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Introduction
Migration of cells is one of the most dramatic events that under-
lies the development of animal tissues and the progression of 
tumors (Condeelis et al., 2005; Sahai, 2005; Montell, 2008). 
Most of our knowledge of the mechanisms of cell migration 
comes from the study of single cells migrating in culture (Van 
Haastert and Devreotes, 2004; Ridley, 2011). However, in vivo, 
cells often migrate not as individuals but as groups that move 
collectively (Friedl and Gilmour, 2009; Rørth, 2009; Weijer, 
2009). Drosophila border cell migration is a genetically tractable 
model system for the study of collective cell movement (Starz-
Gaiano and Montell, 2004; Rørth, 2009). Border cells arise in 
the follicular epithelium that surrounds each egg chamber in  
the Drosophila ovary (Fig. 1 A). At the anterior pole of the egg 
chamber, a pair of polar cells recruits a small group (4–8) of 
neighboring follicle cells into the border cell cluster. At stage 9 
of oogenesis, this cluster delaminates from the epithelium and 
invades the underlying germ line, migrating across the egg cham-
ber between the large nurse cells to reach the oocyte at the pos-
terior pole by stage 10 of oogenesis (Fig. 1, A–C).

A series of important discoveries has revealed many key 
mechanisms by which border cells are first specified (Montell  
et al., 1992; Bai et al., 2000; Silver and Montell, 2001; Beccari 
et al., 2002; Xi et al., 2003; Borghese et al., 2006; Jang et al., 
2009), begin their invasive movement (Fulga and Rørth, 2002), 
detach from the epithelium (McDonald et al., 2008), are guided 
toward the oocyte (Duchek and Rørth, 2001; Duchek et al., 
2001; McDonald et al., 2003; Bianco et al., 2007; Poukkula  
et al., 2011), sense tension (Somogyi and Rørth, 2004), maintain 
adhesion (Niewiadomska et al., 1999; Pacquelet and Rørth, 
2005; Cobreros-Reguera et al., 2010), and organize their polarity 
(Abdelilah-Seyfried et al., 2003; Pinheiro and Montell, 2004; 
McDonald et al., 2008). Yet, how border cells control the dynamic 
organization of the actomyosin cytoskeleton to drive cell loco-
motion is still not fully understood.

Determinants of cell polarity are required to polarize the 
border cell cytoskeleton to organize cluster architecture and 
promote collective migration (Abdelilah-Seyfried et al., 2003; 
Pinheiro and Montell, 2004; McDonald et al., 2008). Loss of 
polarity determinants delays migration and can cause the cluster 
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border cells. Upstream Hippo pathway components local-
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signal through the Hippo and Warts kinases to polarize 
actin and promote border cell migration. Phosphorylation 
of the transcriptional coactivator Yorkie (Yki)/YAP by 
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can be regulated by determinants of cell polarity, such as Crumbs 
and aPKC, can respond to changes in the actin cytoskeleton, 
and can influence the level of F-actin in epithelial cells (Chen  
et al., 2010; Grzeschik et al., 2010; Ling et al., 2010; Fernández 
et al., 2011; Sansores-Garcia et al., 2011; Wada et al., 2011). 
However, the physiological roles for the Hippo pathway as a 

to disintegrate (Abdelilah-Seyfried et al., 2003; Pinheiro and 
Montell, 2004). The polarity determinants Crumbs, Baz, and 
the aPKC–Par6 complex localize to membranes where border 
cells form contacts with one another (Niewiadomska et al., 
1999; Abdelilah-Seyfried et al., 2003; Pinheiro and Montell, 
2004; McDonald et al., 2008). These determinants do not localize 
to regions of the membrane where border cells are actively  
migrating across their nurse cell substrate (Niewiadomska et al., 
1999; Abdelilah-Seyfried et al., 2003; Pinheiro and Montell, 
2004; McDonald et al., 2008). Thus, by polarizing the cytoskel-
eton, polarity determinants promote cohesion between border 
cells and collective migration of the cluster as a whole. Reduced 
cytoskeletal dynamics at sites of contact between collectively 
migrating cells is also evident in several other contexts, includ-
ing invasive human cancer cells, and may be related to the phe-
nomenon of contact inhibition of cell migration in cell culture 
(Carmona-Fontaine et al., 2008; Hidalgo-Carcedo et al., 2011). 
However, the molecular mechanisms by which border cell 
polarity determinants organize cluster architecture to promote 
migration remain unknown.

