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Inflammation is fundamental to host defense, serving to elimi-
nate pathogens and to heal damaged tissues. After tissue dam-
age, macrophages act as sentinel cells that organize immune 
defenses and coordinate the tissue repair process via directing 
epithelial migration, angiogenesis, and matrix remodeling. This 
process is normally self-limiting because of a rapid production 
of antiinflammatory cytokines after the initial release of pro
inflammatory messengers. A failure of this resolution program 
leads to chronic inflammation characterized by an alteration in 
the immune cell types involved, including a marked increase in 
infiltrating macrophages (Medzhitov, 2008).

The pancreas is particularly prone to inflammatory injury, as 
the pancreatic acinar cells produce large amounts of proteolytic 
enzymes required for digestion. These enzymes can be prema-
turely activated in response to tissue damage, thereby causing cell 
lysis and further propagation of the injury. The link between in-
flammation and pancreatic ductal adenocarcinoma (PDA) patho-
genesis is well established (Yadav and Lowenfels, 2013). For 
example, a greatly increased risk of developing PDA is observed 
in individuals with hereditary pancreatitis, a rare condition caused 
by germline mutations in the cationic trypsinogen gene (PRSS1), 
which results in autolysis of acinar cells and ongoing inflammation 
in the pancreas. More common cases of chronic pancreatitis aris-
ing from recurrent injuries to the pancreas as a result of smoking, 
alcohol abuse, unhealthy diet, or hereditary factors also correlate 
with an increased PDA risk.

Experimental pancreatitis studies in genetically engi-
neered mouse models provide further support for inflammation 

Chronic inflammation drives initiation and progression of 
many malignancies, including pancreatic cancer. In this 
issue, Liou et al. (2013. J. Cell Biol. http://dx.doi.org/ 
10.1083/jcb.201301001) report that inflammatory mac-
rophages are major players in the earliest stages of pan-
creatic cancer. They show that paracrine signals from  
the macrophages activate the nuclear factor B transcrip-
tional program in normal pancreatic acinar cells, result-
ing in acinar–ductal metaplasia, a dedifferentiated state 
that is poised for oncogenic transformation.
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as a driver of PDA, with particularly important contributions 
of this process to tumor initiation. The cholecystokinin ana-
logue, caerulein, is used to induce inflammatory injury in these 
experiments. In genetically engineered mouse models of PDA 
harboring an activating K-ras mutation, the earliest known ge-
netic alteration in the human disease, caerulein treatment abro-
gates oncogene-induced senescence. The bypass of this putative 
tumor-suppressor mechanism correlates with accelerated de-
velopment of preinvasive pancreatic intraepithelial neoplasias 
(PanINs) and subsequently of PDA (Guerra et al., 2011). Other 
observations suggest that inflammation promotes acinar-to-duc-
tal metaplasia (ADM), a process of dedifferentiation of acinar 
cells to ductal cells with progenitor-like characteristics, which is 
thought be an early event in PDA progression, preceding PanIN 
formation (Fig. 1; Guerra et al., 2007; Fukuda et al., 2011; Kopp 
et al., 2012). Macrophage infiltration occurs early and dominates 
the inflammatory microenvironment of the earliest preinvasive 
lesions (Clark et al., 2007). Moreover, macrophage-produced 
interleukin-6 (IL-6) has been reported to activate the Janus  
kinase (JAK)–STAT3 pathway (Lesina et al., 2011), which  
has an established positive role in inducing ADM and con-
tributing to PDA (Miyatsuka et al., 2006; Fukuda et al., 2011; 
Lesina et al., 2011). It is important to note that in addition to 
the impact of these proinflammatory macrophages on ADM 
and PDA, subsets of alternatively activated macrophages have 
a contrasting antitumor surveillance function in PDA (Beatty 
et al., 2011).

