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Integrins are transmembrane receptors for extracellular matrix 
that mediate physical cell attachment and also control cell shape, 
growth, and survival. Integrin signals are generated by the recruit-
ment and activation of protein tyrosine kinases (PTKs) such as 
Src, Abl, Syk, and FAK that initiate protein phosphorylation 
signaling cascades. These sites of integrin signal initiation and 
cell attachment are generally termed focal adhesions. Despite 
identification of adhesion protein constituents, our understand-
ing of the molecular mechanisms of PTK activation at focal 
adhesions remains rudimentary. FAK, Src, and Abl signaling 
contribute to tumor growth and metastasis, and small molecule 
drugs targeting these PTKs have been approved or are undergoing 
clinical trials. However, for FAK we really do not fully under-
stand the contributing factors that lead to its elevated activation, 
and although FAK is an amplified gene in cancer, mutations 
that increase FAK activation are uncommon.

In this issue, Choi et al. (2013) elucidate a novel connec-
tion between increased intracellular pH (pHi) and FAK activa-
tion. In the early 1990s, transient pHi elevation upon matrix 
binding was one of the first integrin-associated signals identi-
fied (Schwartz et al., 1991). Pharmacological inhibitors pointed 
to the importance of sodium–proton antiporters in mediating 
increased pHi. NHE-1 (sodium-hydrogen antiporter 1) is part 
of a larger family (NHE1-9) and a ubiquitously expressed trans-
membrane protein that actively extrudes protons from inside the 
cell to counter balance acidity and maintain cytosolic pHi (Malo 
and Fliegel, 2006). NHE-I can be found at focal adhesions 
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(Grinstein et al., 1993) and can connect to the actin cytoskeleton 
via binding to ezrin (Denker et al., 2000). NHE-1 point muta-
tions disrupting either ion translocation or its binding to ezrin 
prevent cell migration (Denker and Barber, 2002). NHE-1 over-
expression in cancer cells elevates pHi and tumor progression 
(Webb et al., 2011).

Also in the early 1990s, FAK was the first PTK shown 
to localize to focal adhesions and to be activated by integrins 
(Parsons, 2003). FAK and the closely related proline-rich tyro-
sine kinase 2 (Pyk2) share a common domain structure of an 
N-terminal FERM domain and an 40 amino acid linker domain 
containing an autophosphorylation site (Y397 in FAK) that serves 
as a Src homology 2 (SH2) binding site for Src-family PTKs. 
The FAK linker is followed by a central kinase domain, a scaf-
folding region containing two proline-rich motifs that are SH3 
domain binding sites, and a C-terminal focal adhesion–targeting 
(FAT) domain (Fig. 1 A). It is the FAK FAT domain that binds 
to integrin-associated proteins (paxillin and talin) and facilitates 
FAK phosphorylation at Y397 via protein clustering (Toutant  
et al., 2002). However, the importance of the results of Choi  
et al. (2013) lies in the role of the FAK FERM domain in the intra-
molecular regulation of FAK Y397 autophosphorylation.

FERM domains are typically comprised of three lobes 
(F1, F2, and F3) grouped in a cloverleaf-like structure (Frame 
et al., 2010). In an inactive conformation, the FAK FERM F2 
lobe binds to and blocks the FAK kinase domain active site. 
The FAK FERM F1 lobe binds to and sequesters FAK Y397 
in the linker region (Fig. 1 B). Point mutations of FAK in  
the F1 lobe, F2 lobe, or within the kinase domain can weaken 
these inhibitory intramolecular binding interactions and result  
in elevated FAK Y397 phosphorylation (Lietha et al., 2007). 
It has been hypothesized that the normal sequence of events 
for FAK activation starts with the binding of some “activat-
ing” factor to the FAK F2 lobe that would trigger FERM lobe 
displacement and allow FAK cis or trans auto-phosphorylation 
of Y397 (Fig. 1 B). Subsequent full FAK activation occurs via 
SH2 domain binding of Src to phosphorylated Y397, resulting 
in Src-mediated phosphorylation within the FAK kinase domain 
at Y576 and Y577 to promote catalytic activation and phos-
phorylation within the FAT domain at Y925 to promote Grb2 
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chimeric paxillin construct fused to the pH biosensor pHluorin 
and to mCherry, Choi et al. (2013) showed that pHi increases 
within peripheral adhesions in mouse embryo fibroblasts (MEFs) 
spreading on fibronectin (FN) at 30 to 50 min after plating. Stable 
NHE-1 knockdown resulted in the lowering of pHi and the inhi-
bition of FAK but not Src activation at 30 and 60 min during 
MEF spreading on FN. Interestingly, NHE-1 knockdown or phar-
macological NHE-1 inhibition resulted in MEFs with a rounded 
morphology and an increased number of small focal adhesions. 
This adhesion and spreading phenotype is similar to that of FAK-
null MEFs (Sieg et al., 1999).

