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Review

Rab GTPases and membrane identity:
Causal or inconsequential?

Francis A. Barr

Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK

Rab GTPases are highly conserved components of vesicle
trafficking pathways that help to ensure the fusion of a
vesicle with a specific target organelle membrane. Spe-
cific regulatory pathways promote kinetic proofreading of
membrane surfaces by Rab GTPases, and permit accumu-
lation of active Rabs only at the required sites. Emerging
evidence indicates that Rab activation and inactivation
are under complex feedback control, suggesting that
ultrasensitivity and bistability, principles established for
other cellular regulatory networks, may also apply to Rab
regulation. Such systems can promote the rapid mem-
brane accumulation and removal of Rabs to create time-
limited membrane domains with a unique composition,
and can explain how Rabs define the identity of vesicle
and organelle membranes.

Rab GTPases regulate membrane

tethering and vesicle fusion

Eukaryotic cells are defined in part by their complex membrane
organelles. This organization permits the coexistence of differ-
ent chemical environments within the same cell. For example,
the endoplasmic reticulum (ER) is a neutral pH, reducing envi-
ronment containing chaperones conducive to protein folding
and the formation of disulfide bonds, whereas the lysosomes are
~pH 5 and contain catabolic enzymes maximally active at acidic
pH. Though valuable, this organization requires some form of
active transport machinery for the exchange of material between
these compartments because large hydrophilic molecules such
as proteins cannot easily cross membranes. This transfer of mol-
ecules between compartments is achieved by vesicular transport
systems that use cytosolic coat protein complexes to select small
regions of membrane and shape these into defined 40-80-nm-
diameter transport vesicles (Bonifacino and Glick, 2004; Faini
et al., 2013). Vesicle coats contain binding sites for specific
transport sequences, and thus only transfer a subset of proteins
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into the vesicle. Once produced, these vesicles have to identify,
tether to, and then fuse with a specific target organelle (Zerial
and McBride, 2001). Research over many years has defined
small transmembrane proteins (SNARESs) and a set of accessory
factors as the minimal machinery for membrane fusion (McNew
et al., 2000; Shi et al., 2012). Tethering is a less well-defined
event involving the Rab GTPases and effector protein com-
plexes, typically large extended molecules thought to bridge the
space between two approaching membranes (Gillingham and
Munro, 2003).

Rab GTPases were first linked to vesicle transport by
groundbreaking genetic screens for mutants defective in protein
secretion (Novick et al., 1980; Salminen and Novick, 1987).
Sec4, Rab8 in humans, was found to function in the terminal step
of the secretory pathway, delivery of Golgi-derived transport
vesicles to the cell surface (Salminen and Novick, 1987; Goud
etal., 1988). Yptl, Rabl in humans, was then shown to regulate
secretion at the Golgi apparatus (Segev et al., 1988; Bacon et al.,
1989). These findings led to an influential model for Rab func-
tion in which the cycle of GTPase activation and inactivation is
coupled to recognition events in vesicle docking (Bourne, 1988).
Consistent with the idea that they control vesicle targeting, work
in mammalian cells then showed that there is a large family of
highly conserved Rab GTPases, each with a specific subcellular
localization (Chavrier et al., 1990). A series of seminal studies
has since provided direct evidence that Rab1l and Rab5 promote
membrane fusion (Gorvel et al., 1991; Segev, 1991) by regulat-
ing the activation and engagement of SNARESs (Lian et al., 1994;
Se¢gaard et al., 1994), as a consequence of recruiting tethering
factors to membrane surfaces (Segev, 1991; Sapperstein et al.,
1996; Cao et al., 1998; Christoforidis et al., 1999; McBride et al.,
1999; Allan et al., 2000; Shorter et al., 2002). Similar findings
were also made for the Rab Ypt7, which functions in vacuole
docking in yeast (Price et al., 2000; Ungermann et al., 2000),
a system that allows direct visualization of docked or tethered
intermediates due to the large size of the membrane structures
(Wang et al., 2002).