In this issue, Liou et al. confirm and extend findings re-
garding the role of the inflammatory context in promoting ADM 
and tumor initiation (Fig. 1). They observed that specific phar-
macologic depletion of macrophages significantly limited forma-
tion of ADM in mice treated with the cholecystokinin analogue, 
caerulein, an inducer of pancreatitis. Macrophage-conditioned 
media also induced ADM of explanted pancreatic acinar cells, 
suggesting that these effects are mediated by secreted factors 
rather than by direct cell–cell interactions. The authors identified  
macrophage-derived RANTES and TNF as paracrine regulators 
of ADM that act via activation of the nuclear factor B (NF-B) 
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It is likely that additional macrophage-derived secreted fac
tors and downstream signaling programs, beyond RANTES/TNF- 
mediated NF-B induction, are involved in inducing ADM  
because conditioned media from activated macrophages 
were more effective at inducing ADM than either cytokine 
and because NF-B inhibition abolished ADM in RANTES/ 
TNF-treated cells but was less effective in cells treated with mac-
rophage-conditioned medium (Fig. 1 A). Macrophage-derived 
IL-6 and resulting STAT3 activation is a plausible additional 
mechanism for ADM induction as discussed earlier. Overall, it 

transcription factor in acinar cells, a pathway whose activation 
is a hallmark of pancreatitis and PDA and that is required for 
PDA progression in mouse models (Maniati et al., 2011; Daniluk 
et al., 2012; Ling et al., 2012). MMP-9 (matrix metalloprotein-
ase-9) was found to be an NF-B target gene required for ADM 
induction. Additional NF-B target genes also clearly contribute 
to the process with a plausible candidate being SOX9, a critical 
mediator of K-ras–induced ADM (Fig. 1 A; Kopp et al., 2012; 
Prévot et al., 2012), which is activated by NF-B in PDA cells 
(Sun et al., 2013).

Figure 1.  Macrophages in pancreatic cancer initiation and progression. (A) Molecular mechanisms proposed for macrophage-derived PDA initiation. Liou 
et al. (2013) show that macrophages secrete RANTES and TNF during pancreatitis, thereby activating the NF-B pathway in acinar cells. The latter induces 
the expression of MMP-9 to promote ADM (green arrows). Other mediators that may contribute to macrophage-induced ADM include IL-1, the IL-6–STAT3 
axis, and other NF-B target genes, including SOX9 (red arrows; Miyatsuka et al., 2006; Fukuda et al., 2011; Lesina et al., 2011; Maniati et al., 2011; 
Kopp et al., 2012; Ling et al., 2012; Prévot et al., 2012; Sun et al., 2013). (B) Cellular evolution in PDA initiation and progression. In addition to the role 
of NF-B in driving ADM and then PDA initiation (green arrows), it is possible that this pathway contributes to additional types of cellular reprogramming 
during PDA progression and metastasis (red arrows). Ub, ubiquitin; P, phosphorylation.
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appears that macrophages act as a signaling amplifier because 
there is evidence that autocrine signaling pathways can induce 
STAT3 and NF-B in the tumor cells, via epithelial cell–derived 
IL-6 and IL-1 (or TNF), respectively (Fukuda et al., 2011;  
Maniati et al., 2011; Ling et al., 2012).

ADM represents a developmental reprogramming of aci-
nar cells to an undifferentiated state that is highly sensitized to 
malignant transformation as compared with differentiated acinar 
cells or ductal cells (Kopp et al., 2012). The identification of di-
rect functions of macrophages in this process raises the question 
of whether these inflammatory cells have a more general role 
in reprogramming cell differentiation states in other cancer con-
texts. In this regard, inflammation, secretion of TNF, activation of 
NF-B, and MMP expression have each been shown to mediate 
epithelial–mesenchymal transition (EMT; Li et al., 2012; Rhim 
et al., 2012; Chen et al., 2013) and thereby promote metastasis 
(Maier et al., 2010; Fukuda et al., 2011). Notably, EMT and epi-
thelial cell dissemination occur at very early stages during PDA 
initiation, before the formation of an identifiable tumor (Rhim  
et al., 2012). The NF-B pathway may also contribute to the 
growth of a subpopulation of cells with stem cell–like characteris-
tics in PDA (Sun et al., 2013). The potential role for macrophages 
in these different reprogramming events is depicted in Fig. 1 B. 
The functions of the NF-B pathway in promoting ADM, and per-
haps EMT, reinforce the interest in the therapeutic targeting of this 
pathway in PDA. Such strategies could help in the development of 
preventive therapies for those at high risk for PDA, a group that 
includes individuals prone to chronic pancreatitis.
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