SH2 binding (Schaller, 2010). Recently, growth factor recep-
tor phosphorylation of FAK at Y194 within the FERM F2 lobe 
was shown to promote FAK activation (Fig. 1 B; Chen et al., 
2011). Conformational changes triggered by FAK kinase activ-
ity also regulate FAK FERM–mediated binding to targets such 
as VE-cadherin (Chen et al., 2012). Outside of FAK phosphory-
lation at Y194, and a potential role for lipid binding to FAK 
FERM (Cai et al., 2008), additional “initiators” of FERM con-
formational changes remain undefined.

Choi et al. (2013) provide new and important insights in 
FERM-mediated FAK activation by changes in pHi. By using a 

Figure 1.  Overview of FAK structure and activation. (A) FAK schematic. Depicted is the FAK N-terminal FERM domain comprised of three lobes (F1, F2, 
and F3), a linker domain, central kinase domain, and a C-terminal focal adhesion–targeting (FAT) domain. Shown are histidine (H) residue 58 and tyrosine 
(Y) residues 194, 397, 576/577, and 925, and proline-rich domains (Pro-1, Pro-2, and Pro-3) that are sites for SH3 domain binding. FERM plus linker 
(F+L), FERM-linker-kinase (F+L+K), and linker-kinase (L+K) are constructs used by Choi et al. (2013). (B) Model of growth factor–stimulated FAK activation. 
Upon binding of the FAK FERM F2 lobe to c-Met receptor and/or phosphatidylinositol 4,5-P2 (PIP2) lipid, FAK undergoes conformational changes and 
Y194 phosphorylation, leading to FAK Y397 autophosphorylation in the linker region. Src binding to and phosphorylation of FAK within the kinase domain 
leads to full FAK activation. HGF, hepatocyte growth factor.
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type of change within the F+L region to facilitate Y397 auto-
phosphorylation (Fig. 2). Using the crystal structure of FAK 
F+L+K as a template, molecular dynamic simulations with H58 
(neutral or positively charged) revealed conformational differ-
ences within residues of the linker region around Y397 despite 
the lack of direct binding to H58. Although Choi et al. (2013) 
did not identify key partner electrostatic interactions that con-
tribute to conformational changes upon H58 deprotonation, 
recent studies by (Ritt et al. (2013) proposed that E466 within 
the FAK kinase domain may be important for this regulation 
within full-length FAK. However, this does not explain results 
from Choi et al. (2013) for the pH dependence of Y397 phos-
phorylation within F+L.

Lastly, full-length H58A FAK exhibited elevated Y397 
phosphorylation upon re-expression in FAK-null MEFs in com-
bination with NHE-1 shRNA knockdown. H58A FAK promoted 
spreading and adhesion changes in both control and NHE-1 
shRNA FAK-null MEFs, whereas wild-type FAK did not rescue 
FAK-null phenotypes in the absence of NHE-1 expression. Choi 
et al. (2013) note that pH-regulated FAK Y397 phosphorylation 
required combined integrin stimulation and elevated pH to acti-
vate FAK. In tumor cells, NHE-1 inhibition prevents elevated 
FAK Y397 phosphorylation and recent studies show that FAK 

