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uring meiosis, DNA damage response (DDR) pro-

teins induce transcriptional silencing of unsynapsed

chromatin, including the constitutively unsynapsed
XY chromosomes in males. DDR proteins are also impli-
cated in double strand break repair during meiotic re-
combination. Here, we address the function of the breast
cancer susceptibility gene Brcal in meiotic silencing and
recombination in mice. Unlike in somatic cells, in which
homologous recombination defects of Brcal mutants are
rescued by 53bp1 deletion, the absence of 53BP1 did not
rescue the meiotic failure seen in Brcal mutant males. Fur-
ther, BRCA1 promotes amplification and spreading of

Introduction

DNA damage response (DDR) pathways recognize harmful
DNA damage and are essential for the activation of cell cycle
checkpoints and DNA repair mechanisms that maintain the
integrity of the genome (Ciccia and Elledge, 2010; Polo and
Jackson, 2011). DDR/checkpoint proteins also have an essen-
tial role during meiosis, when homologous chromosomes un-
dergo recombination and synapsis to generate haploid gametes.
In mammals, DDR proteins recognize and transcriptionally
silence unsynapsed chromosomes in a general process known
as meiotic silencing of unsynapsed chromatin (Baarends et al.,
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DDR components, including ATR and TOPBP1, along XY
chromosome axes and promotes establishment of pericen-
tric heterochromatin on the X chromosome. We propose
that BRCA1-dependent establishment of X-pericentric het-
erochromatin is critical for XY body morphogenesis and
subsequent meiotic progression. In contrast, BRCA1 plays
a relatively minor role in meiotic recombination, and fe-
male Brcal mutants are fertile. We infer that the major
meiotic role of BRCAT is to promote the dramatic chro-

matin changes required for formation and function of the
XY body.

2005; Turner et al., 2005). In normal male meiosis, meiotic
silencing is confined to unsynapsed X and Y chromosomes in
a process called meiotic sex chromosome inactivation (MSCI),
an essential step for meiotic progression (Turner, 2007; Ichijima
et al., 2012). As part of MSCI, DDR proteins and subsequent
epigenetic modifications are synchronously established on the
sex chromosomes at subsequent stages of meiotic prophase
(van der Heijden et al., 2007). Therefore, the study of meiotic
sex chromosomes dissects not only essential processes in meio-
sis but also serves as a model to uncover how DDR proteins are
coordinated and how chromatin changes and epigenetic modifi-
cations are regulated (Sin et al., 2012).

© 2014 Broering et al. This article is distributed under the terms of an Attribution—
Noncommercial-Share Alike-No Mirror Sites license for the first six months after the pub-
lication date (see http://www.rupress.org/terms). After six months it is available under a
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Mice harboring a knockout of histone variant H2AX fail
to undergo MSCI, suggesting that phosphorylation of H2AX
(YH2AX), a prominent marker of inactive sex chromosomes in
meiosis, is important for successful MSCI (Fernandez-Capetillo
et al., 2003). We have previously shown that MDC1, a binding
partner of YH2AX, directs chromosome-wide spreading of
YH2AX and initiation of MSCI (Ichijima et al., 2011). Curi-
ously, in MDC1 mutant mice, DDR proteins such as ATR (ataxia
telangiectasia and Rad3 related) and TOPBP1 (DNA topoisom-
erase 2 binding protein 1) accumulated on unsynapsed chromo-
some axes, suggesting that axial recognition is independent of
MDCI. It remains unclear how these DDR proteins accumu-
late on unsynapsed chromosome axes before MDC1-dependent
chromosome-wide spreading of YH2AX.

BRCAL, the product of the breast cancer susceptibility
gene 1, accumulates on unsynapsed axes of the sex chromo-
somes (Scully et al., 1997) and is proposed to recruit the ATR
kinase to phosphorylate H2AX on unsynapsed chromosomes
(Turner et al., 2004). BRCA1 could therefore have a role in the
recognition of unsynapsed axes. In this context, it should be
noted that in somatic cells BRCA1 functions primarily to repair
DNA double-strand breaks (DSBs) by homologous recombina-
tion (HR; Moynahan et al., 1999). BRCAI has also been sug-
gested to have a potential role in repairing DSBs during meiotic
recombination (Xu et al., 2003). Thus, it is widely held that de-
fective meiotic DSB repair may cause failure of meiotic silenc-
ing, the expression of toxic genes from the sex chromosomes,
and apoptotic elimination of spermatocytes at the mid-pachytene
stage (Royo et al., 2010). However, the alternative possibility
remains that BRCAL has a direct role in MSCI that is distinct
from its potential role in meiotic recombination.

In this study, our genetic experiments define the roles of
BRCALI in MSCI and meiotic recombination. Our results dem-
onstrate that the function of BRCA1 in MSClI is distinct from its
role in recombination-associated repair of DSBs. Additionally,
although BRCA1 deficiency has a large impact on MSCI, the
effect on meiotic recombination is minor. Consistently, BRCA1
is not required for meiotic recombination in female meiosis.
However, BRCA1 has a clear role in MSCI in males, including
the establishment of DDR signals along unsynapsed XY axes
and the establishment of the pericentric heterochromatin (PCH)
of the X chromosome.

Results

The male meiotic phenotype of Brca1
deletion is not rescued by 53bp 1 deletion

In previous studies of meiosis, the embryonic lethality of mice
with a deletion of Brcal exon 11 (BrcalA/A), which produces a
functionally compromised and truncated form of BRCA1, was
rescued by heterozygosity for Trp53 deletion (Xu et al., 2003).
Because the Trp53 (also known as p53) network is activated
during meiosis (W.J. Lu et al., 2010), it is important to evaluate
the function of BRCALI in a Tirp53** background without the
potential effect of Trp53 heterozygosity. To test the role of
BRCAL in directing the DDR pathway during MSCI, we used
the Cre/LoxP system with Ddx4 (also known as mouse Vasa
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homologue)-cre to generate a conditional, germline-specific de-
letion of Brcal exon 11 (BrcalcKO).

