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Dbl3 drives Cdc42 signaling at the apical margin to
regulate junction position and apical differentiation
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pithelial cells develop morphologically characteristic

apical domains that are bordered by tight junctions,

the apical-lateral border. Cdc42 and its effector
complex Paré-atypical protein kinase ¢ (aPKC) regulate
multiple steps during epithelial differentiation, but the
mechanisms that mediate process-specific activation of
Cdc42 to drive apical morphogenesis and activate the
transition from junction formation to apical differentiation
are poorly understood. Using a small interfering RNA
screen, we identify Dbl3 as a guanine nucleotide exchange
factor that is recruited by ezrin to the apical membrane,
that is enriched at a marginal zone apical to tight junctions,

Introduction

Epithelial differentiation requires the development of a charac-
teristic cell morphology and the establishment of distinct api-
cal and basolateral cell surface domains (Mellman and Nelson,
2008). In vertebrates, these cell surface domains are separated
by tight junctions, which form the apical-lateral border. The
apical membrane often develops distinctive organ-specific and
functionally important morphological adaptations, such as brush
border membranes in simple columnar epithelia or the phago-
cytic apical membrane of retinal pigment epithelia. Although
the position of tight junctions defines the relative sizes of the
apical and basolateral membranes, the processes that regulate
the absolute size of these domains are still poorly understood.
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and that drives spatially restricted Cdc42 activation,
promoting apical differentiation. Dbl3 depletion did not
affect junction formation but did affect epithelial morpho-
genesis and brush border formation. Conversely, expres-
sion of active Dbl3 drove process-specific activation
of the Paré—aPKC pathway, stimulating the transition from
junction formation to apical differentiation and domain
expansion, as well as the positioning of tight junctions.
Thus, DbI3 drives Cdc42 signaling at the apical margin
to regulate morphogenesis, apical-lateral border posi-
tioning, and apical differentiation.

Cell surface polarization relies on counteracting regula-
tors that specify apical and basolateral identity, such as the
apical factors Cdc42, ezrin, and atypical PKC (aPKC) and the
pro-basolateral scribble complex (Goldstein and Macara, 2007;
Yamanaka and Ohno, 2008; St Johnston and Sanson, 2011). The
activities of these counteracting mechanisms determine the
positioning of the junctional complex and the relative sizes of
the apical and basolateral cell surface domains. In Drosophila
melanogaster, apical factors are concentrated in the marginal
zone, a domain just apical to adherens junctions, the apical-lateral
border in insects; in vertebrates, the analogous apical signaling
zone is thought to be the tight junction, as a marginal zone-like
structure has not been described (Pieczynski and Margolis,
2011; Tepass, 2012).

The small GTPase Cdc42 drives apical differentiation
by stimulating aPKC via the interacting adaptors Par6 and
Par3 (Hall, 2005; Bryant and Mostov, 2008). In epithelia, the
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Par3—Par6—aPKC complex has two sequential functions: first, it
stimulates junction formation and, second, it regulates apical
domain differentiation and positioning of the apical-lateral bor-
der (Suzuki and Ohno, 2006; Morais-de-S4 et al., 2010; Walther
and Pichaud, 2010). The second function is based on the transitory,
dynamic nature of the Par3—Par6—aPKC complex, as Cdc42-
stimulated phosphorylation of Par3 by aPKC leads to destabili-
zation of the complex and segregation of Par6—aPKC into the
expanding apical domain and retention of Par3 at the apical-
lateral border. Despite the well-established importance of this
pathway in epithelial differentiation, how this transition is stimu-
lated and how the Par6—aPKC complex is activated in a process-
specific manner to drive apical differentiation is not understood.

Another unresolved question is how Cdc4?2 itself is regu-
lated to drive apical domain differentiation. Rho GTPases are
activated by guanine nucleotide exchange factors (GEFs) and
inactivated by GTPase activating proteins (GAPs), which are
thought to be critical for their spatial and temporal regulation
(Hall, 2005). Cdc42 GEFs and GAPs that regulate junction
formation, membrane trafficking, and mitotic spindle orientation
have been identified (Liu et al., 2004; Otani et al., 2006; Wells
et al., 2006; Bryant et al., 2010; Qin et al., 2010; Elbediwy
etal.,2012). However, how Cdc42 is activated at the developing
apical membrane once junctions have been established to stim-
ulate apical membrane differentiation and junctional position-
ing is not known.

Here, we describe the identification of Dbl3, a previously
uncharacterized isoform of Dbl/MCF2, that is recruited to the
apical membrane and becomes enriched at a marginal zone
apical to tight junctions. Dbl3 activates apical Cdc42 signaling
to drive the Par6—aPKC pathway toward apical differentiation
and brush border membrane induction, thereby regulating ex-
pansion and size of the apical domain and positioning of the api-
cal-lateral border.

Results

DbI/MCF2 is required for morphogenesis
and apical membrane differentiation
We performed an siRNA screen to identify Rho GTPase GEFs
important for epithelial differentiation using the human intes-
tinal epithelial cell line Caco-2, which forms polarized mono-
layers with a differentiated apical brush border membrane. Cell
polarization and junction assembly was monitored by staining
for the polarity markers dipeptidyl peptidase IV (DPPIV) and
Na*/K*-ATPase, and the junctional markers ZO-1 and a-catenin
(Elbediwy et al., 2012). Several GEFs were identified, which
included components that had previously been linked to epithe-
lial junction formation and stability such as ECT2 and Trio (Liu
et al., 2004; Yano et al., 2011; Ratheesh et al., 2012; Fig. S1 A).
Targeting the GEF Dbl/MCF?2 revealed a distinct pheno-
type, as the cells formed continuous junctions but remained flat
and failed to accumulate DPPIV at the apical membrane (Fig. 1 A
and Fig. S1, B-D). The cells also did not form the typical apical
actin cytoskeleton indicative of brush border membranes, sug-
gesting that depletion of Dbl disrupted apical differentiation.
Transepithelial electrical resistance and tracer diffusion assays
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indicated that Caco-2 cells with reduced Dbl expression still
formed functional diffusion barriers in agreement with the con-
tinuous junctional distribution of ZO-1 (Fig. S1, E-G). As Dbl
depletion resulted in less compacted cells with an increased pla-
nar area, the junctions were more stretched (Fig. S1, E and H).

Dbl is a GEF for Cdc42 (Hart et al., 1991). Depletion of Dbl
indeed led to an ~50% reduction in active Cdc42 (Fig. S1J). RhoA
and Racl activities were not affected. Although Dbl can stimulate
RhoA, its apparent preference for Cdc42 had also been observed
during cell migration (Snyder et al., 2002; Prag et al., 2007).

Aside from the unexpectedly high apparent molecular
mass of Dbl in Caco-2 cells of ~140 kD as opposed to the com-
monly studied variants with a lower molecular mass (Fig. S1 D),
it was surprising that it promoted epithelial differentiation
rather than cell flattening and migration, as described for other
cell types (Prag et al., 2007). However, differentially spliced
Dbl isoforms had been identified but their functions had not
been analyzed (Fig. 1 A). The Dbl antibody we generated was
raised against a peptide contained within a region common to
all isoforms C-terminal to the Cral-Trio domain. A larger splice
variant, Dbl3, is expressed in various tissues including the intes-
tine; however, its function and localization are not known
(Komai et al., 2002, 2003). By RT-PCR, the mRNA transcript
for this high molecular mass Dbl isoform was also detected in
Caco-2 cells along with shorter variants (Fig. 1 B). On the pro-
tein level, the lower molecular mass isoforms were not evident,
possibly because of the short half-life of at least some Dbl iso-
forms (Fig. S1 D; Kamynina et al., 2007). Transfected myc-
tagged Dbl3 ran with an apparent molecular mass of ~140 kD,
whereas the more commonly studied Dbl1 isoform exhibited a
lower molecular mass of 130 kD (Fig. S2 A). In contrast to the
shorter isoforms, Dbl3 contains a complete Cral-Trio domain at
its N terminus (Fig. 1 A). Structural modeling predicted that
only the Cral-Trio domain of Dbl3 is able to form a stable do-
main structure, whereas the truncated N-terminal domains of
the other isoforms are unlikely to fold into stable domains, pos-
sibly underlying their apparent instability (Fig. 1 C). Given that
only Dbl3 contains an intact Cral-Trio domain, it seems that this
isoform is the more ancient form of the protein.