The Hippo pathway inhibits cell proliferation in growing 
epithelial tissues of both Drosophila and mammals (Grusche  
et al., 2010; Oh and Irvine, 2010; Pan, 2010; Badouel and  
McNeill, 2011; Halder and Johnson, 2011). Hippo signaling is 
also activated upon contact inhibition in cell culture, where it con-
tributes to the repression of cell proliferation (Zhao et al., 2007; 
Kim et al., 2011). Recent work indicates that Hippo signaling 

Figure 1.  Polarization of the actin cytoskeleton to the outer rim of migrat-
ing border cell clusters. (A–C) Border cell clusters visualized with phalloidin 
(red) and DAPI (blue) form from a small group of anterior follicle cells that 
invade the germ line nurse cells at early stage 9 (A), migrate through the 
egg chamber during stage 9 (B), and reach the oocyte by stage 10 (C). 
MARCM clones expressing GFP-labeled border cells as well as some fol-
licle cells. (D–F) High magnification views of phalloidin (red) and DAPI 
(blue) staining in migrating border cell clusters at the indicated stages. 
Note that F-actin accumulates strongly around the outer rim of the cluster 
and less so in internal membranes. Bars: (A–C) 50 µm; (D–F )5 µm.

Figure 2.  Upstream Hippo pathway components localize to border cell–
border cell contacts inside migrating clusters. (A) Migrating cluster at stage 9 
labeled for F-actin with phalloidin staining, which localizes to the outer  
rim of the cluster. (B) Migrating cluster at stage 9 stained for aPKC.  
(C) Migrating cluster at stage 9 stained for Kib. (D) Migrating cluster at stage 9  
stained for Ex. (E) Migrating cluster at stage 9 stained for Mer. (F) Migrat-
ing cluster at stage 9 stained for V5-tagged Zyxin. (G) Migrating cluster 
at stage 9 stained for Crb. (H) Migrating cluster at stage 9 stained for 
myc-Wts. Note that Crb, aPKC, and upstream Hippo pathway components 
localize to membranes inside the cluster, whereas Wts is cytoplasmic. slbo-
GAL4 was used to express UAS-Ex (D), UAS-Mer (E), UAS.Zyxin-V5 (F), 
or UAS.myc-Wts (H). (I) Schematic diagram of F-actin polarization in a 
migrating border cell cluster. (J) Schematic diagram of Hippo pathway 
components localizing to the sites of contact between border cells (i.e., 
inner membranes). The active, phosphorylated forms of Hpo and Wts are 
thought to be localized in a complex with upstream Hippo pathway com-
ponents. Bars, 5 µm.
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staining—accumulates around the outer rim of the migrating 
cluster (Fig. 1, A–F). Live imaging of Utrophin-GFP, which  
labels the actin cytoskeleton, confirms that actin filaments  
concentrate and are most dynamic around the outer rim of the 
cluster (Video 1). Unlike F-actin, the key upstream components 
of the Hippo pathway Kibra (Kib), Expanded (Ex), and Merlin 
(Mer) (Hamaratoglu et al., 2006; Baumgartner et al., 2010; 
Genevet et al., 2010; Yu et al., 2010), as well as the recently 
identified component Zyxin (Rauskolb et al., 2011), localize 
with the polarity determinants aPKC and Crb to membranes  
inside the border cell cluster at sites of border cell–border cell 
contact (Fig. 2, A–G). Note that the bulk Hippo (Hpo) and Warts 
(Wts) proteins are not localized specifically to any region of  
the cell, but are well known to be active only in the presence of 
the upstream components, with which they physically interact; 

sensor and regulator of cell polarity and F-actin remain unclear, 
as are the mechanisms by which the Hippo pathway can execute 
these functions. Because cell polarity and the actin cytoskeleton 
are of fundamental importance to collective cell migration, yet 
the role of the Hippo pathway in collective migration has not 
been explored in any detail, we examined the role of the Hippo 
pathway in border cells.