The high efficiency of deletion of exon 11 of Brcal (98.2%
of first wave spermatocytes that occur in juvenile testes: n = 57,
95.2% of adult spermatocytes: n = 124) was confirmed using
immunofluorescence microscopy with an antibody raised against
amino acids 789-1,141 of BRCAI (encoded by exon 11; Fig. S1;
Ichijima et al., 2011). We found that BrcalcKO spermatocytes
are arrested and eliminated by apoptosis after the mid-pachytene
stage, as judged by the presence of the testis-specific linker
histone H1t (Fig. S1). In both first wave and adult BrcalcKO
spermatocytes, normal formation of a chromosome-wide YH2AX
domain on the sex chromosomes was severely disrupted during
the pachytene stage in comparison to those of control littermates
(termed Brcalctrl; see Materials and methods; Fig. 1, B and
C). We found that 21.4% of BrcalcKO spermatocytes showed
normal yH2AX domain formation on the sex chromosomes.
However, ectopic YH2AX foci (foci detected on synapsed au-
tosome regions) were observed regardless of normal or abnor-
mal YH2AX domain formation on the sex chromosomes in the
BrcalcKO (Fig. S1). Therefore, we conclude that the conditional
deletion of Brecal exon 11 in a Trp53** background is sufficient
to disturb YH2AX signaling during meiotic prophase.

In somatic cells, BRCA1 functions to maintain genomic
stability through a role in the repair of chromosomal DSBs by
HR (Moynahan et al., 1999). HR-deficient cells are forced to
rely on nonhomologous end joining (NHEJ). The DDR protein
53BP1 promotes NHEJ while simultaneously suppressing HR.
In contrast, it has been proposed that a key function of BRCA1
is to remove end-joining proteins, such as 53BP1, from replication-
associated breaks (Bouwman et al., 2010; Bunting et al., 2010).
As such, we examined the effects of Brcal deletion in the
regulation of 53BP1 during meiosis. A previous study using
tissue sections showed that 53BP1 is absent in meiotic cells
ranging from the leptotene stage to the early pachytene stage,
and then begins to accumulate on the sex chromosomes in the
mid-pachytene stage (Ahmed et al., 2007). Our study, using
chromosome spreads, demonstrates that in wild-type spermato-
cytes 53BP1 localizes on the axes of the sex chromosomes in
Hlt-negative early pachytene cells and on the entire domain of
the sex chromosomes in 100% of Hl1t-positive mid-pachytene
cells (Fig. 1, D and E). Interestingly, 53BP1 localization was
largely abolished on the sex chromosomes in the BrcalcKO
spermatocytes (Fig. 1, D and E). These results suggest that
BRCAL regulates the localization of 53BP1 during meiosis. In
contrast to the function of BRCAL1 in the repair of DNA interstrand
cross-links in somatic cells (Bunting et al., 2012), BRCA1 does
not regulate another NHEJ factor (Ku) during meiosis (Fig. S1).

Because 53bpl deletion rescues embryonic lethality of
Brcal mutants and phenotypes related to defects in somatic HR
(Bouwman et al., 2010; Bunting et al., 2010, 2012), we sought
to determine whether 53bpl deletion rescues meiotic defects
caused by deletion of Brcal exon 11. Consistent with the fecun-
dity of 53bp1 ~/~ males (Ward et al., 2003), we observed normal
vH2AX domain formation in 53bpl '~ pachytene stage sper-
matocytes (Fig. 1, F and G). In contrast with the rescue of Brcal
mutant phenotypes in somatic HR by deletion of 53bp1, we
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observed a more severe meiotic phenotype in Breal A/A53bpl ™~
mice than that of BrcalcKO mice. First, we found an increase in the
number of leptotene stage spermatocytes and a decrease in the num-
ber of pachytene stage spermatocytes (Fig. 1 F). Second, we found
that YH2AX domain formation was largely disrupted in pachytene
stage spermatocytes in adult and juvenile Breal A/A53bp1~~ mice
(Fig. 1 H). These results suggest that 53BP1 functions in meio-
sis when full-length BRCA1 is absent. Unexpectedly, we found
that yYH2AX signals were largely depleted from the X-centromeric
end and its surrounding pericentric region, both in BrcalcKO and
Brcal AJA53bp1~"~ spermatocytes (Fig. 1, I and J). We rarely ob-
served YH2AX signals on the X-centromeric end when compared
with other areas of the sex chromosomes (Fig. S1), suggesting that
BRCAT1 regulates the X-pericentric region in meiosis.

To further understand the role of BRCA1 on unsynapsed axes,
we examined the localization of the ATR kinase, which is believed
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Figure 1. The meiotic phenotype of BRCA1
is not rescued by deletion of 53BP1. (A and F)

Abnormal

—
n=41 n=70 n=55 n=71  yH2AX domain

128 “Nomal i  PoOpulation distribution of spermatocytes. L,
60 leptotene; Z, zygotene; P, pachytene; D, dip-
40 lotene. (B and G) Immunostaining of meiotic
oLl b chromosome spreads using anti-SYCP3 and

& LS ,\51-0 -yH2AX antibodies. Arrows indicate the sex
2>

chromosomes. Arrowheads indicate ectopic
yH2AX signals on autosomes. (C and H) Popu-
lation distribution of pachytene spermatocytes
exhibiting normal and abnormal yH2AX do-
main formation. Normal yH2AX domain forma-
tion was characterized as a large, compacted
yH2AX-rich region, encompassing the entirety
E 538P1 on XY chromatin of the XY axes and excluding autosomal inter-
- actions. (D) Immunostaining of meiotic chro-
n=53 n=52 mosome spreads using anti-53BP1 and -SYCP3
4 antibodies. H1t-negative early pachytene sper-
matocytes and H1tpositive mid-pachytene
spermatocytes are shown. Arrows indicate the
sex chromosomes. Regions inside of the dot-
ted squares are magnified in the right panels.
S (E) Percentage of mid-pachytene spermato-
& cytes with 53BP1 signal on XY chromatin.
() Magnified images of the regions inside of
the dotted squares in B and G. Schematics of
the chromosome axes are shown in the left pan-
els. Arrows indicate PAR. Arrowheads indicate
the X centromere. (J) Percentage of cells with
YH2AX on the X centromere. P-values were
derived from an unpaired ttest. **, P < 0.001.
Bars, 10 pm (unless otherwise indicated).