To determine the role of Dbl3, we designed siRNAs targeting
its distinct N terminus. These siRNAs indeed reduced expression
of the 140-kD band and resulted in similar phenotypic changes
as the original siRNAs that target all known Dbl isoforms (Fig. 1,
D-F). Dbl3-depleted cells displayed reduced height (to ~30%)
and increased surface area (~3.5-fold) and did not acquire the typi-
cal columnar cell shape (Fig. 1, F-J). Differentiated brush border
membranes are enriched in F-actin. Dbl3 knockdown also re-
sulted in cells with reduced integrated fluorescence density of
stains for apical F-actin and DPPIV (Fig. 1, F, G, K, and L). Total
DPPIV protein levels were unaffected (Fig. S2 B). In addition,
depletion of the GEF also led to a diffuse distribution of the api-
cal polarity regulator Crb3 without affecting its expression level
(Fig. S2, C and D). Similarly, the brush border—associated ERM
protein ezrin did not accumulate apically; its expression was not
reduced and it was still found at cortex at the level of cell-cell
contacts (Fig. S2, B and E). Dbl3 is thus required for epithelial
columnar morphogenesis and apical differentiation.
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Figure 1. DbI3 regulates epithelial differentiation. (A) Scheme of Dbl splice variants. The isoforms are numbered according to Komai et al. (2002). The
commonly studied isoform and Dbl3 are also labeled. Note that DBL3 contains an intact Cral-Trio domain (indicated in red; L127A indicates a point muta-
tion infroduced to disrupt the domain). (B) mRNA expression of Dbl splice variants in Caco-2 cells. (C) Model of predicted structure of the Dbl3 N-terminal
domain. Note that the N-terminal domains of the other isoforms do form Cral-Trio domains. (D-L) Caco-2 cells transfected with siRNAs were processed for
immunoblotting (D and E) or immunofluorescence (F-L). (E) Quantification of Dbl depletion by densitometry (shown are means + SD, n = 4; see Fig. S1 D
for an example of a full-size blot). (F) Confocal xy sections taken from the apical end of the monolayers; the white lines indicate the positions at which the
z line scans shown in G were taken (arrowheads point to the apical membrane). (H-L) Quantifications showing means + SD of three independent experi-
ments. Cell height was measured in z sections; cell diameter was measured along the longest axis of apical xy sections taken from the apical end of the
monolayers; cell area was also measured in apical xy sections, reflecting the planar area of the cells; apical F-actin and DPPIV labeling was determined
by measuring the integrated density over the apical membrane areas in xy sections. Bars, 10 pm.

DbI3 is required for epithelial After depletion of Dbl3, cysts were still able to form,
morphogenesis and differentiation although their morphology was altered (Fig. 2). Dbl3-depleted
in 3D cultures cells still formed predominantly single-lumen cysts in agree-

Because Dbl3 was required for morphogenesis of monolayer ment with previous work with MDCK cysts (Qin et al., 2010).
cultures, we next asked whether it is also required for epithelial However, the lumens were smaller and irregularly shaped, and
morphogenesis in 3D cultures in which epithelial cells form the lumen walls contained segments that were unusually thick,
polarized cysts with a lumen that is surrounded by a single cell leading to an increase in the mean wall thickness (Fig. 2 C).
layer (Bryant and Mostov, 2008). As in 2D, apical DPPIV was reduced upon Dbl3 depletion
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Figure 2. DbI3 is required for differentiation in epithelial 3D cultures. Caco-2 cells were transfected with control and DblI3 targeting siRNAs and were
then cultured in 3D matrices before examination by phase contrast (A) and fixation followed by staining for the apical marker DPPIV, F-actin, and DNA (B).
(C) Quantification of cyst morphology and expression of DPPIV. Wall thickness represents means of at least four measurements per cyst; the lumen diameter
was determined along the longest axis of the cysts; the number of lumens and cysts with multilayered sections were determined by counting cysts in samples
stained for DNA and F-actin; apical DPPIV labeling was assessed by measuring the integrated density. Shown are means + SD of three independent

experiments. Bars, 20 pm.

(Fig. 2, B and C). Staining of F-actin and nuclei revealed that the
thick segments of the lumen wall were associated with areas
not formed by a single layer of cells (Fig. 2, B and C). Dbl3 de-
pletion thus leads to a defect in 3D epithelial morphogenesis.

We next determined the localization of Dbl. In Caco-2 cells,
anti-Dbl antibodies generated a punctate apical staining that
was more enriched along cell—cell contacts and that was strongly
reduced upon transfection of DbI3 siRNAs (Fig. 3 A). By con-
focal microscopy, Dbl colocalized with ezrin, a protein that is
essential for epithelial organization and apical membrane dif-
ferentiation (Fig. 3 B; Saotome et al., 2004; Casaletto et al.,
2011). Both proteins formed a more continuous pattern along
the cell periphery (Fig. 3 B). Z sections revealed that Dbl and
ezrin also localized throughout the apical brush border mem-
brane (Fig. 3 C). Although the peripheral staining was reminis-
cent of tight junctions, Z sectioning revealed that Dbl did not
precisely colocalize with ZO-1 but seemed to be positioned
more apically (Fig. 3 D). Structured illumination super-resolution
microscopy supported the enriched localization of Dbl and ezrin
in a zone apical to the tight junction marker ZO-1, where they
colocalized (Fig. 3, E and F). Ezrin-enriched brush border
segments also revealed an overlapping distribution of Dbl and
ezrin along the apical membrane and that the colocalization de-
tected in confocal Z sections were often punctae of Dbl associ-
ated with ezrin-positive structures (Fig. 3 E).

Dbl is expressed in human and mouse epithelial tissues
that form characteristically differentiated apical domains (Komai

et al., 2002, 2003). Indeed, apical Dbl staining was observed
in mouse tissue sections from the small intestine, colon, kidney,
and retinal pigment epithelium (Fig. 3, G-J). Apical Dbl expres-
sion is thus a common feature of epithelia with morphologically
characteristic apical membrane domains.

As Dbl3 is the only Dbl isoform with an intact Cral-Trio domain,
we performed transient transfection experiments to test whether
this domain affects Dbl-induced morphological responses. In
addition to Caco-2 cells, we used MDCK cells, which, although
polar, form a less distinctive apical membrane. The anti-Dbl
antibodies also stained the apical membrane in MDCK cells, but
the staining was weaker than in Caco-2 cells (Fig. S2 F). Ex-
pression of Dbl3 was also detected on the mRNA level, and the
intensity of a band of 140 kD was reduced when MDCK cells
were transfected with siRNAs targeting all Dbl isoforms or just
Dbl3, indicating that MDCK cells also express Dbl3 (Fig. S2 G).
We could not detect other Dbl isoforms in MDCK cells by
RT-PCR. Both types of siRNAs reduced the levels of active
Cdc42 in MDCK cells by ~50% (Fig. S2 H).