To determine if there was a connection between increased 
pHi and FAK activation, Choi et al. (2013) performed recombi-
nant FAK in vitro phosphorylation assays. The FAK FERM-
linker-kinase (F+L+K) fragment but not the linker-kinase (L+K) 
(Fig. 1 A) exhibited increased Y397 phosphorylation as a func-
tion of pH (pH 7.5 > pH 6.5). Intriguingly, regulation of FAK 
Y397 phosphorylation by pH was dependent upon the presence of 
the FAK FERM domain, which was shown by using the FERM-
linker (F+L) as a substrate in trans (Fig. 1 A). These results 
support the hypothesis that exposure of the FAK linker region 
for phosphorylation is pH dependent (Fig. 2). Changes in amino 
acid protonation can be considered a post-translational modifi-
cation, as ionic interactions contribute to secondary and tertiary 
protein structure (Schönichen et al., 2013). The pKa of histidine 
is 6.5, and variations from this value depend upon the local 
protein environment. The challenge is to determine which sites 
functionally serve as pH sensors in vivo.

The FAK FERM domain contains seven histidine resi-
dues, three of which (H41, H58, and H75) are within the FERM 
F1 lobe. Mutation of these sites individually to alanine revealed 
that H58A mutation selectively enhanced F+L and F+L+K 
Y397 phosphorylation at pH 6.5. This approach allowed Choi 
et al. (2013) to conclude that H58 deprotonation confers some 

Figure 2.  Simplified model of FAK activation via histidine 58 (H58) deprotonation. The FAK FERM F1 lobe sequesters FAK Y397 in the linker region 
keeping FAK in an inactive and closed conformation. Integrin engagement at focal adhesions results in transient and local increases of pHi through NHE-1 
activity. Changes in pHi result in H58 deprotonation within the FERM F1 lobe, leading to FAK conformational changes that expose the FAK linker region 
and enabling FAK Y397 autophosphorylation. Src binding to and phosphorylation of FAK within the kinase domain leads to full FAK activation.
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can phosphorylate cortactin to promote adhesion turnover (Tomar 
et al., 2012). Cortactin tyrosine phosphorylation facilitates the 
recruitment of NHE-1 to tumor cell invadopodia (Magalhaes 
et al., 2011), leading to the pH-dependent release of actin-
depolymerizing factor cofilin from cortactin (Frantz et al., 2008). 
As FAK activity promotes ovarian and breast tumor metastasis 
(Walsh et al., 2010; Ward et al., 2013), it is possible that FAK 
may serve as a pH-dependent sensor to initiate cell spreading.

In the control of cell motility, NHE-1 is postulated to create 
pH nanodomains at focal adhesions to control protein–protein 
interactions (Ludwig et al., 2013). A simplistic model is that inte-
grin clustering facilitates rapid FAK recruitment to focal adhe-
sion where increases in pH trigger FERM conformational 
changes, release of the FAK linker region, and allow for FAK 
Y397 phosphorylation in cis or trans (Fig. 2). Adhesion turnover 
is increased at alkaline pHi, consistent with leading edge cell 
spreading and extension. At nascent adhesions FAK recruits talin 
(Lawson et al., 2012), and at alkaline pH FAK signaling activity 
may be enhanced over talin binding to filamentous actin needed 
for adhesion maturation (Srivastava et al., 2008). However, as 
pHi falls, pH sensor residues within the talin rod domain confer 
enhanced actin binding and this may be part of a signaling switch 
to promote a cycle of focal adhesion maturation. Additionally, 
pHi changes may alter phosphorylation site specificity by Src 
within the FAK FAT domain (Cable et al., 2012). Thus, pHi can 
affect FAK activity and FAK phosphorylation. Moreover, the 
FAK-related Pyk2 PTK is activated by acidic pHi within cells of 
the kidney (Li et al., 2004). Although the molecular mechanism 
is not known as to how Pyk2 is regulated by acidity, clearly there 
is much more to discover about the role of pHi changes at adhe-
sions and invadopodia and how this may alter PTK activation in 
the control of cell movement and invasion.
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