First wave

Population of cells (%)

*% *%
— —
n=46 n=54 n=74 n=94

yH2AX domain

60 =« Normal
40 yH2AX domain

20

2 v\g\'\' Q\?\Z\*\( %r\&:\'\(
© %‘G (;‘,‘Q Q@ bqp

First wave

J vH2AX on X-centromeric end

*% *%

1 1
n=55 n=71 n=74 n=94

Population of cells (%)
[o23
o

QO A .
FEC NS
G(l %(0% Q‘Q@l‘g\c %\G 6!50

to function with BRCA1 and mediate YH2AX domain forma-
tion in MSCI (Turner et al., 2004; Bellani et al., 2005; Royo
etal., 2013). In normal meiosis, ATR accumulates on the unsyn-
apsed XY axes and spreads onto the chromosome-wide domain
(Fig. 2 A). In contrast, ATR signals were punctate and were not am-
plified along the length of the XY axes in early to mid-pachytene
stage spermatocytes of both first wave and adult meiosis of the
Brcal mutants (Fig. 2, A—C). In particular, ectopic, punctate ATR
signals accumulated on the autosomal axes in first wave meiosis
in the BrcalcKO. During adult meiosis, ectopic AT R accumula-
tion occurred on the entire length of autosomal axes in the
BrcalcKO, whereas accumulation of ATR along autosomal axes
was not observed during first wave meiosis (Figs. 2 A and S2).
Next, we investigated the localization of an activator of
ATR, TOPBPI1, which colocalizes with ATR during normal
meiosis (Perera et al., 2004). In both first wave and adult meio-
sis, amplification of TOPBP1 along the entire length of XY axes
is dependent on BRCAI1 (Fig. 2, D-F), and ectopic TOPBP1
signals on autosome axes were observed in the Brcal mutants

Genetic function of BRCA1 in meiosis
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Figure 2. BRCA1 amplifies ATR and TOPBP1 on unsynapsed sex chromosomes. (A) Immunostaining of meiotic chromosome spreads of adult meio-
sis using anti-SYCP3, -yH2AX, and -ATR antibodies. (B and C) Percentage of pachytene spermatocytes exhibiting amplified ATR accumulation in first
wave meiosis (B) and adult meiosis (C). (D) Immunostaining of meiotic chromosome spreads using anti-SYCP3 and -TOPBP1 antibodies. (E and F) Percent-
age of pachytene spermatocytes exhibiting amplified TOPBP1 accumulation in first wave meiosis (E) and adult meiosis (F). (G) Inmunoprecipitation using
the anti-phospho-ATM antibody, followed by defection of coimmunoprecipitation using ATM, ATR, and TOPBP1 antibodies. 10-fold more material was
used in the immunoprecipitation than is present in the input. The migration of the nearest protein molecular mass size markers are shown. Images in the
same row are from different parts of the same gel. Arrows indicate sex chromosomes. Arrowheads indicate ectopic foci on autosomes. P-values were

derived from an unpaired ttest. **, P < 0.001. Bars, 10 pm.

(Figs. 2 D and S2). These results suggest that ATR and TOPBP1
are able to recognize unsynapsed XY axes and accumulate in a
punctate manner independent of BRCA1, though BRCAT1 assists
in the effective amplification of ATR and TOPBPI1 along XY
axes in meiosis.

Although ATR has a major role in phosphorylation of
H2AX during MSCI (Royo et al., 2013), a potential role for ATM
(ataxia telangiectasia mutated), which is involved in meiotic
DSB processing (Lange et al., 2011), has not been excluded. Thus,
we examined the localization of a phosphorylated and activated
form of ATM (referred to as phospho-ATM hereafter; Bakkenist
and Kastan, 2003). Two independent anti—phospho-ATM mono-
clonal antibodies demonstrated localization patterns very simi-
lar to that of TOPBP1, and phospho-ATM and ATR localize to
identical sites along the X axis in BrcalcKO spermatocytes
(Fig. S3). Furthermore, our immunoprecipitation experiments sug-
gest that phospho-ATM interacts with both ATR and TOPBP1
in adult testes (Fig. 2 G). In this experiment, ATR detected in
phospho-ATM immunoprecipitates has a slightly higher molec-
ular mass when compared with the major portion of ATR de-
tected in the input, suggesting that there is an interaction of
phospho-ATM with posttranslationally modified ATR.

A majority of cells completed autosomal synapsis, but at
least one area of autosomal asynapsis was frequently observed
in Breal mutants (Fig. S4). Because ATR and TOPBP1 localize

to unsynapsed autosomal axes for meiotic silencing of unsyn-
apsed chromatin (Turner et al., 2005), ectopic autosomal foci of
these DDR factors may be partly associated with the presence
of autosomal asynapsis.

To distinguish the role of BRCAI in meiotic silencing from its
potential role in DSB repair during meiotic recombination, we ex-
amined the localization of four factors that are involved in various
steps of meiotic recombination: RAD51 and DMC1, RecA ho-
mologues that mediate homology recognition and strand invasion
(Bishop et al., 1992; Pittman et al., 1998; Yoshida et al., 1998);
MSH4, a meiosis-specific MutS homologue that promotes cross-
over formation, present in the late zygotene and pachytene stages
(Kneitz et al., 2000); and MLH1, a MutLL homologue that marks
one or two crossover sites per chromosome during the pachytene
stage (Edelmann et al., 1996). In contrast with a previous study
showing that BRCAL1 is required for RAD51 loading to sites of
meiotic DSBs (Xu et al., 2003), RAD51 accumulated normally at
sites of DSBs in the leptotene and zygotene stages of Brcal mu-
tants, as in the wild type (Fig. 3, A and B). We also found normal
accumulation of DMC1 foci in Brecal mutants (Fig. 3 C) and we
did not see any significant difference in the removal of RADS51
and DMCT foci from synapsed autosomes in the Brcal mutants
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Figure 3. BRCA1 deficiency has a modest impact on meiotic recombination. (A, C, D, and F) Immunostaining of adult meiotic chromosome spreads using
the antibodies shown in the panels. (B) Number of RAD51 foci per each zygotene spermatocyte of each genotype. (E) Number of MSH4 foci per each
spermatocyte of each genotype. (G) Number of MLH1 foci per each mid-pachytene spermatocyte of each genotype. (H) Immunostaining of meiotic chro-
mosome spreads of female meiosis with anti-MLH1 and -SYCP3 antibodies. (I) Number of MLH1 foci per each mid-pachytene oocyte of each genotype.
(J)) Immunostaining of meiotic chromosome spreads using anti-RAD51 and -SYCP3 antibodies. Areas surrounding sex chromosomes (dotted rectangles)
are magnified in right panels and schematics of chromosome axes are shown below. Arrowheads indicate unamplified RAD51 foci along the XY axes in
BrcalcKO. (K) The number of RAD51 foci along the XY axes is quantified. The mid-pachytene stage was judged by positive staining for H1t. P-values were
derived from an unpaired ffest. **, P < 0.001. N.D., not detected. Bars, 10 pm.

versus controls (unpublished data). These results suggest that To determine the role of BRCA1 in the regulation of recom-
BRCAI does not regulate the assembly or removal of RAD51 bination intermediates, we examined the localization of MSH4.
and DMCT1 foci and are consistent with the efficient homologue Although MSH4 foci also accumulated in Breal mutants (Fig. 3 D),
pairing and synapsis observed in Brcal mutants. the number of MSH4 foci was statistically reduced during both
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the first wave and adult meiosis (Fig. 3 E). We observed an in-
termediate phenotype in heterozygous control littermates, sug-
gesting that the effect is based on the copy number of Brcal.
Hence, BRCA1 may regulate efficient formation or stabiliza-
tion of recombination intermediates. Intriguingly, we did not
observe a decrease in the mean number of MSH4 foci in adult
Brcal A/A53bp1~"~ nuclei (Fig. 3 E). This suggests that dele-
tion of 53bpI promotes efficient MSH4 foci formation in the
Brcal mutant background in meiosis.