Results
Polarization of Hippo pathway components 
and the actin cytoskeleton in migrating 
border cell clusters
We began by investigating the actin cytoskeleton during border 
cell migration. We find that F-actin—detected by phalloidin 

Figure 3.  The Hippo pathway is required to polarize 
actin and promote migration. (A and B) Confocal micro-
graph of a control egg chamber at stage 9 (A) or 10 (B)  
labeled with phalloidin (red) to visualize the actin cyto-
skeleton, GFP (green) to mark the mutant clones of cells 
induced with the MARCM technique, and DAPI (blue) to 
stain all nuclei. Insets show F-actin staining of clusters at 
high magnification. (C) Stage 10 egg chamber with a 
cluster (arrow) composed entirely of exAP50 mutant border 
cells (FRT/FLP, GFP negative). Inset shows F-actin accu-
mulating inside the cluster. (D) Stage 10 egg chamber 
with a cluster (arrow) composed entirely of exAP50 kib32 
double-mutant border cells (FRT/FLP, GFP negative). Inset  
shows the cluster architecture completely fails to form.  
(E) Stage 10 migration index for quantitation of border cell 
migration. (F) Quantification of the stage 10 migration 
index for the following genotypes: control (n > 100), kib32 
(n = 36), exAP50 (n = 34), and exAP50 kib32 (n = 8). (G and 
H) Stage 9 (G) and stage 10 (H) egg chambers with clus-
ters (arrows) composed entirely of hpo42-47 mutant border 
cells (GFP positive). (I and J) Stage 9 (I) and stage 10 (J) 
egg chambers with clusters (arrows) composed entirely 
of wtsX1 mutant border cells (GFP positive). hpo42-47 and 
wtsX1 mutant border cell clusters both show delayed migra-
tion and F-actin polarization defects (insets). The hpo42-47 
and hpoJM1 alleles display the same border cell migra-
tion delay phenotype. (K) Quantification of the stage 10 
migration index of the following genotypes: control (n > 
100), hpoJM1 (n = 94), and wtsX1 (n = 93). In each case, 
only clusters in which all border cells were mutant for a 
given allele (GFP positive) were analyzed; n, number of 
egg chambers examined. (L) Quantification of average 
F-actin and P-MyoII staining intensity levels at the outer rim 
versus inner membranes in control and wts mutant clusters 
(WT clusters, n = 5; wts clusters n = 12). p-MyoII staining 
in control and wts mutant clusters is also shown. Bars, 50 µm 
(5 µm for insets).
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regulated by determinants of cell polarity in the context of  
imaginal disc growth control (Chen et al., 2010; Grzeschik et al., 
2010; Ling et al., 2010; Fernández et al., 2011; Sansores-Garcia 
et al., 2011; Wada et al., 2011), our results suggest that Hippo 
pathway components are ideally positioned to act as effectors  
of cell polarity determinants to polarize the actin cytoskeleton 
in migrating border cell clusters (Fig. 2, I and J).

The Hippo pathway is required to polarize 
the actin cytoskeleton and promote 
migration in border cells
We next tested the requirement for Hippo signaling in border 
cells. In imaginal disc epithelia, the upstream Hippo pathway 
components Kib, Ex, and Mer are partially redundant in that 
they each tend to have weaker loss-of-function phenotypes  
than hpo or wts mutants, whereas ex, kib or ex, mer double mu-
tants cause very strong phenotypes (Hamaratoglu et al., 2006; 
Baumgartner et al., 2010; Genevet et al., 2010; Yu et al., 2010). 
Wild-type border cell clusters normally reach the oocyte by 
stage 10 of oogenesis, whereas inactivation of ex or kib individu-
ally delays border cell migration and the double-mutant combi-
nation ex, kib causes very strongly delayed migration, with clusters 
rarely even initiating migration (Fig. 3, A–F). Polarization of  
F-actin is abnormal in ex mutant clusters and formation of 
clusters is completely prevented in ex, kib double mutants (Fig. 3, 
C and D). These results show that upstream Hippo pathway 
components are essential for organizing the architecture and 
motility of border cell clusters.

In epithelia, Kib, Ex, and Mer are known to function by 
activating the Hpo and Wts kinases at the apical membrane 
(Hamaratoglu et al., 2006; Baumgartner et al., 2010; Genevet  
et al., 2010; Yu et al., 2010), but can also act independently of 
Hpo and Wts to help polarize apical determinants (Fletcher  
et al., 2012). To identify the specific role of signaling through 
Hpo and Wts in border cell migration, we examined hpo and wts 
mutant clusters. Approximately 60% of hpo and wts mutant 
border cell clusters are delayed at stage 10 of oogenesis (Fig. 3, 
G–K). Unlike control clusters, F-actin fails to polarize to the 
outer rim of hpo and wts mutant clusters and instead tends to 
accumulate throughout the cluster (Fig. 3, A–L). Similar results 
were obtained for phosphorylated myosin II (Fig. 3 L). Live 
imaging reveals that wts mutant clusters, or clusters express-
ing RNAi against the Wts cofactor Mats, tend to tumble rather 
than move directionally and sometimes disintegrate (Fig. S1; 
Videos 2–5). These results show that signaling through Hpo and 
Wts is essential to polarize the actin cytoskeleton and promote 
collective migration in border cells.

