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Macrophages in pancreatic cancer:
Starting things off on the wrong track
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Chronic inflammation drives initiation and progression of
many malignancies, including pancreatic cancer. In this
issue, Liou et al. (2013. J. Cell Biol. http://dx.doi.org/
10.1083/cb.201301001) report that inflammatory mac-
rophages are maijor players in the earliest stages of pan-
creatic cancer. They show that paracrine signals from
the macrophages activate the nuclear factor kB transcrip-
tional program in normal pancreatic acinar cells, result-
ing in acinar-ductal metaplasia, a dedifferentiated state
that is poised for oncogenic transformation.

Inflammation is fundamental to host defense, serving to elimi-
nate pathogens and to heal damaged tissues. After tissue dam-
age, macrophages act as sentinel cells that organize immune
defenses and coordinate the tissue repair process via directing
epithelial migration, angiogenesis, and matrix remodeling. This
process is normally self-limiting because of a rapid production
of antiinflammatory cytokines after the initial release of pro-
inflammatory messengers. A failure of this resolution program
leads to chronic inflammation characterized by an alteration in
the immune cell types involved, including a marked increase in
infiltrating macrophages (Medzhitov, 2008).

The pancreas is particularly prone to inflammatory injury, as
the pancreatic acinar cells produce large amounts of proteolytic
enzymes required for digestion. These enzymes can be prema-
turely activated in response to tissue damage, thereby causing cell
lysis and further propagation of the injury. The link between in-
flammation and pancreatic ductal adenocarcinoma (PDA) patho-
genesis is well established (Yadav and Lowenfels, 2013). For
example, a greatly increased risk of developing PDA is observed
in individuals with hereditary pancreatitis, a rare condition caused
by germline mutations in the cationic trypsinogen gene (PRSS1),
which results in autolysis of acinar cells and ongoing inflammation
in the pancreas. More common cases of chronic pancreatitis aris-
ing from recurrent injuries to the pancreas as a result of smoking,
alcohol abuse, unhealthy diet, or hereditary factors also correlate
with an increased PDA risk.

Experimental pancreatitis studies in genetically engi-
neered mouse models provide further support for inflammation
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as a driver of PDA, with particularly important contributions
of this process to tumor initiation. The cholecystokinin ana-
logue, caerulein, is used to induce inflammatory injury in these
experiments. In genetically engineered mouse models of PDA
harboring an activating K-ras mutation, the earliest known ge-
netic alteration in the human disease, caerulein treatment abro-
gates oncogene-induced senescence. The bypass of this putative
tumor-suppressor mechanism correlates with accelerated de-
velopment of preinvasive pancreatic intraepithelial neoplasias
(PanINs) and subsequently of PDA (Guerra et al., 2011). Other
observations suggest that inflammation promotes acinar-to-duc-
tal metaplasia (ADM), a process of dedifferentiation of acinar
cells to ductal cells with progenitor-like characteristics, which is
thought be an early event in PDA progression, preceding PanIN
formation (Fig. 1; Guerra et al., 2007; Fukuda et al., 2011; Kopp
et al., 2012). Macrophage infiltration occurs early and dominates
the inflammatory microenvironment of the earliest preinvasive
lesions (Clark et al., 2007). Moreover, macrophage-produced
interleukin-6 (IL-6) has been reported to activate the Janus
kinase (JAK)-STAT3 pathway (Lesina et al., 2011), which
has an established positive role in inducing ADM and con-
tributing to PDA (Miyatsuka et al., 2006; Fukuda et al., 2011;
Lesina et al., 2011). It is important to note that in addition to
the impact of these proinflammatory macrophages on ADM
and PDA, subsets of alternatively activated macrophages have
a contrasting antitumor surveillance function in PDA (Beatty
etal., 2011).