Finally, we examined the role of BRCA in the formation of
MLHI1 foci, which mark sites of crossovers. In the BrcalcKO,
MLHI foci were present in 95.7% of H1t-positive mid-pachytene
spermatocytes (n = 47; Fig. 3, F and G). Among these MLH1-
positive cells, the number of MLH1 foci was comparable to
those in the wild type (Fig. 3 G). However, MLH1-positive
cells were not observed in spermatocytes in juvenile BrcalcKO
mice (Fig. 3 G), suggesting that formation of MLH1 foci is de-
layed. Strikingly, we did not observe MLH1 foci formation in
Brcal A/A53bp1~"~ mice (Fig. 3, F and G). Absence of MLH1
foci was also observed previously in Mdcl ™'~ mice (Ichijima
et al., 2011). Although both Brcal A/A 53bpl~'~ and Mdcl ™'~
spermatocytes reach the H1t-positive mid-pachytene stage, it is
conceivable that germ cells are eliminated just before the forma-
tion of MLH1 foci. In contrast, female Brcal mutants are fertile
and MLH1 foci formation is normal in Brcal A/ATrp53"~ mice
(Xuetal.,2003) and in Brcal A/A53bp1~'~ mice (Fig.3,Hand1),
indicating that BRCA1 is not directly required for DSB re-
pair during meiotic recombination in females. Thus, although
BRCALI1 is not essential for meiotic recombination, our data
suggest a role in the timing of crossover formation, as indicated
by decreased numbers of MSH4 foci and the delayed appear-
ance of MLHI1 foci.

BRCA1 amplifies RADS51 signals on
unsynapsed axes

Consistent with our preceding results that BRCA1 amplifies DDR
signaling along XY axes, we noticed that numerous RADS1
foci remained on the unsynapsed XY axes after the removal of
RADS51 foci from autosomes in early pachytene spermatocytes.
In normal meiosis, during the transition from the early to mid-
pachytene stages, RADS51 foci were increased along the axis of
the X chromosome, though RADS1 foci did not accumulate on
the Y chromosome (Fig. 3, J and K). RAD51 foci then accumu-
lated on both the X and Y axes in late pachytene cells (Fig. 3 J).
Although RADS1 foci were present on the X axes of Brcal mu-
tant spermatocytes, they were punctate and were not amplified
in the mid-pachytene stage (Fig. 3 J). These results suggest that
BRCAL1 aids in the amplification of RADS51 foci along unsyn-
apsed XY axes in meiosis.

Next, we investigated whether other components of un-
synapsed axes are amplified by BRCA1. Two HORMA domain
proteins, HORMAD1 and HORMAD?2, localize on unsynapsed
chromosomes and regulate meiotic silencing (Shin et al., 2010;
Daniel et al., 2011; Kogo et al., 2012a,b; Wojtasz et al., 2012).
HORMADI1 and HORMAD?2 uniformly covered the entire
length of the unsynapsed XY axes both in Brcal mutants and
in controls (Fig. S4). Although a previous study reported that
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phosphorylation of HORMAD1 and HORMAD?2 is regulated
by BRCA1 (Fukuda et al., 2012), our results indicate that the load-
ing of HORMAD1 and HORMAD? is not regulated by BRCAL.

BRCA1 regulates ATR recruitment
in meiotic silencing independent of
meiotic DSBs
To test the direct role of BRCALI in meiotic silencing indepen-
dent of recombination-associated meiotic DSBs mediated by
SPO11, we designed a genetic experiment using a Spol/ mutant
allele. Meiotic silencing occurs in the absence of SPO11-dependent
meiotic DSBs. However, the silent domain localizes ectopi-
cally, not specifically to the X and Y chromosomes, and is thus
referred to as a pseudo sex body (Barchi et al., 2005; Bellani
etal.,2005). In control littermates (53bpl '~ Spol1~""), we observed
the formation of a pseudo sex body possessing a single YH2AX
domain in 69.2% of pachytene-like spermatocytes (Fig. 4,
A and D). In contrast, the Brcal A/A53bpl~~Spoll~~ mutant
typically displayed multiple YH2AX domains (Fig. 4, B-D).
These results suggested that BRCA1 promotes efficient forma-
tion of large, consolidated YH2AX domains during meiotic si-
lencing. The formation of a dense ATR domain, which overlaps
with the pseudo sex body, was observed in 61.0% of 53bpl ="~
Spoll1~"~ pachytene-like spermatocytes (Fig. 4, A and E). How-
ever, in Brcal A/A53bpl~~Spoll~"~ spermatocytes, ATR do-
main formation was largely impaired (Fig. 4, B and E) and
occurred in only 8.7% of pachytene-like spermatocytes (Fig. 4,
C and E). Thus, we conclude that BRCA1 regulates ATR re-
cruitment in meiotic silencing independent of meiotic DSBs.
Next, we examined the role of BRCAL1 in the recruit-
ment of TOPBP1 and phospho-ATM in the absence of meiotic
DSBs. yH2AX domains and TOPBP1 signals overlapped in
95.3% of pachytene-like spermatocytes in 53bpl " Spoll ™"~
mice (Fig. 4, F and I). In contrast, YH2AX domains overlapped
with TOPBP1 in only 49.4% of pachytene-like spermatocytes
in Brcal A/A53bp1~'~Spoll1~"~ mice (Fig. 4, G and I); however,
TOPBP1 showed a diffuse nuclear localization in the remaining
samples (Fig. 4 H). Therefore, in Brecal A/A53bpl ™"~ Spoll™’~
spermatocytes, TOPBP1 signals overlapped with YH2AX domains
more frequently than did ATR signals. Furthermore, we found
that phospho-ATM signals never overlapped with YH2AX
domains in Breal A/A53bpl~"~Spol1~"~ spermatocytes (Fig. S3),
suggesting that BRCA also regulates phospho-ATM in meiotic
silencing independent of meiotic DSBs.