The evidence that Rabs function upstream of SNARE
protein in vesicle trafficking pathways has led to the notion
that Rabs help to define the identity of vesicle and organelle
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membranes (Pfeffer, 2001; Zerial and McBride, 2001). This is
best exemplified by the early endocytic pathway, where the
identity of early and late endosomes is thought to be deter-
mined by Rab5 and Rab7, respectively (Rink et al., 2005).
However, in most other cases it remains unclear if this is a
causal relationship, where the Rab directly defines the identity
of the membrane rather than acting as an upstream regulator
of vesicle targeting before the SNARE-mediated membrane
fusion event. In addition to Rabs, GTPases of the Arf/Arl fam-
ily and specific phosphoinositide lipids have also been pro-
posed to act in specifying membrane identity (Munro, 2002;
Di Paolo and De Camilli, 2006). It therefore seems likely that
no single factor can explain how membrane identity is achieved
in vesicle transport, and that Rabs, phosphoinositides, and
other factors act in concert.

Rab GEFs provide the minimal machinery
for targeting and activation

Despite the progress in defining Rab function, the claim that Rab
GTPases define organelle identity therefore remains premature
due to crucial unanswered questions. In particular, the issue of
how Rabs are targeted to specific organelles, or even restricted
to subdomains of these organelles, has remained problematic.
Initial work using chimeric GTPases suggested that the variable
C-terminal region of the different Rabs provided a targeting mech-
anism (Chavrier et al., 1991). However, subsequent work indicated
that this failed to provide a general mechanism to explain spe-
cific Rab targeting, and that multiple regions of the Rab including
C-terminal prenylation contribute to membrane recruitment (Ali
et al., 2004). Emerging evidence based on the improved under-
standing of the family of Rab guanine nucleotide exchange fac-
tors (GEFs) now provides an alternative view for Rab activation
at specific membrane surfaces. Mechanistic details of how Rab
GEFs activate Rabs have been discussed elsewhere (Barr and
Lambright, 2010), and are not directly relevant for this discussion
so won’t be detailed further. Two studies now show that Rab
GEFs can provide the minimal machinery needed to target a Rab
to a specific membrane within the cell (Gerondopoulos et al.,
2012; Bliimer et al., 2013). In both cases, Rab GEFs were fused
to mitochondrial outer membrane targeting sequences, and the
effects on different Rabs observed. Using this strategy it was
possible to specifically target Rabl, Rab5, Rab8, Rab35, and
Rab32/38 to mitochondria with biochemically defined cognate
GEFs (Gerondopoulos et al., 2012; Bliimer et al., 2013). Mutants
that either reduced the nucleotide exchange activity of the GEF or
the target GTPase gave a correspondingly reduced rate of Rab
targeting (Bliimer et al., 2013). Alone this does not provide a full
explanation for Rab targeting; for this an understanding of the
interaction of prenylated Rabs with the chaperone GDI (gua-
nine nucleotide displacement inhibitor) is needed. Structural
and biophysical analysis of the Ypt1-GDI complex has revealed
two components of this interaction relevant for Rab targeting
(Pylypenko et al., 2006). Domain I of GDI interacts with the switch
II region of Yptl only when this is in the GDP-bound inactive
form. The doubly prenylated C terminus of Yptl occupies a hy-
drophobic cavity created by domain II of GDI. Simulation of
this system and direct biophysical measurements suggests that in
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the absence of other factors GDI will rapidly deliver Rabs to and
extract them from a lipid bilayer (Pylypenko et al., 2006; Wu
et al., 2010). These ideas can be combined into a simple model for
Rab activation at specific membrane surfaces (Fig. 1 A). In simple
terms this model is a form of molecular speed-dating in which the
Rab spends a short time sampling each membrane surface it en-
counters before finally meeting its cognate GEF partner, trigger-
ing a period of longer residence at that site (Fig. 1 A). In this
model, GEF-mediated nucleotide exchange renders the Rab re-
sistant to extraction by GDI, and thus drives accumulation of the
active GTP-bound form of the Rab. This active Rab can then re-
cruit effector proteins to the membrane surface and promote the
desired recognition event. Such a system is analogous to the rapid
proofreading of amino-acyl tRNAs during protein synthesis by
the ribosome (Ibba and So6ll, 1999). All amino-acyl tRNAs can
enter the so-called acceptor site, but only if stable codon recogni-
tion occurs is the peptidyltransferase reaction initiated, otherwise
the tRNA is rejected (Steitz, 2008). The two-stage kinetic proof-
reading of membrane surfaces by Rabs may similarly increase
fidelity at little overall cost to the rate of vesicular traffic.