In both cell lines, transfected Dbl3 localized apically and
along cell—cell contacts, similar to the endogenous protein, and
induced apically extended cells with more prominent apical
F-actin staining, especially at cell-cell contacts between neigh-
boring transfected cells (Fig. 4, A and B and Fig. S3, A and B).
In contrast, transfected Dbll was distributed throughout the
cytoplasm, and cells were spread across boundaries of neigh-
boring cells in agreement with a previous study showing that
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Figure 3. Dbl associates with the apical membrane and is enriched in a marginal zone. (A) Caco-2 cells transfected with siRNAs targeting Dbl3 were
processed for immunofluorescence using antibodies against Dbl and occludin. Shown is an epifluorescence image of a field containing well and partially
depleted cells. The asterisks mark cells that were well depleted. (B-F) Caco-2 cells were processed for immunofluorescence using antibodies against Dbl,
ZO-1, and ezrin. The samples were then analyzed by confocal microscopy (B-D) or structured illumination super-resolution microscopy (G). (B) Single xy
sections taken at the level of the apical junctional complex to determine the overlap between Dbl and ezrin with the junctional marker ZO-1. (C) Con-
focal z sections taken along the entire depth of the monolayers, and the arrowheads point to labeled apical membrane in images showing Dbl and ezrin.
(E) A single structured illumination super-resolution microscopy image from the apical domain at which Dbl and ezrin are enriched; the box marks the position
of the area that was enlarged and shows the association of Dbl- and ezrin-positive structures along the apical domain. (F) Single xy sections and 3D volume
views generated from xy sections over an axial distance of 5 pm, which included the entire junctional complex to determine the relative localization of
Dbl, ezrin, and ZO-1 at the apical-lateral border (indicated are the x, y, and z axes; the scale bar refers to the x axis). (G-J) Localization of Dbl in mouse
intestine (G), colon (H), kidney (l), and retina (). Arrowheads point to brush border membranes (G-I) and the apical membranes (J) of retinal pigment
epithelial (RPE) cells (ONL, outer nuclear layer). The asterisks mark organ lumens. Bars: (A, C, and G-J) 10 pm; (B) 20 pm; (D) 1 pm; (E, left) 3 pm;
(E, right) 1 pm; (F) 2 pm.
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Dbll induces a transformed phenotype (Fig. S3, C and D; Prag
et al., 2007). The main structural difference between Dbl3 and
the other Dbl isoforms is the Cral-Trio domain. To test the im-
portance of this domain, we substituted a leucine residue, L127,
that is conserved in Cral-Trio domains (Table S1). Dbl3 carry-
ing the L127A mutation no longer accumulated apically and
at cell—cell contacts and did not induce apical F-actin reorgani-
zation (Fig. 4, A and B). Hence, an intact Cral-Trio domain is
important for Dbl3 localization and function.

We next asked if the Cral-Trio domain is sufficient for api-
cal targeting. A myc-tagged construct containing the Cral-Trio
domain associated with the plasma as well as cytoplasmic mem-
branes, indicating that the Cral-Trio domain on its own associ-
ates with membranes efficiently but nonspecifically (Fig. 4, C-E).
Hence, an intact Cral-Trio domain is required for apical local-
ization, but specific apical positioning requires additional struc-
tural elements.

Ezrin mediates apical recruitment of DbI3
As the Cral-Trio-like domain was not sufficient for specific api-
cal recruitment, we asked what provides apical specificity. Dbl1
interacts with ezrin via its Pleckstrin homology domain, which
is required for localization to the leading edge and is shared
by all Dbl isoforms (Fig. 1 A; Vanni et al., 2004; Batchelor
et al., 2007; Prag et al., 2007). Ezrin is a widely expressed apical
scaffold protein and is important for apical differentiation
(Berryman et al., 1993; Saotome et al., 2004; Fehon et al., 2010).
As Dbl3 associates with apical ezrin-positive structures (Fig. 1),
we tested whether ezrin is involved in its apical recruitment.

Depletion of ezrin led to phenotypic changes reminiscent
of Dbl3 depletion, including flatter and more spread cells with
poorly developed apical membranes (Fig. 5, A-H; and Fig. S3,
E and F). It also resulted in loss of apical Dbl staining, suggest-
ing that ezrin is required for Dbl3 recruitment (Fig. 5, I and J).
As previously reported for Dbll, ezrin coimmunoprecipitated
with endogenous Dbl from Caco-2 and transfected Dbl3 from
MDCK cells (Fig. 5 K). Expression of a hyperactive mutant
form of ezrin (VSV-Ezrin T567D) resulted in increased apical re-
cruitment, whereas expression of an inactive, dominant-negative
form (VSV-N-ERMAD E244K) did not (Fig. 5, L and M). Ezrin
thus forms complexes with Dbl3 and is required for its apical
recruitment. Hence, apical enrichment of Dbl3 is based on two
molecular mechanisms: binding to the apical scaffold ezrin,
which interacts with the Pleckstrin homology domain of Dbl
isoforms, and membrane binding by the Cral-Trio domain, which
is unique to Dbl3.

DbI3 activates Cdc42 at apical

cell-cell contacts

Dbl3 localizes to the apical membrane and is enriched at the

apical margin close to the tight junction. Therefore, we asked

whether Dbl3 regulates Cdc42 in a spatially controlled manner,

using a fluorescence resonance energy transfer (FRET)-based

active Cdc42 sensor that contains Cdc42 fused to the Cdc42/

Rac interactive binding domain of PAK1 (Yoshizaki et al., 2003).
Cells transfected with nontargeting siRNAs exhibited the

most intense FRET signal, indicating active Cdc42, along apical

JCB « VOLUME 204 « NUMBER 1 « 2014

cell—cell contacts (Fig. 6, A and B; and Fig. S4 A). Depletion of
Dbl with siRNAs against all isoforms or with siRNAs specifi-
cally targeting Dbl3 led to FRET signals that were lower and no
longer concentrated at cell—cell contacts. Localization of GTP-
bound Cdc42 using a specific antibody also revealed staining
along apical cell—cell contacts that was sensitive to Dbl deple-
tion (Fig. S4 B). Dbl3 is thus required for the normal levels of
active Cdc42 at apical cell—cell contacts. Depletion of ezrin also
led to a dispersed FRET signal, in agreement with ezrin’s role in
Dbl3 recruitment.

To determine the importance of the GEF activity, we
generated tetracycline-inducible MDCK cells expressing ei-
ther myc-tagged wild-type Dbl3 or a mutant carrying a point
mutation in a tyrosine within a conserved QWIKKY motif
(Dbl3-Y645A); analogous mutations in other Dbl family GEFs
inactivate the exchange factor activity (Terry et al., 2011). Mea-
surements of total GTP-Cdc42 levels confirmed that induction
of myc-tagged Dbl3 stimulated Cdc42 activation, whereas
Dbl3-Y645A did not (Fig. 6, C and D). Similarly, when these
constructs were transfected into Caco-2 cells, wild-type Dbl3,
but not the mutant, stimulated Cdc42 activation (Fig. S4 C). In
agreement, staining with antibodies specific for GTP-bound
Cdc42 demonstrated that active Cdc42 was induced at apical
cell—cell contacts in cells expressing active but not mutant Dbl3
(Fig. 6 E), supporting the conclusion that Dbl3 functions as a
GEF that stimulates spatially restricted activation of Cdc42 at
apical cell—cell contacts.