BRCA1 establishes PCH of the

X chromosome in male meiosis

To further elucidate the role of BRCAI in meiotic silencing,
we investigated the Brcal mutants’ phenotype on the sex
chromosomes. We observed abnormal yH2AX signals on the
X-pericentric region in Brcal mutants (Fig. 1), which prompted us
to examine the distribution of MacroH2A 1, a histone variant that
specifically accumulates on the X-centromeric end and the pseu-
doautosomal region (PAR) of meiotic sex chromosomes (Turner
et al., 2001). In normal meiosis, MacroH2A1 starts to accumu-
late on the X-pericentric region and PAR after the mid-pachytene
stage (Fig. 5 A) and also accumulates on the Y-pericentric
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region after the late pachytene stage (not depicted). In Brcal
mutants, MacroH2A1 accumulated on the PAR, but did not lo-
calize on the X-pericentric region (Fig. 5, A and B), suggesting
that BRCA1 regulates the localization of MacroH2A1 at the
X-pericentric region.

Because DDR proteins regulate epigenetic modifications
on the meiotic sex chromosomes (Ichijima et al., 2011; Sin
et al., 2012), we investigated the localization of potential chro-
matin modifiers that work downstream of the DDR pathway.
We found that CHD4, a core component of the nucleosome re-
modeling and deacetylation complex and an interacting partner
of RNFS8 (Luijsterburg et al., 2012), localizes specifically on
both the PAR and X-pericentric regions beginning in the early
pachytene stage (Fig. 5 C). Whereas CHD4 localized on the
PAR in Brcal mutants, localization on the X-pericentric region
was abolished (Fig. 5, C and D).

Pericentric regions are enriched with major satellite re-
peats and form constitutive heterochromatin called PCH. In so-
matic cells, BRCATI recruits heterochromatin proteins to PCH
(Zhu et al., 2011). In contrast, in meiosis, localization of het-
erochromatin proteins (CBX1 and CBX3) on X and autosomal
PCH is not obviously compromised in Brcal mutants (Fig. S5).
These results are consistent between adult and first wave meiosis

spermatocytes (unpublished data), and therefore suggest that
X-PCH is modified with MacroH2A1 and CHD4 in a BRCA1-
dependent manner at the onset of the pachytene stage.

Because heterochromatin maintains nuclear architecture
and genome integrity (Peng and Karpen, 2008), we next inves-
tigated the role of BRCA1 in nuclear architectural organization
during meiosis. We examined specialized slides that preserve
the relative three-dimensional nuclear architecture of testicular
germ cells (Namekawa and Lee, 2011). During the mid-pachytene
stage, the sex chromosomes form a distinct nuclear compart-
ment called the XY body (sex body; Fig. 5 E). At this stage,
the XY body forms a domain that excludes the testis-specific
histone H1t and is thereby distinct from the rest of the nucleus.
X-PCH, detected with MacroH2A1 signals and by a slight
enrichment of DAPI, is located next to autosomal PCH and is
located at the junction between the XY body and the autosomal
area. We did not observe the exclusion of HIt from XY bodies
in mid-pachytene spermatocytes of Brcal mutants, although we
did observe a YH2AX domain (Fig. 5 E). In these cells, the XY
body and X-PCH were not clearly discernible, based on DAPI
staining, when compared with normal meiotic cells. These results
suggest that proper establishment of X-PCH is associated with
proper formation of the XY body. Because all spermatocytes of
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Brcal mutants are eliminated at this stage, distinct compart-
mentalization of the sex chromosomes may be an essential step
in meiotic progression.

In accord with the structural defects of XY bodies, we
also note that the XY axes were not condensed properly in
Brcal mutants. In both early and mid-pachytene stages of Brcal
mutants, the XY axes were irregularly elongated in comparison
to controls, which demonstrated a compacted XY axial confor-
mation (Fig. 5, F and G). Furthermore, in Brcal mutants, we found
that the X-centromeric end tended to associate with autosomes
and that there is a significant decrease in the pairing of the X and
Y chromosomes in pachytene spermatocytes (Fig. S5). These re-
sults suggest that the proper establishment of the X-pericentric

region in pachytene spermatocytes is associated with the com-
paction and stabilization of XY axes.

Consistent with the abnormal regulation of X-PCH, we
found that major satellite DNA was highly expressed in testes
when BRCA1 was absent (Fig. 5 H). In situ hybridization con-
firmed that satellite DNA expression in testes was derived from
germ cells (Fig. S5). Because small RNA biogenesis is uniquely
regulated in germ cells and because defects in the regulation
of small RNAs is generally associated with meiotic arrest and
germ cell elimination (Saxe and Lin, 2011), we tested whether
germ cell-specific derepression of satellite DNA affects small
RNA biogenesis. Our small RNA sequencing results revealed
that small RNAs derived from long terminal repeats (LTRs)
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were greatly diminished in Brcal A/A53bp1 ™"~ testes, although
the overall level of small RNA was not affected (Fig. S5). These
results suggest that satellite DNA and LTRs are potential ge-
nomic elements regulated by BRCA1 in meiosis.

Discussion

Our study demonstrates that BRCA1 has two major roles in the
establishment of MSCI (Fig. 6, A and B). First, in agreement
with a previous study concerning BRCA1-dependent recruit-
ment of ATR (Turner et al., 2004), BRCA1 recruits ATR to un-
synapsed XY axes and amplifies DDR signals along the axes for
the establishment of MSCIL In Brcal mutants without proper
amplification of DDR signals on unsynapsed XY axes, YH2AX
partially spreads to the chromosome-wide domain by the action
of MDCl, leading to incomplete YH2AX domain formation.
Second, BRCA1 is required for the proper establishment of
X-PCH. X-PCH defects in Brcal mutants likely account for ab-
normal compartmentalization of the XY body (Fig. 6 A). Thus,
our results suggest that both the proper establishment of DDR
signaling on sex chromosome axes and the establishment of
X-PCH is required for chromatin compaction and for proper
formation of the XY body.