Although this minimal Rab-targeting system does not re-
quire any additional factors, it is important to mention that this
does not mean such factors do not exist. A family of membrane
proteins with prenylated Rab-binding activity that can promote
dissociation of some prenylated Rabs from GDI and favor reten-
tion of the GDP-bound form of the Rab downstream of mem-
brane delivery by GDI has been identified (Dirac-Svejstrup et al.,
1997; Martincic et al., 1997; Hutt et al., 2000; Sivars et al., 2003).
These may therefore favor Rab activation, although recent data
has suggested that such factors are not generally essential (Bliimer
et al., 2013). Intriguingly, other evidence links this family of pro-
teins to factors involved in shaping subdomains of the ER and to
the Golgi apparatus (Yang et al., 1998; Calero et al., 2001; Chen
et al., 2004; Voeltz et al., 2006), perhaps suggesting that they may
play roles in defining at which subdomain of an organelle an
active Rab is enriched (Fig. 1 B).

In addition to these regulatory factors, covalent modifica-
tion can also be used to modulate the Rab activation cycle.
Phosphorylation of Rab1 and Rab4 in mitosis alters the fraction
of these GTPases that can associate with membranes (Bailly
et al., 1991; van der Sluijs et al., 1992), although the exact
mechanisms remain unclear. Furthermore, emerging evidence
indicates that one Rab in yeast, Yptl1, is controlled by a phos-
phorylation-dependent mechanism regulating its activation and
abundance (Lewandowska et al., 2013). A number of bacterial
pathogens also encode enzymes that directly modify Rab
GTPases and as a consequence alter the Rab regulatory cycle.
During Legionella infection, Rabl is modulated by a cycle of
adenylylation and de-adenylylation by DrrA and SidA, respec-
tively, and this modification of the conserved tyrosine residue in
the switch II renders the protein constitutively active (Miiller
et al., 2010; Neunuebel et al., 2011; Tan and Luo, 2011). DrrA
also has a GEF domain and can therefore directly activate and
trap Rabl1 in an active form independent of other cellular factors
(Schoebel et al., 2009). A second bacterial protein, AnkX, mediates
phosphocholination of an adjacent serine within the switch II re-
gion (Mukherjee et al., 2011; Campanacci et al., 2013). Pathogens
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Figure 1. The Rab activation and inactivation cycle. (A) Prenylated Rabs (black wavy lines) are bound by the chaperone GDI in the cytosol. Partitioning
of the prenylated tail moiety between the hydrophobic pocket in GDI and the membrane bilayer allows Rabs to rapidly and reversibly sample membrane
surfaces. When the GDP-bound inactive Rab encounters a cognate GEF nucleotide exchange occurs. This GTP-bound active Rab species does not interact
with GDI and can therefore accumulate on the membrane surface, where it may further recruit effector proteins with specific biological functions. This cycle
is reset when a GTP-bound Rab encounters a GAP (GTPase-activating protein) and the bound GTP is hydrolyzed to generate GDP and inorganic phosphate.
(B) Additional specification of membrane domains within complex organelles, such as tubular domains of endosomes, or the fenestrated rims and different
cisternae of the Golgi apparatus, may involve membrane receptors for Rabs (shown as light blue, dark blue, and green boxes). This could either involve
(a) sequestration of the active Rab to a subdomain defined by the membrane receptor, or (b) direction of GDI unloading of an inactive Rab to specific
sites on the organelle membrane also defined by a membrane receptor. Accumulation of a Rab at a specific site may be favored by GAPs opposing Rab

activation at unwanted sites (Haas et al., 2007).

such as Legionella use this covalent modification of Rabs to mod-
ulate their localization and activation (Stein et al., 2012). Al-
though cellular enzymes that carry out related modification of
Rabs are currently unknown, it would be premature to dismiss the
possibility of their existence and use by cells to similarly control
Rab activation and inactivation at specific sites.

