that ezrin and 1 integrin siRNA efficiently knocks down the 
proteins in MDA-MB-231 cells (see Fig. 4). Fig. S5 shows that moesin 
is not required for talin recruitment to invadopodia, talin is upstream of 
moesin in the NHE-1 invadopodium pathway, talin–moesin direct binding 
results, and the effect of talin knockdown on tumor growth in MTLn3 tumors 
in vivo (see Figs. 4 and 6). Videos 1 and 2 correspond to the lifetime  
analyses performed in Fig. 1 G. Videos 3 and 4 correspond to the in vivo 
tumor cell motility and protrusion analyses performed in Fig. 6 E. Online  
supplemental material is available at http://www.jcb.org/cgi/content/ 
full/jcb.201312046/DC1.
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Animal model, circulating tumor cell, and spontaneous metastasis assays
All procedures were conducted in accordance with the National Institutes of 
Health regulations and approved by the Albert Einstein College of Medicine 
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Fig. S1 shows when talin localizes to invadopodium precursors and dem-
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