As ezrin is required for Dbl3 recruitment, and both Dbl3 and
ezrin depletion resulted in reduced apical Cdc42 activity, we tested
whether enhanced ezrin function stimulates Cdc4?2 activation.
Expression of active ezrin T567D, which stimulated enhanced Dbl
recruitment (Fig. 5), resulted in a similar increase in active Cdc42
to expression of Dbl3-myc (Fig. 6, F and G). Combined expression
of ezrin T567D and Dbl3-myc resulted in a further increase of ac-
tive Cdc42 levels, supporting a model in which ezrin and Dbl3
cooperate in a pathway that promotes Cdc42 activation.

DbI3 regulates apical morphogenesis,
domain size, and apical-lateral

border position

The loss-of-function experiments indicate that Dbl3 regulates
morphogenesis and apical differentiation. As MDCK cells have
a poorly developed brush border membrane in comparison to
Caco-2 cells, we next asked whether gain-of-function stimu-
lates apical differentiation in MDCK cells. Phase-contrast mi-
croscopy revealed that expression of Dbl3 resulted in more
compact cells with an apparently raised appearance (Fig. S5 A).
Confocal microscopy showed that Dbl3 expression induced a
strong increase in cell height, in the ezrin-positive membrane
area, and integrated apical F-actin density; in contrast, a-catenin
staining indicated a shortening of the lateral membrane (Fig. 7,
A-C; and Fig. S5 B). All effects required an active GEF do-
main. The increase in ezrin-positive membrane area was not
caused by higher expression levels (Fig. S5 C). Actin accumula-
tion and apical expansion were prevented by depletion of ezrin,
indicating that Dbl3’s apical recruiter was required to induce
the phenotype (Fig. 7, A and D; and Fig. S5, D and E).
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Figure 4. The Cral-Trio domain is required for Dbl3 locdlization. (A and B) Caco-2 cells were transiently transfected with myctagged cDNAs encoding
wild-type DbI3 or a mutant carrying a point mutation that substitutes a leucine residue that is conserved in Cral-Trio domains (see Table S1). Shown are
confocal zy sections (A; white lines indicate position of z sections shown in B) and z sections (B; contacts between neighboring transfected cells are
labeled with arrowheads). Two different images are shown for Dbl3-myc in B, illustrating the different effects observed in response to different expres-
sion levels. Note that wildtype Dbl3 is enriched along the apical membrane and cell-cell contacts and promotes enhanced F-actin staining at cell-cell
contacts, whereas the mutant remains diffusely distributed in the cytoplasm and does not induced enhanced apical F-actin staining. See Fig. S3 (A-D) for
expression of Dbl1 and localization of isoforms in MDCK cells. (C) Scheme of the Dbl3 domain structure and the CRAL-TRIO domain construct.
(D and E) DbI3-CRT-myc—expressing MDCK cells were processed for immunoblotting and immunofluorescence using antibodies against the proteins indi-
cated. Bars: (A and B) 10 pm; (E, left) 20 pm; (E, right) 10 pm.
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Figure 5. Ezrin is required for apical recruitment of DbI3. (A-D) Caco-2 cells transfected with siRNAs were processed for immunoblotting (A) or immuno-
fluorescence and confocal microscopy (B-H). The confocal images were then analyzed as described in Fig. 1. The quantification shows means = SD of
three independent experiments. The arrowheads in C point to the apical membrane. (I and J) Inmunofluorescence analysis of Caco-2 cells transfected with
siRNAs and labeled with antibodies against Dbl and Ezrin. (F) Cells still expressing detectable ezrin upon siRNA transfection were counted separately as
an additional control (shown are means + SD of three independent experiments). (K) Caco-2 or MDCK cells expressing Dbl3-myc in a tetracycline-regulated
manner were processed for immunoprecipitation using anti-Dbl antibodies and were then blotted as indicated. (L and M) Caco-2 cells transiently transfected
with Ezrin T567D-VSV or E244K-VSV cDNAs were analyzed by confocal microscopy (L, xy sections from the level of the apical-lateral border; M, z scans
with arrowheads pointing to the apical membrane). Bars: (B, C, I, and M) 10 pm; (L) 20 pm.
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Expression of Dbl3 not only affected the distribution of
ezrin and a-catenin but the tight junction marker ZO-1 localized
closer to the basal membrane. It still bordered the apical ezrin
staining, indicating that the apical-lateral border had shifted to-
ward the basal membrane (Fig. 7 E). The apical polarity regula-
tor Crb3 overlapped with ezrin, supporting an enhanced apical
domain size (Fig. 7 F). Hence, expression of Dbl3 with an active
GEF domain induced an increase in apical domain size and a
shift of the apical-lateral border and cell junctions at the expense
of the lateral membrane.

We next examined Dbl3-expressing MDCK cells using
electron microscopy to determine if the observed apical

expansion along the topologically lateral membrane was
morphologically continuous. Analysis of ultrathin sections
revealed that the apical membrane was morphologically ex-
tended and reached deep into lateral positions with no regularly
apposed neighboring membranes, suggesting little cell-cell
contact (Fig. 7 G). The nuclear positioning had become ir-
regular, possibly caused by the compaction of the cells and
their increased size. Scanning electron microscopy showed
that control MDCK cells exhibited relatively few microvilli,
which were not as regular as in in vivo; however, Dbl3-
expressing cells exhibited an increase in microvilli-like projec-
tions (Fig. 7 H).
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Figure 7. Dbl3 regulates brush border induction and apical-lateral border positioning. (A-C) MDCK cell lines induced with tetracycline for 8 h were ana-
lyzed by confocal z sectioning. If indicated, ezrin was depleted by siRNA transfection (see Fig. S5 for siRNA controls and xy images). Apical and lateral
membrane lengths of Dbl3-Myc MDCK cells (B) and F-actin density of apical membrane at cell-cell contacts and total apical membrane (C) were measured
before and after induction with tetracycline. (D) Dbl3-Myc MDCK cells were transfected with control or ezrin targeting siRNAs and were then incubated
without or with tetracycline to induce induction of DbI3 for 8 h before lysis and analysis by immunoblotting. (E and F) Dbl3-Myc MDCK cells were treated as
in A before fixation and staining for the proteins indicated. Shown are confocal z sections. (G and H) Cells were processed for electron microscopy without
or with induction of DbI3-myc and analyzed by transmission (G) or scanning electron microscopy (H). Arrowheads indicate the position of tight junctions.
Bars: (A, E, and F) 10 pm; (G, left) 1 pm; (G, right) 2 pm; (H, left) 2 ym; (H, right) 5 pm.

These data thus show that enhanced Dbl3 activity leads
to an ezrin-dependent increase in apical domain size, enhanced
apical features, and a shift of the apical-lateral border and tight
junctions toward the basal membrane; hence, Dbl3 regulates the
balance between apical and basolateral polarity factors in a pro-
apical manner.
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DbI3 is sufficient to stimulate
morphogenesis and apical

membrane differentiation

We next asked two questions. First, as Dbl3 is expressed in
MDCK cells, does it possess a similar function to its role in
Caco-2 cells. Second, as siRNAs specific for Dbl3 caused a
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Figure 8. DbI3 is sufficient to stimulate morphogenesis and apical polarity. MDCK cells were transfected with siRNAs and, if indicated, were induced to
express wild-type or mutant Dbl isoforms for 8 h before fixation for immunofluorescence (A-F) or extraction of total RNA for RT-PCR (G). (A) Confocal z sec-
tions with arrowheads pointing to apical membranes. (B-F) Quantification showing means + SD of three independent experiments, and all measurements
were performed as in Fig. 1 (for B-E) and Fig. 7 (for F). Note that only expression of active Dbl3 can complement depletion of endogenous Dbl with siRNAs
targeting all isoforms, and it recovers columnar morphogenesis as well as apical differentiation. Bars, 10 pm.