Evidence for Rab activation on vesicle and
target membrane surfaces

Based on the model and discussion so far it seems obvious that
Rabs accumulate on the same membrane as their cognate GEF.
Indeed, there is evidence that Rabl may be activated and recruit
the p115 tethering factor during the COP II vesicle formation

stage of ER-to-Golgi transport (Allan et al., 2000). This would
have the advantage that identity would be created at an early
stage in vesicle biogenesis, and the vesicle could therefore be
tethered to the Golgi before completion of the vesicle, thus in-
creasing targeting efficiency. However, there is also evidence
that Rab activation can occur at the target membrane and not
only on a vesicle surface. Careful analysis of cell-free ER-Golgi
transport assays revealed that Ypt1-Rabl is not always required
on the vesicle fraction, but is essential on the target Golgi mem-
branes (Cao and Barlowe, 2000). Furthermore, a Yptl mutant
with reduced nucleotide hydrolysis (which prevents its recycling
from the Golgi compartment; Richardson et al., 1998), or Golgi
membrane-anchored forms of Yptl (Cao and Barlowe, 2000)
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Figure 2. Recruitment mechanisms for Rab GEFs. Rab GEFs can be divided into two groups according to the mechanism of membrane recruitment.
(A) Discrete coat protein complexes (green) recruit the first group. For example, COP Il recruits the Rab1 GEF TRAPP to ER-Golgi vesicles, while clathrin-
AP2 recruits DENND1A, the Rab35 GEF, to endocytic sites at the cell surface. In the case of TRAPP, biochemical and genetic data suggest that Rab1
can be activated on the target membrane, before vesicle tethering and SNARE-mediated fusion. (B) The larger second group of Rab GEFs is recruited by
Rab GTPases either alone or in combination with a second factor (Rabs/factors listed next to arrow). For example, the GEF Sec?2 is recruited to late-Golgi
vesicles trafficking to the bud in yeast by the activated Rab Ypt31/32 and phosphatidylinositol 4-phosphate (PI4P), where it activates the Rab Sec4 (Rab8
in humans). The Rabex5-rabaptin complex, which is a Rab5 GEF, interacts with activated Rab4 or Rab5 and ubiquitylated cargo proteins on endocytic
vesicles and early endosomes. A number of other GEFs (some additional examples shown) have been found to interact with active Rabs. Whether or not
these represent the sole mode of membrane interaction for these GEFs is not defined at this time. PM, plasma membrane. (C) In situations where the GEF for
a second Rab in the pathway is an effector for the first, a cascade can develop, where Rab-A promotes the recruitment of GEF-B for this second Rab-B.

both support apparently normal ER-Golgi transport and cell
growth. Subsequently, it was found that the COP II coat required
to form ER—Golgi transport vesicles is the membrane receptor for
the Yptl-Rabl GEF TRAPP (transport protein particle; Jones
et al., 2000; Wang et al., 2000; Cai et al., 2007), indicating that
Rabl activation may occur on the coated vesicle. This raises
questions about how the cytosolic Rab—GDI complex can access
the membrane surface of a still-coated vesicle. However, because
the COP II coat has an open lattice structure (Faini et al., 2013),
it may be possible in this case for Yptl-Rabl to approach the
membrane and insert. A further possibility is that COP II vesicles
recruit TRAPP and promote the activation of Yptl-Rabl at the
adjacent Golgi membranes to signal that an ER-derived vesicle is
in close proximity (Fig. 2 A). This Golgi pool of activated Rab
would then recruit effector proteins such as Usol/p115 that trap
and tether the incoming vesicle by directly engaging with vesicle
SNARE:S (Cao et al., 1998; Shorter et al., 2002).