BRCAI1 is a multifunctional protein that regulates the
maintenance of genome integrity by the DDR in somatic cells
(Huen et al., 2010). 53BP1 functions at the intersection of two
major DSB repair pathways in somatic cells by promoting NHEJ
and inhibiting homology-directed repair. Notably, 53bpI dele-
tion rescues defects associated with Brcal mutants (Bouwman
et al., 2010; Bunting et al., 2010, 2012). In the current study,
many aspects of meiotic defects in Brcal mutants were not res-
cued by 53BP1 deletion, supporting the notion that the primary
cause of meiotic defects in Brcal mutants is not defective DSB
repair during meiotic recombination. Consistent with this pos-
sibility, we demonstrate that RAD51 and downstream factors
MSH4 and MLHI1 are present during meiotic recombination in
the BrcalcKO, although the formation of MSH4 foci is less ef-
ficient and the formation of MLH1 foci is delayed. These results
strongly suggest that BRCA1 deficiency has a modest impact
on DSB repair in meiotic recombination in males. Even more
striking, female Brcal mutants are fertile (Xu et al., 2003; Bunting
et al., 2012) and BRCAL1 is not required for DSB repair during
meiotic recombination in females. Therefore, we propose that
the DDR pathway for DSB repair in meiotic recombination is
distinct from that used for meiotic silencing (Fig. 6 B). The role
of BRCAI in meiotic silencing is consistent with the fact that
MDC1 and RNF8, which function in a pathway with BRCAT in
somatic cells, are required for the regulation of sex chromosomes
but not generally for meiotic recombination (L.Y. Lu et al.,
2010; Ichijima et al., 2011; Sin et al., 2012).

Our genetic analysis using a deleted Spo/1 allele indicates
that BRCA1 facilitates ATR recruitment and that the amplifi-
cation of DDR signals is independent of meiotic DSBs. Impor-
tantly, although rarely observed, ATR accumulation correlated
with the presence of a large YH2AX domain in BrcalA/
A53bpl " Spoll ™" spermatocytes (Fig. 4 C). Thus, it is con-
ceivable that ATR promotes the assembly of discrete YH2AX
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domains into the large YH2AX domain during meiotic silencing,
leading to the formation of pseudo sex bodies in the Spo/ mutant
background (Fig. 4 J). Although these results suggest that meiotic
recombination and meiotic silencing are distinctly regulated, the
events may share components, including ATM and RAD51. Both
of these proteins are involved in meiotic recombination, but are
also regulated by BRCA1 on the axes of sex chromosomes.

Although BRCA1 amplifies DDR signals on unsynapsed
XY axes, localization of the meiosis-specific proteins HORMAD1
and HORMAD?2 on unsynapsed XY axes is not regulated by
BRCAL (Fig. S4). In one study, BRCA1 loading to the unsyn-
apsed XY was inferred to be limited in Hormad2™~ mice
(Wojtasz et al., 2012). However, in another study, loading was
not limited (Kogo et al., 2012a). It is possible that both HOR-
MADI1/2 proteins and BRCA1 work independently to establish
DDR signals on unsynapsed XY axes. Consistent with this notion,
both HORMAD1/2 proteins and BRCA1 are required for proper
ATR signaling and completion of the YH2AX domain forma-
tion on the sex chromosomes.

How does BRCA1 amplify DDR signals on unsynapsed
axes? BRCAI1 forms several distinct complexes in vivo (Huen
et al., 2010), and one of these distinct BRCA1 complexes could
be involved in signal amplification along unsynapsed XY axes.
Among the various BRCA1 complexes, one complex includes
RADS1, which is involved in HR-mediated repair in somatic
cells (Dong et al., 2003; Sy et al., 2009; Zhang et al., 2009a,b,
2012). Also, BRCA1 forms at least one complex for DNA replica-
tion and S phase progression (Greenberg et al., 2006). Interestingly,
a recent study suggests that one of the BRCA1 complexes, termed
the BRCA1-A complex, is involved in the regulation of meiotic
sex chromosomes (Lu et al., 2013).

Notably, there are some parallels in the regulation of DDR
proteins between meiotic silencing and the somatic DDR. First,
BRCAL1 is required for activation of both ATR and ATM in the
somatic DDR (Foray et al., 2003; Kitagawa et al., 2004). Simi-
larly, in meiotic silencing, BRCA1 regulates signal amplifica-
tion of ATR, TOPBP1, and phospho-ATM along the unsynapsed
axes (Figs. 2 and S3). ATM may participate in YH2AX forma-
tion on unsynapsed sex chromosomes, whereas ATR signaling
has a more important role and is required for successful estab-
lishment of DDR signals on the sex chromosomes (Royo et al.,
2013). Because MSCI occurs in ATM mutants with heterozy-
gosity for Spol1 deletion (Bellani et al., 2005), ATR might com-
pensate for the loss of function of ATM. A second parallel is that
although TOPBP1 activates ATR in the somatic DDR, TOPBP1
and ATR are recruited by different mechanisms (Cimprich and
Cortez, 2008). In meiotic silencing, recruitment of TOPBPI is
also regulated differently from that of ATR on the XY axes (Fig. 2)
and on the pseudo sex body (Fig. 4). Finally, BRCA1 promotes
RADS51 foci formation during the somatic DDR (Bhattacharyya
et al., 2000; Zhang et al., 2012), as is the case with the meiotic
sex chromosomes (Fig. 3). Because RADS]1 is a single-stranded
DNA binding protein that can be loaded to sites of single-
stranded DNA independent of DSBs during the somatic DDR
(Tarsounas et al., 2003), it is possible that RADS51 is similarly
loaded to single-stranded DNA regions of unsynapsed sex chro-
mosomes during meiosis.
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Because BRCAl-independent RADS1 foci likely persist
at previous sites of SPO11-dependent DSBs, DSBs may serve
as landmarks to locate meiotic silencing on unsynapsed sex
chromosomes. Furthermore, a recent study suggests that per-
sistent DSBs may even serve as a trigger of meiotic silencing
(Carofiglio et al., 2013). Of note, in a yeast study, DSBs per-
sisted on chromosomes that lacked the homology necessary for
DSB repair by HR, and chromosome-wide amplification of
RADS51 was observed (Kalocsay et al., 2009). Therefore, it
is possible that persistent DSBs serve as an evolutionarily
conserved cue for chromosome-wide amplification of DDR
factors. Furthermore, Carofiglio et al. (2013) revealed the exis-
tence of SPO11-independent DSBs in meiotic prophase, which
potentially serves as the trigger of pseudo sex body formation
in a Spol1 mutant background. In agreement with this, ATR and
TOPBP1 signals were present in meiosis in the Breal A/A53bpl ™"~
Spoll~"~ mutant. Therefore, SPO11-independent DSBs are a po-
tential cause of meiotic silencing upstream of BRCAL.

We demonstrate that X-PCH is specifically modified by
the action of BRCA1, and we identified accumulation of Macro-
H2A1 and CHD4 as downstream events that are dependent on
BRCALI. In the somatic DDR, MacroH2A1 and the nucleosome
remodeling and deacetylation complex, including CHD4, are
assembled at sites of poly(ADP-ribosyl)ation and establish re-
pressive chromatin (Lukas et al., 2011). It is conceivable that
poly(ADP-ribosyl)ation, MacroH2A1, and CHD4 are established
on X-PCH downstream of recombination-associated DSBs in a
BRCA 1-dependent manner. ATM may be a candidate factor be-
cause it is responsible for phosphorylating CHD4 to maintain
genome integrity (Urquhart et al., 2011).