morphological defect in Caco-2 cells that was indistinguishable
from siRNAs targeting all Dbl isoforms, is Dbl3 sufficient
to induce epithelial differentiation? Depletion of Dbl in MDCK
cells resulted in cells with similar phenotypic changes as in
Caco-2: cells were reduced in height (~~50%), cells were more
spread (~3-fold), and the apical F-actin staining was reduced
(~3-fold; Fig. 8 and Fig. S2, G and I). Dbl3 is thus required for
columnar morphogenesis and apical differentiation of MDCK.
To determine whether Dbl3 is the only isoform required,
we expressed human Dbl constructs in MDCK cells depleted
with pan-Dbl siRNAs. Fig. 8 shows that Dbl3 was sufficient to
stimulate cell compaction and apical differentiation indepen-
dently, indicating that it is sufficient to drive epithelial differen-
tiation. In contrast, stable expression of the Dbl1 did not rescue
the defects caused by Dbl knockdown, supporting the different
functional properties of Dbl isoforms. Expression of GEF-inactive
DblI3 (Dbl3-Y645A) also did not restore the phenotypic defects,

supporting a specific role for Dbl3 in activating Cdc42 to drive
epithelial differentiation.

These results thus demonstrate that Dbl3 is sufficient to
drive cell compaction and columnerization, as well as apical
extension and differentiation.

As Dbl3 determines positioning of the apical-lateral border, we
asked whether this involved the Par3—Par6—-aPKC pathway. In-
duction of Dbl3 expression in MDCK cells indeed stimulated
enhanced accumulation of aPKC( at cell-cell contacts and re-
duced cytoplasmic staining (Fig. 9 A). Staining for aPKC{ and
Par6f3 extended along the lateral membrane until it reached the
zone positive for scribble, marking shortened basolateral do-
mains (Fig. 9, B-E). Par3, which remains associated with tight
junctions upon junctional maturation, was also localized closer to
the base of the cells (Fig. 9 B). Par3-positive foci were frequently
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Figure 9. DbI3 controls progression of the Par3-Par6-aPKC pathway. (A) DbI3-myc MDCK cells induced with tetracycline for 4 h were stained with
antibodies against Myc and aPKC¢. (B-D) Dbl3-myc MDCK cells were incubated with tetracycline for 8 h and, if indicated, aPKC inhibitor. The cells were
then processed for immunofluorescence and analyzed by confocal microscopy. (C) The schematic indicates the relative distribution of the apical polarity
regulator aPKC and the basolateral determinant scribble. (D) Quantification shows means + SD of three independent experiments. (E) MDCK cells condi-
tionally expressing DbI3-myc or Dbl3-myc-Y645A were treated with tetracycline for 4 h and were then processed for immunofluorescence and confocal
microscopy. Shown are confocal xy sections. Note, stimulation of aPKC¢ and Parép requires expression of active Dbl3. (F and G) Dbl3-myc MDCK cells
were processed for immunoprecipitation using anti-Par3 or IgG control antibodies. Precipitates and lysates were then immunoblotted as indicated.
(H) Induction of Par3 phosphorylation was analyzed by immunoblotting. Only one of the Par3 isoforms is shown as phosphorylation of the other ones was
not detected. Bars, 10 pm.
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observed along the lateral membrane and coincided with an in-
complete lateral exclusion of scribble, indicating that the Dbl3
expression—stimulated repositioning of the apical-lateral border
was still in progress as short induction times were analyzed.

Activation of the aPKC pathway in a dynamic system that is
repositioning the apical-lateral border should lead to increased
complex formation caused by the enhanced recruitment of aPKC
but also increased phosphorylation of Par3, which promotes
segregation of aPKC and Par6 into the increasing apical domain.
Increased levels of coimmunoprecipitation of aPKC{ with Par3
in response to Dbl3 expression were indeed detected (Fig. 9 F).
Increased complex formation was not induced when the GEF-
inactive Dbl3-Y645A mutant was expressed (Fig. 9 G). Similar
observations were made for Par6@ (Fig. 9 G). Dbl3-induced
Cdc42 activation thus stimulated formation of the transient
tripartite complex.

Active aPKC phosphorylates serine-827 of Par3, which
favors its dissociation and apical differentiation in D. melano-
gaster (Nagai-Tamai et al., 2002; Morais-de-S4 et al., 2010;
Walther and Pichaud, 2010). Immunoblotting with an antibody
specific for phosphorylated serine-827 indeed showed that in-
duction of the active, but not mutant, Dbl3 stimulated phosphory-
lation of Par3 (Fig. 9 H). Inhibition of aPKC consequently
attenuated the basal shift of the apical-lateral border and apical
domain expansion (Fig. 9, B and D). Hence, aPKC activity was
required for the Dbl3-driven expansion of the apical domain
and basal shift of the apical-lateral border.

Discussion

We have identified an activator of apically restricted and process-
specific Cdc42 signaling. Dbl3 is a GEF that regulates epithelial
morphogenesis, positioning of cell junctions, and the apical—
lateral border, as well as apical domain differentiation and size.
Dbl3 functions at a region above tight junctions, after their for-
mation, promoting the progression of the Par3—Par6—-aPKC path-
way from junction formation to apical differentiation (Fig. 10).
Cdc42 regulates different processes required for epithelial
differentiation (Hall, 2005). Hence, different GEFs and GAPs
are required to control Cdc42 in space and time. Cdc42 regula-
tors have been identified that regulate membrane traffic and
junction assembly (Liu et al., 2004; Otani et al., 2006; Wells
et al., 2006; Bryant et al., 2010; Elbediwy et al., 2012). However,
the GEF that activates Cdc42 once junctions have been assem-
bled to drive apical differentiation and apical-lateral border posi-
tioning by stimulating aPKC had thus far not been identified.
Dbl3 is recruited to the apical membrane in two steps:
first, ezrin recruits the GEF to the apical domain and, second, the
Cral-Trio domain then mediates stabilization at the membrane.
Ezrin is required for epithelial organization and apical differen-
tiation, and DbI3 provides the molecular link between ezrin and
apical Cdc42 signaling (Bonilha et al., 1999; Médina et al.,
2002; Speck et al., 2003; Saotome et al., 2004; Cao et al., 2005;
ten Klooster et al., 2009; Viswanatha et al., 2012). Although
ezrin is required for apical targeting of Dbl3, isoform specificity
is determined by the presence of a functional Cral-Trio domain.
Cral-Trio domains can bind lipophilic molecules, which may

Apical Membrane Differentiation
Apical Domain Size
Brush Border Biogenesis

Marginal Zone

Apical-Lateral Border
Junctional Positioning

Lateral Compression

-

Figure 10.  Scheme of DbI3 function. A schematic drawing of an epithelial
cell along with the processes regulated by DblI3: apical differentiation,
apical domain size, brush border biogenesis, apical lateral border posi-
tioning, and lateral compression. Labeled is also the vertebrate marginal
zone immediately apical to the tight junction. Indicated is how DbI3 is
recruited fo the apical membrane by ezrin where it becomes enriched at
the marginal zone. DbI3 then activates Cdc42, resulting in stimulation of
the Par-Paré-aPKC pathway in a process-specific manner that leads to
phosphorylation of Par3 and refention at tight junctions while Par6 and
aPKC segregate into the expanding apical membrane.

be responsible for membrane recruitment (Panagabko et al.,
2003). However, they do so in a promiscuous manner; hence,
expression of the Cral-Trio domain alone resulted in nonspecific
membrane recruitment. Thus, apical enrichment of Dbl3 requires
the combination of ezrin-mediated targeting and Cral-Trio—
mediated stabilization.