Rab GEF targeting and regulation

The mechanism of GEF targeting is of crucial importance for un-
derstanding how Rabs are activated at a particular membrane site.

JCB « VOLUME 202 « NUMBER 2 « 2013

At present, two different solutions to the problem depending on
the GEF are known. First, as already mentioned, is vesicle coat—
dependent GEF targeting (Fig. 2 A). Three examples are known
at present: COP II recruitment of the Rabl GEF TRAPP-I (Cai
et al., 2007), and clathrin-adaptor protein complex 2—dependent
recruitment of either the Rab35 GEF DENNDI1A (Allaire et al.,
2010; Yoshimura et al., 2010) or the Rab5 GEF RME-6 (Sato
et al., 2005; Semerdjieva et al., 2008) during endocytic transport
from the plasma membrane. In the latter cases the exact nature of
the membrane on which the target Rab is activated is unclear, but
it is tempting to speculate that like COP II, the coated vesicle pro-
motes Rab activation on the target organelle to signal the pres-
ence of an incoming vesicle to be tethered. The second larger
group of GEFs comprises those known to interact with active Rab
GTPases (Fig. 2 B). The first of these Rab GEF effectors defined
was the Rabex-5-rabaptin complex, which is both a Rab5 exchange
factor and effector for Rab4 and Rab5 (Horiuchi et al., 1997).
Rabex-5 also binds to ubiquitin via a specific domain and this is
important for regulating its recruitment to early endosomes (Lee
et al., 2006; Mattera et al., 2006; Mattera and Bonifacino, 2008)
where it activates Rab5.
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Specific phosphatidylinositols play a key role in defining
membrane identity (Di Paolo and De Camilli, 2006)), and this is
in part due to a role in recruitment or regulation of Rab exchange
factors. Sec2, the exchange factor for Sec4-Rabs8, is recruited to
post-Golgi vesicles by a combination of the Rab Ypt32 and
phosphatidylinositol 4-phosphate generated by Pik1 (Ortiz et al.,
2002; Sciorra et al., 2005; Mizuno-Yamasaki et al., 2010). Simi-
larly, in mammalian cells the Rab GEF Sec2—Rabin8 is recruited
by the Ypt31/32 orthologue Rabl1 (Knodler et al., 2010), and
phosphatidylinositol 4-phosphate generated by the Pik1 ortho-
logue Fwd is important for Rabll regulation in Drosophila
(Polevoy et al., 2009). Although less is known about the target-
ing of other Rab GEFs, the clear theme is that many are effectors
for a Rab other than the one they activate (Fig. 2 B). The Ricl-
Rgpl complex is a GEF for Rab6 and effector for Rab33B at the
Golgi (Pusapati et al., 2012) and the Rab21 GEF VARP is an ef-
fector for Rab32/38 (Zhang et al., 2006; Tamura et al., 2009).
Additionally, a GEF for Rab32/38 is an effector for Rab9 (Kloer
et al., 2010; Gerondopoulos et al., 2012), and the DENND5SA
Rab39 GEF is an effector for Rab6 (Recacha et al., 2009;
Yoshimura et al., 2010). In addition to these canonical traffick-
ing functions there are specialized examples that indicate there is
some plasticity to both GEF targeting and specificity. The Yptl
GEF TRAPP exists in an alternate form (TRAPP-II) with addi-
tional subunits that promote late-Golgi targeting and may create
additional GEF activity toward Ypt31/32 (Morozova et al.,
2006). Interestingly, in higher eukaryotes there is evidence that
TRAPP-II may regulate the Ypt31/32 orthologues Rabll in
male meiotic cytokinesis in flies (Robinett et al., 2009) and Rab-
A in plant cell polarization and division (Qi et al., 2011), respec-
tively. TRS85 in another alternate TRAPP complex (TR APP-III)
promotes localization to the forming autophagosome and acti-
vates Rabl1 during autophagy (Lynch-Day et al., 2010).