Our results also reveal the importance of X-PCH in the
establishment of a proper XY body. In normal meiosis, the area
of sex chromosomes is distinct from the rest of the nucleus, and
all DDR proteins are sequestered and confined to the XY body.
X-PCH is located at the junction between the XY body and the
rest of the nucleus. The structural establishment of the XY body
and sequestration of DDR proteins could serve to prevent the
induction of meiotic arrest via checkpoint activation and might
thereby promote normal meiotic progression.

Finally, our results implicate satellite DNA and LTRs as
potential targets of BRCA1 regulation in meiosis. Promising
questions include the following: (a) How are synapsed and un-
synapsed chromosomes recognized and targeted by DDR path-
ways? (b) Do DDR pathways in meiosis specifically target
satellite DNA and LTRs? (c) Is it possible that BRCA1 main-
tains the integrity of retrotransposons by suppressing their ex-
pression through small RNAs in meiosis? Because small RNAs
are able to suppress long transcripts, from which the small
RNAs are originally derived, reduction of LTR-derived small
RNAs in Breal mutants could be associated with the instability
of LTRs. It would be intriguing to examine the function of these
specific genomic elements at the onset of MSCI.

Materials and methods

Mice
Mice with the floxed allele of Brcal exon 11 (Xu et al., 1999) were obtained
from the National Cancer Institute mouse repository. Ddx4-cre transgenic
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mice (Gallardo et al., 2007) were obtained from the Jackson Laboratory.
Because the Ddx4re allele needs to be transmitted from the paternal allele
to generate mice with a germline-specific conditional deletion, males with
Brcal+/ADdx4-cre were mated with females homozygous for the floxed
allele of Brcal exon 11 (BrcalF/F), and the conditional deletion model
BrcalF/ADdx4-re (BrcalcKO) was obtained. We used littermates of
Brcal+/FDdx4-cre as controls (Brcalctrl). Because this breeding scheme
does not generate wild-type controls, we used C57BL/6 wild-type mice as
controls when necessary. The 53bp 1/~ mice (the exon spanning nucleo-
tides 3,777 to 4,048 of the mouse 53BP1 cDNA was replaced with the
PGK-neo' gene to nullify 53BP1; Ward et al., 2003) and the Spol17/~
mice (most of exon 1 and part of intron 1 of SpoT1 gene were removed to
nullify Spo11; Romanienko and Camerini-Otero, 2000) were used to gen-
erate BrcalA/A53bp17/~ mice and BrcalA/A53bp1~/~Spol 17/~ mice,
respectively. All mice used in this study, except C57BL/6 wild-type con-
trols, were on a mixed background.

Spermatogenesis slide preparation

Meiotic chromosome spreads were prepared using hypotonic treatment, as
described previously (Peters et al., 1997). In brief, testicular tubules were incu-
bated in hypotonic extraction buffer (30 mM tris(hydroxymethyl)aminomethane,
50 mM sucrose, 17 mM trisodium citrate dihydrate, 5 mM ethylenediaminetet-
raacetic acid, 0.5 mM dithiothreitol, and 0.5 mM phenylmethylsulfonyl fluor-
ide, pH 8.2) for 30 min, torn to pieces in 100 mM sucrose, and spread onto
slides pretreated with the fixation solution (2% paraformaldehyde, 0.05% Tri-
ton X-100, and 0.02% sodium monododecyl sulfate, pH 9.2). To conserve the
morphology of meiotic chromatin, specialized slides that preserve the relative
three-dimensional nuclear architecture of testicular germ cells were prepared
as described previously (Namekawa et al., 2006; Namekawa and Lee,
2011; Namekawa, 2014). In brief, the permeabilization step and subsequent
fixation step were performed directly on seminiferous tubules and were fol-
lowed by the mechanical dissociation of germ cells with forceps before cytos-
pinning onto slides. For these slide preparations, mutants and litermate
controls were processed between 40 to 80 d postpartum. The first wave of
meiosis was examined using testes from juvenile mice. Brca T mutants and their
littermates were examined at days 14, 16, 18, and 20 after birth for the analy-
sis of the Brca1cKO and at day 16 for the analysis of BrcalA/A53bp 1/~
mice. TUNEL assay was performed on paraffin sections using the In Situ Cell
Death (Apoptosis) Detection kit (Fluorescein; Roche).

Immunofluorescence microscopy of spermatogenesis

Slides were incubated in PBT (0.15% BSA and 0.1% Tween 20 in PBS) for
60 min before overnight incubation at RT with the following antibodies: mouse
anti-SYCP3 (Abcam), 1:5,000; mouse anti-yH2AX (EMD Millipore), 1:5,000;
rabbit anti-BRCAT1 (Ichijima et al., 2011), 1:1,500; rabbit anti-MacroH2A1
(EMD Millipore), 1:200; rabbit anti-CHD4 (Active Motif), 1:100; rabbit anti-
ATR (Cell Signaling Technology; for Figs. 2, 4, S2, and S3), 1:50; rabbit anti-
TOPBP1 (gift from J. Chen, The University of Texas MD Anderson Cancer
Center, Houston, TX), 1:500; mouse anti-phospho-ATM pS1981 (#200-301-
400; Rockland), 1:500; mouse anti-phospho-ATM pS1981 (#200-301-500;
Rockland), 1:100; rabbit anti-SYCP1 (Abcam), 1:1500; rabbit anti-RAD51
(Santa Cruz Biotechnology, Inc.), 1:100; rabbit anti-DMC1 (Santa Cruz Bio-
technology, Inc.), 1:100; rabbit anti-MSH4 (Abcam), 1:200; rabbit anti-MLH1
(Santa Cruz Biotechnology, Inc.), 1:100; rabbit anti-53BP1 (Novus Biologi-
cals), 1:100; rabbit anti-Ku80 (Cell Signaling Technology), 1:400; rabbit anti-
HORMADT1 (gift from A. Toth, Technische Universitct Dresden, Dresden,
Germany; Woijtasz et al., 2009), 1:300; rabbit antiHORMAD2 (gift from
A. Toth; Woijtasz et al., 2009), 1:500; guinea pig anti-H1t (gift from M.A.
Handel, The Jackson Laboratory, Bar Harbor, ME; Inselman et al., 2003),
1:500; rabbit anti-CBX1 (Abcam), 1:200; and mouse anti-CBX3 (EMD Milli-
pore), 1:500. Thereafter, slides were washed three times for 5 min each in PBS
plus 0.1% Tween 20, incubated with secondary antibodies (Invitrogen or Jack-
son ImmunoResearch Laboratories, Inc.) at 1:500 for 60 min in PBT, washed
in PBS plus 0.1% Tween 20, and mounted in Vectashield with DAPI. Details of
immunofluorescence microscopy are described elsewhere (Namekawa and
Lee, 2011). In brief, slides were blocked in PBT (0.15% BSA and 0.1% Tween
20 in PBS) for 30 min, incubated with primary antibodies in PBT at RT over-
night, washed in 0.1% Tween 20, washed in PBS for 5 min three times at RT,
incubated with second antibodies in PBT at RT for 1 h, washed in 0.1% Tween
20, washed in PBS RT for 5 min three times at RT, and mounted with DAPI in
vectashield; slides were stored at 4°C.