The interaction of Dbl3 with ezrin provides a direct link to
the molecular network that regulates apical differentiation. Ver-
tebrate ezrin and its fly counterpart bind to the apical crumbs
complex by binding to the adaptor Pals1 or to crumbs itself
(Médina et al., 2002; Speck et al., 2003; Cao et al., 2005). Ezrin
is activated by phosphorylation by different kinases (ten Klooster
et al., 2009; Viswanatha et al., 2012). One kinase, Mst4, func-
tions downstream of the tumor suppressor Lkbl/Par4. Lkbl
may affect Dbl3 function, as the kinase can bind and stimu-
late the GEF activity of at least some Dbl isoforms (Xu et al.,
2010). Similarly, the tumor suppressor hamartin/Tsc1 has been
shown to bind and stimulate Dbl via the Dbl homology do-
main; the Tsc complex is regulated by the Crb3—PATJ complex
(Massey-Harroche et al., 2007; Ognibene et al., 2011). Activa-
tion by tumor suppressors will thus be important to explore, as
it may provide a molecular basis for the multilayering we
observed in organotypic cultures of Dbl3-depleted cells. Dbl3 thus
provides the missing molecular link between the ezrin—crumbs
complex and the Cdc42-driven apical differentiation mechanisms,
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as such a GEF had previously not been identified in any epithe-
lial model system. Because Dbl3 is required for apical accumu-
lation of Crb3, our results further suggest the existence of feedback
mechanisms that enable the generation of a robust signal that
drives apical differentiation.

The localization of Dbl3 suggests another evolutionarily
conserved feature of the mechanisms that regulate apical differ-
entiation. We observed that Ezrin and Dbl3 are enriched in a
zone apical to tight junctions, the apical-lateral border in verte-
brates, similar to a region in D. melanogaster termed the mar-
ginal zone that is also enriched in apical polarity regulators
(Tepass, 2012). This domain became expanded when Dbl3 was
expressed in MDCK cells. Therefore, our data suggest that the
junctional configuration and the position of the apical signaling
machinery relative to the apical-lateral border is evolutionarily
conserved and that vertebrate epithelial cells also form an apical
marginal zone in proximity to their apical-lateral border, the
tight junction.

The molecular environment and spatial control of active
Cdc42 is crucial for its function. Unlike increased Dbl3-mediated
Cdc42 activity, increased Cdc42 signaling caused by deple-
tion of the junction-associated Cdc42 GAPs did not lead to
increased apical domain size but to defective junction assem-
bly caused by diffusion of active Cdc42 (Wells et al., 2006;
Elbediwy et al., 2012). Regulation of Cdc42 signaling during
epithelial differentiation thus requires Cdc42 GEFs and GAPs
that guide junction assembly, membrane traffic, and cytoskeletal
organization, culminating with Dbl3 driving Cdc42 activation
at an apical marginal zone to regulate apical differentiation and
domain size and positioning of the apical-lateral border. Un-
like Cdc42 GEFs that regulate junction formation, Dbl3 does
not associate with the junctional complex but with the apical
membrane and is enriched in a distinct zone apical to tight
junctions. Thus, the recruitment of DbI3 to the apical marginal
zone ensures process-specific activation of Cdc42 and, hence,
represents a functional barrier that separates junction forma-
tion from apical differentiation.

Activation of Cdc42 by Dbl3 leads to activation of the
Par3—Par6—aPKC effector mechanism. This pathway regulates
junction formation, apical differentiation, and junctional position-
ing (Suzuki and Ohno, 2006; Goldstein and Macara, 2007,
Morais-de-Sa et al., 2010; Walther and Pichaud, 2010; St Johnston
and Sanson, 2011). However, Dbl3 only stimulates the latter
two functions. On a molecular level, this is supported by the
observation that DbI3 was required once the Par3—Par6—aPKC
complex had been recruited to cell-cell contacts, a stage at
which aPKC-mediated phosphorylation of Par3 promotes dis-
sociation of the complex and enrichment of Par6—aPKC in the
apical domain whereas Par3 remains associated with tight junc-
tions. Hence, enhanced Dbl3 signaling led to increased recruit-
ment of aPKC to the apical domain and increased phosphorylation
of Par3.

Positioning of the apical-lateral border is a dynamic pro-
cess and the underlying mechanism could be activated in al-
ready formed monolayers by overexpression of Dbl3. It is thus
likely that the shift requires continuous turnover of tight junc-
tion complexes and of the machinery that determines apical-lateral
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border positioning. Such a dynamic model is supported by the
observation that Dbl3-induced Cdc42 activation led to increased
membrane recruitment of aPKC and increased coprecipitation
of aPKC and Par6 with Par3 despite their increased accumulation
in the apical, Par3-negative domain. Hence, apical-lateral bor-
der positioning seems to be mediated by a dynamic equilibrium
between soluble and membrane-associated aPKC complexes,
and forward flow of the pathway is driven by Dbl3-activated
Cdc42 signaling. At least in MDCK cells, Dbl3 signaling seems
to represent a rate-limiting step; hence, increased expres-
sion led to increased recruitment of aPKC and enhanced api-
cal differentiation.

In conclusion, our data demonstrate that the differentia-
tion of polarized epithelia culminates with the spatially restricted
activation of Cdc42 by Dbl3 at a marginal apical zone located
above tight junctions. Dbl3 is integrated into the evolutionarily
conserved apical signaling machinery, functioning after initial
junction formation, and drives apical membrane differentiation
and size, morphological specialization (e.g., brush border mem-
brane formation), and positioning of the apical-lateral border
and tight junctions.

Materials and methods

Cell culture, cell lines, and permeability assays

Caco-2 and MDCK cells were cultured in high glucose DMEM containing
20% (Caco-2) or 10% (MDCK) heat-inactivated FCS with 100 pg/ml strep-
tomycin and 100 pg/ml penicillin at 37°C in a 5% CO, atmosphere. Cells
were cultured and plated for experiments as described previously (Matter
et al., 1989; Steed et al., 2009). For calcium switch and permeability as-
says, cells transfected in 6-well plates were plated in low calcium medium
containing dialyzed FCS (Elbediwy et al., 2012). Junction formation was
then induced by adding normal tissue culture medium. For transepithelial
electrical resistance and paracellular permeability assays, cells were cul-
tured in 12-well culture inserts (0.4-pm pore size; Corning). Transepithelial
electrical resistance was measured with a silver/silver-chloride electrode to
determine the voltage deflection induced by an AC square wave current
(£20 pA at 12.5 Hz) using an EVOM (World Precision Instruments, Inc.) as
described previously (Matter and Balda, 2003). Paracellular permeability
was determined over a time of 3 h after adding 4 kD of FITC-conjugated
Dextran and 70 kD of Rhodamine B—conjugated dextran to the apical
chamber, and a FLUOstar OPTIMA microplate reader (BMG LabTech) was
then used to defermine fluorescence in the basolateral chamber (Balda
etal., 1996; Matter and Balda, 2003). The aPKC{ inhibitor (EMD Millipore)
was used at a final concentration of 40 pM. For 3D cysts, siRNA-ransfected
Caco-2 cells were seeded on top of a layer of growth-factor reduced
Matrigel 1 d after transfection (BD; Jaffe et al., 2008; Terry et al., 2011).
In brief, coverslips in 48-well plates were covered with 120 pl Matrigel
(9.8 mg/ml) and left to set for 1 h. 10,000 cells were then plated in 500 pl
of low glucose medium containing 20% serum and 2% Matrigel. Cells
were cultured for 3 d followed by the addition of 0.1 pg/ml cholera toxin
and cultured for one further day before fixation.