In this issue, Liou et al. confirm and extend findings re-
garding the role of the inflammatory context in promoting ADM
and tumor initiation (Fig. 1). They observed that specific phar-
macologic depletion of macrophages significantly limited forma-
tion of ADM in mice treated with the cholecystokinin analogue,
caerulein, an inducer of pancreatitis. Macrophage-conditioned
media also induced ADM of explanted pancreatic acinar cells,
suggesting that these effects are mediated by secreted factors
rather than by direct cell-cell interactions. The authors identified
macrophage-derived RANTES and TNF as paracrine regulators
of ADM that act via activation of the nuclear factor kB (NF-«B)
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Figure 1. Macrophages in pancreatic cancer initiation and progression. (A) Molecular mechanisms proposed for macrophage-derived PDA initiation. Liou

et al. (2013) show that macrophages secrete RANTES and TNF during pancredititis, thereby activating the NF-kB pathway in acinar cells. The latter induces
the expression of MMP-9 to promote ADM (green arrows). Other mediators that may contribute to macrophage-induced ADM include IL-1¢, the IL-6-STAT3
axis, and other NF-«B target genes, including SOX9 (red arrows; Miyatsuka et al., 2006; Fukuda et al., 2011; Lesina et al., 2011; Maniati et al., 2011;
Kopp et al., 2012; Ling et al., 2012; Prévot et al., 2012; Sun et al., 2013). (B) Cellular evolution in PDA initiation and progression. In addition to the role
of NF-«B in driving ADM and then PDA initiation (green arrows), it is possible that this pathway contributes to additional types of cellular reprogramming

during PDA progression and metastasis (red arrows). Ub, ubiquitin; P, phosphorylation.

transcription factor in acinar cells, a pathway whose activation
is a hallmark of pancreatitis and PDA and that is required for
PDA progression in mouse models (Maniati et al., 2011; Daniluk
et al., 2012; Ling et al., 2012). MMP-9 (matrix metalloprotein-
ase-9) was found to be an NF-kB target gene required for ADM
induction. Additional NF-«kB target genes also clearly contribute
to the process with a plausible candidate being SOX9, a critical
mediator of K-ras—induced ADM (Fig. 1 A; Kopp et al., 2012;
Prévot et al., 2012), which is activated by NF-kB in PDA cells
(Sun et al., 2013).
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It is likely that additional macrophage-derived secreted fac-
tors and downstream signaling programs, beyond RANTES/TNF-
mediated NF-kB induction, are involved in inducing ADM
because conditioned media from activated macrophages
were more effective at inducing ADM than either cytokine
and because NF-«kB inhibition abolished ADM in RANTES/
TNF-treated cells but was less effective in cells treated with mac-
rophage-conditioned medium (Fig. 1 A). Macrophage-derived
IL-6 and resulting STAT3 activation is a plausible additional
mechanism for ADM induction as discussed earlier. Overall, it
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appears that macrophages act as a signaling amplifier because
there is evidence that autocrine signaling pathways can induce
STAT3 and NF-kB in the tumor cells, via epithelial cell-derived
IL-6 and IL-1a (or TNF), respectively (Fukuda et al., 2011;
Maniati et al., 2011; Ling et al., 2012).

ADM represents a developmental reprogramming of aci-
nar cells to an undifferentiated state that is highly sensitized to
malignant transformation as compared with differentiated acinar
cells or ductal cells (Kopp et al., 2012). The identification of di-
rect functions of macrophages in this process raises the question
of whether these inflammatory cells have a more general role
in reprogramming cell differentiation states in other cancer con-
texts. In this regard, inflammation, secretion of TNF, activation of
NF-kB, and MMP expression have each been shown to mediate
epithelial-mesenchymal transition (EMT; Li et al., 2012; Rhim
et al., 2012; Chen et al., 2013) and thereby promote metastasis
(Maier et al., 2010; Fukuda et al., 2011). Notably, EMT and epi-
thelial cell dissemination occur at very early stages during PDA
initiation, before the formation of an identifiable tumor (Rhim
et al., 2012). The NF-kB pathway may also contribute to the
growth of a subpopulation of cells with stem cell-like characteris-
tics in PDA (Sun et al., 2013). The potential role for macrophages
in these different reprogramming events is depicted in Fig. 1 B.
The functions of the NF-kB pathway in promoting ADM, and per-
haps EMT, reinforce the interest in the therapeutic targeting of this
pathway in PDA. Such strategies could help in the development of
preventive therapies for those at high risk for PDA, a group that
includes individuals prone to chronic pancreatitis.
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