The counterpart to this interlinked network of Rab activa-
tion is an equally complex set of interactions between Rabs and
Rab GAPs. The GAP Gypl is an effector for Ypt32 and pro-
motes GTP hydrolysis by Yptl in budding yeast (Rivera-
Molina and Novick, 2009). In the absence of Gyp1, Yptl spreads
into the later compartments of the secretory pathway that should
be occupied by Ypt32 (Rivera-Molina and Novick, 2009). Inter-
estingly, one of the cellular GAPs for Yptl-Rabl is a transmem-
brane protein of the ER that may prevent Rabl activity from
spreading earlier in the pathway to the ER rather than act to ter-
minate Rab1 activity at the Golgi (Haas et al., 2007; Sklan et al.,
2007). Similarly, two related proteins, RUTBCI and RUTBC2,
bind to active Rab9 and are GAPs for Rab32 and Rab36, respec-
tively (Nottingham et al., 2011, 2012).

Together, these findings have led to the general idea that
the order of trafficking events in a pathway can potentially be
defined by a series of Rabs acting as a cascade (Fig. 2 C). In such
models one Rab triggers the next in the pathway by recruiting its
cognate GEF, and then feedback develops as a GTPase-activating
protein (GAP) is recruited to terminate the action of the pre-
vious Rab in the series (Mizuno-Yamasaki et al., 2012; Pfeffer,
2013). In part, this simply passes the problem on because we are
then left with the question of how the previous Rab in the path-
way or a cofactor for recruitment such as phosphatidylinositol

4-phosphate or ubiquitin is localized and generated only when
required. In the case of the secretory pathway the ER provides a
defined starting point where activation of Rab1-Yptl will inev-
itably result in a defined and correctly timed wave of Rab activa-
tion through the secretory pathway. However, a note of caution
is needed when considering these ideas because far more sup-
port from experimental data looking at the biochemical proper-
ties of these systems both in vitro and in vivo is required to come
to any definitive conclusions.

Ultrasensitive Rab activation switches

One of the key tenets of the membrane identity hypothesis is
that Rabs should rapidly and accurately establish membrane
identity and then be lost once the membrane recognition event
is over. Although biochemical data on Rab GEFs clearly indicate
these molecules generally have sufficiently high specificity to
ensure activation of only one Rab or a set of closely related Rabs
(Delprato et al., 2004; Yoshimura et al., 2010; Gerondopoulos
et al., 2012), how rapid switch-like accumulation is ensured
is less obvious. Similar issues exist for termination of the Rab
cycle by Rab GAPs. As already mentioned, Rab cascade mod-
els give part of the solution to this problem, and provide fea-
tures that can ensure vectorial flow in a membrane traffic
pathway (Mizuno-Yamasaki et al., 2012; Pfeffer, 2013). How-
ever, they do not fully explain how switch-like transitions and
defined compartmental boundaries are achieved (Del Conte-
Zerial et al., 2008). A possible solution to this problem comes
from studies on the regulation of other complex biological sys-
tems, exemplified by control of cell cycle transitions (Tyson
et al., 2001). Rather than displaying the expected Michaelis-
Menten kinetics (Fig. 3 A), Rab cycles may yield properties of
ultrasensitivity (Goldbeter and Koshland, 1981, 1984). This
would appear to be a valid proposal if the Rab cycle is treated
as being analogous to a covalent modification (Rab and Rab-
modified, for GDP and GTP forms, respectively) and because
GEF activity is generally assumed to be limiting (Bliimer et al.,
2013). In such a situation, inputs activating the GEF, for exam-
ple membrane recruitment requiring multiple or binding of an
activator, would be amplified and give rise to very large changes
in the amount of activated Rab (Fig. 3 A). When combined with
feedback loops, this can create a bistable switch between two
states as shown for cell cycle transitions (Novak and Tyson,
1993; Pomerening et al., 2003). In the case of GTPase regula-
tion, as the input controlling the GEF increases then the system
transitions to a Rab-active state that remains stable over a wide
range of GEF activity. GAP activation could then trigger exit
from this state. This is also useful for providing a potential ex-
planation for the timing properties of a Rab cascade. Ultrasen-
sitivity and bistability are therefore likely to be useful concepts
when explaining the behavior of Rabs, especially when consid-
ering complex interlinked cycles (Fig. 3 B) because they avoid
the futile cycles where GAPs and GEFs fight one another and
thus don’t do any useful work.