RNA interference, cDNAs, transfection, and RT-PCR

Fulllength human Dbl isoform cDNAs (provided by S. Shiozawa; Kobe
University, Kobe, Japan) were used to generate Cterminally myc-tagged
constructs that were cloned into a pCDNA4/TO vector (Invitrogen). Point
mutations L127A and Y645A were generated using the QuickChange mu-
tagenesis kit (Agilent Technologies). Ezrin expression constructs were pro-
vided by T. Ng (King’s College London, London, UK; Komai et al., 2002).
The siRNA screen was performed as described previously (Elbediwy et al.,
2012). In brief, Caco-2 cells were plated onto glass coverslips in 48-well
plates and transfected the next day in triplicates with siRNAs from a library
containing all known GEFs. After three days, the cells were fixed with
and analyzed by immunofluorescence. In a first round, the cells were trans-
fected with pools of siGenome siRNAs targeting four different sequences.
Hits that affected either junction formation (based on ZO-1 distribution)
or apical morphogenesis (based on DPPIV staining) were selected and
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reanalyzed using pools of ON-TARGETplus siRNAs. Sequences targeted in
the siRNA screen are provided in Table S2. siGenome and ON-TARGET-
plus siRNAs were obtained from Thermo Fisher Scientific, and custom siRNAs
were obtained from Sigma-Aldrich. For subsequent RNAi experiments,
cells were transfected with individual or pools of siRNAs targeting the fol-
lowing sequences: human Dbl, 5-GCAACAGGAUCAAUUAACA-3" and
5-CUAGAAUGUCAUCGGCAAA-3’; human Dbl3, 5'-AAGACAUCGC-
CUUCUUGUCUU-3’" and 5"-AUACAUGGUCUUCUCUCAAUU-3’; canine
Dbl, 5"-GCAACAGGAACUUAUGACA-3’ and 5'-CUUGAACACCACCAC-
CAAA-3’; canine Dbl3, 5'-AAGAUAUCGCCUUCUUGUC-3’; human ezrin,
5'-GCGCGGAGCUGUCUAGUGA-3" and 5'-GGAAUCAACUAUUUC-
GAGA-3’; and canine ezrin, 5-GCGCUGAGCUGTCCAGCGA-3’ and
5" -GGAAUCAACUAUUUUGAGA-3'. For siRNA transfections, interferin
transfection reagent (Polyplus-Transfection Inc.) was used according to
the manufacturer’s instructions using a total final siRNA concentration of
20-80 nM (Terry et al., 2011). Samples were collected and processed 3-4 d
after transfection. For MDCK cells, siRNA-transfected cells were reseeded
1 d after transfection and cultured for 2-3 d followed by partial trypsiniza-
tion and a second round of siRNA transfection. The cells were then har-
vested after a further 3-4 d. For DNA transfections, 0.5 pg/ml of plasmid
DNA and JetPEl transfection reagent (Polyplus-Transfection Inc.) were used
according to the manufacturer’s instructions. Samples were collected and
processed after 18-24 h. For the generation of tetracycline-regulated sta-
ble cell lines, MDCK cells were cotransfected with pcDNA6/TR and the re-
spective Dbl3 expression vectors, and clones were subsequently selected
as described previously (Aijaz et al., 2005; Terry et al., 2011). For RT-
PCR, total RNA was isolated using the RNeasy kit (QIAGEN) and re-
verse transcribed with AMV reverse transcription before PCR (Nie et al.,
2012). The following primers were used: human DbI3, 5-GGAAAGGA-
CAATGCTTGGATC-3" and 5'-CATCTGGTAGTTCTGTCTCAG-3’; human
Dbl1, 5'-CCAATTTIGTGGTACCCACACC3' and 5'-CTGACAATCAGGCAC-
CACTTC-3’; human GAPDH, 5'-ATCACTGCCACCCAGAAGAC-3’ and
5'-ATGAGGTCCACCACCCTGTT-3'; canine GAPPDH, 5'-ATCACTGC-
CACCCAGAAGAC-3" and 5-ATGAGGTCCACCACCCGGTT-3'; canine
DbI3, 5-GGAAAGGATAATGCTTGGATC-3" and 5'-CATCTGGTAGTICT-
GTCTCAG-3’; and canine Dbl1, 5'-CCAGTTTGTAGTGCCTGCTTC-3’ and
5'-CCGACAATCATGCACCACTTC-3'.

Primary antibodies

The following antibodies were used: rabbit anti-Dbl (sc-89) and Parég,
mouse anti-ezrin and aPKC{, goat anti-scribble (Santa Cruz Biotechnology,
Inc.); mouse anti-ZO-1 and anti-occludin (Invitrogen); rabbit anti-myc (MBL
International); rabbit anti-a-catenin and B-catenin (Sigma-Aldrich);
mouse anti-Cdc42-GTP (NewEast Biosciences); rabbit anti-Par3 (EMD
Millipore); and mouse anti-p-MLC (S19; Cell Signaling Technology). The
following antibodies were as described previously: rabbit anti-Crb3 (anti-
gens: recombinant cytoplasmic domain of human Crb3 or the peptide
N-VGARVPPTPNLKLPPEERLI-C; provided by B. Margolis [University of
Michigan Medical School, Ann Arbor, MI] and A. Le Bivic [Developmental
Biology Institute of Marseille Luminy, Marseille, France]), rabbit anti-ZO-1
(antigen: the peptide N-YTDQELDETLNDEVC-C), mouse anti—a-tubulin (anfi-
gen: a peptide containing the last 11 C+erminal amino acids of porcine
a-tubulin), mouse anti-DPPIV (antigen: isolated human brush border mem-
branes), mouse anti-Giantin (antigen: isolated Golgi membranes from
Caco-2 cells), mouse and rabbit anti-VSV tag (antigen: the peptide
N-CGYTDIEMNRLGK-C), and rabbit anti-phosphoS827-Par3 (antigen: the
peptide N-CGFGRQS(P)MSEKR-C; provided by S. Ohno, Yokohama City
University, Yokohama, Japan; Hauri et al., 1985; Kreis, 1986, 1987; Linstedt
and Hauri, 1993; Nagai-Tamai et al., 2002; Benais-Pont et al., 2003;
Makarova et al., 2003; Lemmers et al., 2004; Steed et al., 2009). A rabbit
polyclonal antibody against human Dbl was raised against the peptide
N-SSKQGKKTWRANQSC-C and dffinity purified using the peptide conju-
gated to Epoxy-activated Sepharose as described previously (Benais-Pont
et al., 2003). This antibody was used for all experiments with human cells
and for immunofluorescence in MDCK cells. The commercial anti-Dbl anti-
body was used for all other experiments.