Microscopy and image analyses
Images of germ cells were acquired with one of two microscope systems: (1)
A TE2000-E microscope (Nikon) and CoolSNAPHQ camera (Photometrics),

with 60x and 100x Apochromat oil immersion lenses (Nikon), numerical
aperture 1.40; image acquisition was performed using Phylum software
(PerkinElmer); (2) an ECLIPSE Ti-E microscope (Nikon) and Zyla 5.5
sCMOS camera (Andor Technology), with 60x and 100x CFl Apochromat
TIRF oil immersion lenses (Nikon), numerical aperture 1.40; image acquisi-
tion was performed using NIS-Elements Basic Research software (Nikon).
Images were taken at RT (~22°C). Phylum, Volocity 3D Image Analysis
(PerkinElmer), NIS-Elements Basic Research, NIS-Elements Viewer (Nikon),
and ImageJ (National Institutes of Health) were used for image analysis.
Photoshop and lllustrator (Adobe) were used for composing figures. Partic-
ular stages of primary spermatocytes were defermined by staining for
SYCP3 and H1t. XY axes were distinguished by SYCP3 staining if yH2AX
was severely disrupted. For data analysis, the matched substage of meiosis
was analyzed in controls and mutants. All data were confirmed with at
least two or three independent mice. Total numbers of analyzed nuclei in
at least two independent experiments are shown in each panel.

Immunoprecipitation

Testes from CD-1 mice were dissected and incubated in 0.5 mg/ml colla-
genase and 16 U/ml DNase | at 37°C for 15 min. Cells were lysed with
TNE buffer (10 mM Tris-HCI, pH 7.4, 150 mM NaCl, 1 mM EDTA, and 1%
NP-40) containing complete EDTAfree medium (Roche) at 4°C for 30 min.
After centrifugation, supernatants containing 5 mg of proteins were incu-
bated with protein G Dynabeads (Life Technologies) coupled with mouse
control IgG (EMD Millipore) and anti-phospho-ATM antibodies (Rockland)
at 4°C. The samples were washed with TNE buffer and eluted with 2x SDS
loading buffer. Proteins were fractionated by SDS-PAGE and transferred to
PVDF membranes. The membrane was blocked in 5% dry milk and ana-
lyzed using anti-ATM (1:500; EMD Millipore), -ATR (1:1,000; Cell Signal-
ing Technology), and -TOPBP1 antibodies (1:500; gift from J. Chen), and
visualized using ECL Western blotting substrate (Thermo Fisher Scientific).

Real-time RT-PCR

For realtime RT-PCR, RNA was prepared using Trizol, DNase-treated (Am-
bion), reversetranscribed using the SuperScript Ill First-Strand Synthesis
System (Invitrogen), and then random hexamer primed. Real-time PCR was
performed with the StepOnePlus system (ABI) using the following conditions:
95°C, 20 s; (95°C, 3 s; 60°C, 30 s) for 40 cycles. B-Actin expression was
used for normalization. Forward and reverse primers were as follows:
B-actin: 5-CCGTGAAAAGATGACCCAG-3’ and 5'-TAGCCACGCTCG-
GTCAGG-3’; LINE-1 ORF2: 5-GGAGGGACATTTCATTCTCATCA-3" and
5'-GCTGCTCTTGTATTTGGAGCATAGA-3'; IAP GAG: 5'-AACCAATGCTA-
ATTTCACCTTGGT-3" and 5-GCCAATCAGCAGGCGTTAGT-3’; SINE B1
5" TGAGTTCGAGGCCAGCCTGGTCTA-3' and 5'-ACAGGGTTTCTCTGT-
GTAGCCCTG-3’; Major satellite: 5-GGCGAGAAAACTGAAAATCACG-3’
and 5’-CTTGCCATATTCCACGTCCT-3".

In situ hybridization

Paraformaldehydefixed frozen sections of adult testes from BrcalA/
A53bp 17/~ mice and those of its control litermates (Brcal4,/+53bp177")
were processed onto the same slide and hybridized with **Slabeled
cRNA probes (Lim et al., 1997). Mouse-specific antisense and sense
cRNA probes for y-satellite (PySa plasmid; Lundgren et al., 2000) were
used for hybridization.

Small RNA sequencing

Total RNA was purified from the testes of BrcalA/A53bp1~/~ mice and
those of its control littermates (Brcald,/+53bp1~/") at postnatal day 14.
Small RNA sequencing was performed using a next-generation sequencing
platform (Hiseq 2000; lllumina). Sequence processing (removing adapters
and grouping identical sequences) was performed using miRExpress
(Wang et al., 2009). Reads were mapped to the mm9 reference genome
with Bowtie (Langmead et al., 2009) with no mismatches allowed and all
alternative match locations reported. Genomic annotation of reads was
based on overlap with genome elements. In cases of multiple possible an-
notations, the element type with the largest number of mappings was se-
lected, with ties resolved in the following order of priority: satellite, ncRNA,
miRNA, TR, SINE, LINE, exons, and introns.

Online supplemental material

Fig. S1 shows the characterization of Brcal mutants, including evaluation
of the efficiency of conditional deletion of Brcal, apoptosis assay, and
meiotic progression. Fig. S2 shows ectopic accumulation of ATR and
TOPBP1 on autosome axes in Brcal mutants. Fig. S3 shows the localiza-
tion of phospho-ATM in Brca T mutants. Fig. S4 shows autosomal asynapsis
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in Brea ] mutants. Fig. S5 shows that BRCA1 does not regulate heferochro-
matin proteins on the X-PCH, but suppresses satellite DNA expression
defected by in situ hybridization and regulates LTR expression detected
by small RNA sequencing. Online supplemental material is available
at http://www.jcb.org/cgi/content/full /icb.201311050/DC1.
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