A groundbreaking study in this area has applied these
ideas to the conversion of Rab5-positive early endosomes to
Rab7-positive late endosomes and lysosomes (Del Conte-Zerial
et al., 2008). This analysis has provided strong evidence that
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Figure 3. Ultrasensitivity and bistability in Rab A
regulatory networks. (A) A simplified schematic of
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positive and negative feedback loops in this system mediated by
Rab GEFs and GAPs result in bistability in the form of a cut-out
switch, so that Rab5 accumulation is followed by an abrupt
transition at which Rab5 is rapidly lost and Rab7 accumulates
(Del Conte-Zerial et al., 2008). Underpinning this is a biochem-
ical network in which the Mon1-Ccz1 Rab7 GEF complex dis-
places Rabex-5, thus breaking the positive feedback loop to
Rab5 activation (Poteryaev et al., 2010) and simultaneously pro-
moting recruitment and activation of Rab7 (Nordmann et al.,
2010; Gerondopoulos et al., 2012). Although there are only few
studies where these ideas have been considered, they can be ex-
perimentally tested and are likely to be of increasing importance
in membrane traffic regulation.

Origins of Rab GTPase control systems

One of the most difficult questions in membrane trafficking re-
lates to the origins of complex internal membrane systems in
eukaryotes. Analysis of Rab GTPases themselves suggests a
pattern of evolution of Rabs consistent with the evolution of a
core set of membrane organelles of the endocytic and secretory
pathways (Diekmann et al., 2011; Klopper et al., 2012). Yet,
this provides little insight into how membrane organelles ini-
tially arose. Recent data on the structure of Rab GTPase regu-
lators and coat protein complexes has identified common
features with GTPase regulators in other systems including
prokaryotes (Kinch and Grishin, 2006; Zhang et al., 2012;
Levine et al., 2013). The conserved Longin—Roadblock fold
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has emerged as a structural feature of the large family of
DENN-domain Rab GEFs in human cells (Yoshimura et al.,
2010; Wu et al,, 2011; Levine et al., 2013). Intriguingly, re-
lated domains are also present in the signal sequence receptor
involved in protein translocation into the ER, vesicle coat pro-
tein complexes, and the MglA GTPase-MgIB bacterial cell
polarity regulator (Sun et al., 2007; Miertzschke et al., 2011;
Levine et al., 2013). Although far from conclusive, these find-
ings provide important pointers to the development of GTPase
control systems, and more generally the early origins of mem-
brane traffic pathways in eukaryotes from membrane-associated
GTPases and their effector proteins.

Are Rabs alone capable of triggering the pathways defin-
ing membrane identity? Multiple lines of evidence show Rab
GTPases are clearly important and far from inconsequential reg-
ulators of vesicle traffic; however, further evidence is required
before we should conclude that they are causal regulators of
vesicle or organelle membrane identity. Neither of the studies
using strategies to modulate the cellular localization of Rab
GEFs reported that the mitochondria altered their identity or
were converted into an endosome or Golgi because of the mistar-
geted Rabs (Gerondopoulos et al., 2012; Bliimer et al., 2013).
The picture emerging is therefore one in which Rabs cannot pro-
gram membrane identity alone and must work in concert with
other factors. Defining and reconstituting the systems needed to
create membrane identity is therefore a major goal for mem-
brane traffic research.
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