Immunostaining and fluorescence microscopy

Cells were either fixed with methanol (5 min at —20°C) followed by rehydra-
tion in PBS at ambient temperature or with 3% PFA in PBS for 20 min at ambi-
ent temperature. PFAfixed cells were then permeabilized with 0.3% Triton
X-100 in PBS containing 0.5% BSA and 20 mM glycine for 3 min followed
by two washes with blocking buffer (PBS with 0.5% BSA and 20 mM glycine;
Balda et al., 1996). The samples were then incubated for 1 h in blocking
buffer. After blocking and incubation with primary antibodies, which were
diluted in blocking buffer, the samples were incubated with appropriate

fluorescent cross-absorbed and affinity-purified secondary antibodies coniju-
gated to Alexa 488, Cy3, Cy5, or Alexa 647 (Jackson ImmunoResearch
Laboratories, Inc.) in blocking buffer. In some experiments, we used fluores-
cent phalloidin (Alexa 647; Molecular Probes) and Hoechst 33258 to label
DNA (Invitrogen). 5-pm sections of mouse fissues were obtained and stained
as described previously (Elbediwy et al., 2012; colon and small intestine
sections were provided by P. Clark, Imperial College London, London, UK).
All samples were embedded in Prolong Gold antifade reagent (Life Technol-
ogies). Epifluorescent images were collected with @ DMIRB fluorescent micro-
scope (Leica) using a Apochromat 63x/1.4 oil immersion objective fitted
with a camera (C4742-95; Hamamatsu Photonics) and simple PCl software.
Confocal images were acquired with an LSM 700 confocal laser scanning
microscope (Leica) or an SP2 confocal microscope (Leica) using Apochromat
63x/1.4 immersion oil objectives. 518F immersion oil (Carl Zeiss) was used
for all objectives. Images were acquired at ambient temperature using ZEN
2009 or Leica LCS, respectively. Images were adjusted for brightness and
contrast with Adobe Photoshop. For FRET experiments, siRNA-ransfected
cells were plated into ibidi 8-well chamber slides and transfected with pRai-
chu-Cdc42 as previously described (Yoshizaki et al., 2003; Terry et al.,
2011). The samples were analyzed using an SP2 microscope (Apochromat
63x/1.4 objective, 37°C) and LCS FRET software (Leica) using the donor
recovery after acceptor bleaching protocol and generating the shown FRET
efficiency maps according to the equation [(Dpest — Dpre)/Dgost] x 100 (D rep-
resents donor intensity). For quantification of relative FRET values, CFP images
were subtracted and mean FRET infensities were quantified with Image). For
each image, all cell-cell contacts were quantified and normalizations were
performed by dividing mean values obtained for specific fields by the
mean values obtained for the entire field imaged (Elbediwy et al., 2012). For
structured illumination super-resolution microscopy, the samples were prepared
as for standard immunofluorescence using secondary antibody pairs coniju-
gated to Alexa 488 and Cy3. The samples were then imaged with a micro-
scope (N-SIM; Nikon) using the 3D-SIM mode and an Apochromat 60x/1.2
lens. The Nikon software was used for 3D reconstructions and brighiness ad-
justments. Images were quantified using the measurement tools in Adobe Pho-
toshop and Image). For the analysis of single cells, at least 50 cells were
analyzed for each condition in each experiment. Cell height was measured at
at least four sites per cell that were placed at regular intervals along the entire
width of the cells, and the mean value was then calculated for each cell. Simi-
larly, cell diameters were measured parallel to the longest axis at af least four
sites and averaged for each cell analyzed. Planar cell areas (e.g., the area
covered in xy planes) were measured at the level of the apical junctional com-
plex by tracing the cell perimeter. To quantify the fluorescence intensity (e.g.,
F-actin and DPPIV), the relevant areas (e.g., the apical membrane) were traced
and the infegrated density was calculated.

Electron microscopy

All steps were performed at room temperature with a rotator used during
alcohol dehydration. Cell monolayers were fixed in a mixture of 3% (vol /vol)
glutaraldehyde and 1% (wt/vol) PFA in 0.08 M sodium cacodylate buffer
(CB), pH 7.4, for 2 h at room temperature and left overnight at 4°C. Before
osmication, the primary fixative solution was replaced by a 0.08 M caco-
dylate buffered solution of 2.5% glutaraldehyde and 0.5% (wt/vol) tannic
acid. After two brief rinses in CB, specimens were osmicated for 2 h in 1%
(wt/vol) aqueous osmium tetroxide, dehydrated by 10-min incubations in
50%, 70%, 90%, and three times 100% ethanol. At his point specimens
destined for examination by scanning electron microscopy were passed
through two 5-min changes of hexamethyldisilazane and air dried. Once
dried, specimens were cut out, mounted, sputter coated with 1 nm of plati-
num using a CR 108 coater (Cressington Scientific), and examined in a
Sigma Field Emission scanning electron microscope (Carl Zeiss) operating
at 5 kV. Digital images were recorded using SmartSEM software (Carl
Zeiss). For transmission electron microscopy, wells were given a fourth
change of absolute methanol and were then completely filled with araldite
resin and placed in @ 60°C oven overnight to harden. Semithin sections
(0.75 pm) for light microscopy and ultrathin sections (50-70 nm) for elec-
tron microscopy were cut from sawed out blocks with diamond knives
(Diatome; Leica). Semithin sections were stained with 1% toluidine blue/
borax mixture at 60°C and ultrathin sections were stained with Reynold’s
lead citrate. Stained ulirathin sections were examined in a transmission elec-
tron microscopy (1010; JEOL) operating at 80 kV and images were recorded
using an Orius B digital camera and DigitalMicrograph (Gatan, Inc.).

Immunoblotting, immunoprecipitations, and Rho GTPase activity assays

Whole cell lysates were collected after washing with PBS by adding SDS-
PAGE sample buffer and heating at 70°C for 10 min. Extracts were homog-
enized using a 23-gauge needle and samples were processed using
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standard Western blotting techniques. For immunoprecipitations, either
Caco-2 cells or MDCK tetracycline-inducible DBL3-Myc—expressing cells
were harvested using extraction buffer (10 mM Hepes, pH 7.4, 150 mM
NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, and 0.2% sodium do-
decylsulfate) plus a cocktail protease and phosphatase inhibitors (Terry
etal., 2011) and homogenized. Cell extract was incubated with inactivated
CNBr beads on ice for 30 min followed by incubation with immunobeads
for 2 h. Bead/extracts were washed twice with PBS-TX (PBS with 0.5% Tri-
ton X-100) and then PBS and processed for blotting using sample buffer.
To measure totfal levels of active Rho GTPases, cells were transfected with
siRNAs in 12-well plates and, after 72 h, extracts were analyzed for levels
of active Rho GTPases using the respective G-LISA assay kits and following
the manufacturer’s protocol (Cytoskeleton; Terry et al., 2011).

Structural analysis

The N-+erminal regions of Dbl isoforms were submitted to the BioSerf option
of the Psipred server (Buchan et al., 2010). Only the Dbl3 isoform se-
quence came back with a certain hit. A model using PDB 3hx3 as the tem-
plate was then completed using the Modeller interface (Eswar et al., 2006).
A similar model was constructed using Chimera based on a structural su-
perposition of five Cral-Trio domains and then aligning the DBL3 N termi-
nus to these sequences and completing a Modeller run through the chimera
interface using 2d4q as the template (Pettersen et al., 2004). The region
convincingly modeled is the N-terminal domain containing the first 156
residues of Dbl3.

Statistical analysis

Averages and standard deviations were calculated and provided in the
graphs. If not indicated otherwise, they were calculated from three inde-
pendent experiments. The unpaired, two-ailed Student’s  fest was applied
to calculate p-values.

Online supplemental material

Fig. S1 shows the results of the siRNA screen for GEFs and the effect of
Dbl depletion on tight junction function. Fig. S2 shows transfections of Dbl
isoforms and their differential effect on cell morphology and the deple-
tion of Dbl in MDCK cells. Fig. S3 shows the differential localization of
transiently transfected Dbl isoforms and ezrin-dependent apical membrane
formation. Fig. S4 shows localization of active Cdc42 in Caco-2 cells and
how it is affected by Dbl depletion, and activation of Cdc42 in trans-
fected Caco-2 cells. Fig. S5 shows the effect of active and inactive DbI3
expression in MDCK cells on cell morphology and apical differentiation.
Table S1 shows an alignment of Cral-Trio domains. Table S2 lists the se-
quences of the siRNAs used in the primary and secondary screens. Online
supplemental material is available at http://www.jcb.org/cgi/content/
full /jcb.201304064/DC1.
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