To rule out an indirect effect of Wts on border cell migra-
tion via misregulation of border cell specification, we tested the 
effect of wts mutants on markers of border cell fate. We find that 
expression of slbo.lacZ and upd.lacZ is not affected in wts  
mutants (Fig. 4, A–D). These results show that border cell spec-
ification was not affected by inactivation of Hpo or Wts and 
support the notion that the Hippo pathway acts directly at the 
cell cortex to control cluster architecture and motility.

We also sought to rule out the possibility that Wts 
might regulate polarization of polarity determinants or adherens 

thus, Hpo and Wts are likely to be most highly active at mem-
branes inside the border cell cluster (Fig. 2, H–J; Hamaratoglu 
et al., 2006; Baumgartner et al., 2010; Genevet et al., 2010; Sudol 
and Harvey, 2010; Yu et al., 2010; Boggiano and Fehon, 2012; 
Tepass, 2012; Deng et al., 2013). Because Hippo signaling is 

Figure 4.  Wts is not required for border cell specification or membrane 
polarity. (A) Control egg chamber at mid stage 9 showing the slow border 
cells expression in the migrating border cell cluster, as revealed by the 
slbo-lacZ reporter. (B) Stage 10 egg chambers with clusters composed en-
tirely of wtsX1 mutant border cells (MARCM, GFP positive, not depicted) dis-
play normal slbo-lacZ expression. (C) Control egg chamber at mid stage 9  
showing the unpaired expression in the migrating border cell cluster, as 
revealed by the upd-lacZ reporter. (D) Stage 10 egg chambers with clusters 
composed entirely of wtsX1 mutant border cells (MARCM, GFP positive, 
not depicted). In both wild-type and mutant clusters, the upd expression is 
restricted to the two polar cells (red arrows). In addition, the expression of 
the polar cell–specific marker FasIII was unaffected in wtsX1 mutant clusters 
(not depicted), indicating that Wts is not required to specify border cells or 
to discriminate between polar cells and outer border cells. Anterior is to the 
left in all panels. (E) Control cluster at mid stage 9 showing normal aPKC 
localization to inner membranes. (F) wtsX1 mutant border cell clusters show 
normal localization of aPKC. (G) Control cluster at mid stage 9 showing 
normal Armadillo localization to inner membranes. (H) wtsX1 mutant border 
cell clusters show normal localization of Armadillo. Bars: (A–D) 50 µm; 
(E–H) 5 µm.
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of F-actin Capping proteins, which normally limit actin poly
merization (Bear and Gertler, 2009). Several lines of evidence 
suggest potential links between the Hippo pathway and Ena. 
First, at focal adhesions in cultured cells, Zyxin binds to Ena/
VASP proteins and modulates their activity to produce a stable 
cortex. Second, loss of Capping proteins  and  (Cpa and Cpb) 
has been shown to induce Hippo signaling in the context of 
growth control (Fernández et al., 2011; Sansores-Garcia et al., 
2011). Third, Ena and Capping proteins have been implicated as 
regulators of border cell migration (Gates et al., 2009). Fourth, 
we identify a conserved Wts consensus phosphorylation site in 
Ena that is highly similar to the site in Yki whose phosphoryla-
tion inhibits Yki (Fig. 6 A). We find that this site in Ena can  
be directly phosphorylated by Wts in vitro, similar to the site in 
Yki (Fig. 6 B). These results suggest that Hippo signaling may 
act by phosphorylating and inactivating Ena to polarize the  
actin cytoskeleton.

If Hippo signaling acts by inhibiting Ena, then the pheno-
type of hpo mutant border cell clusters should be caused by ex-
cessive Ena activity and rescued in hpo ena double mutants. 
Accordingly, we find that hpo ena double-mutant clusters migrate 
normally and exhibit a normally polarized actin cytoskeleton 
(Fig. 6, C and D). Furthermore, overexpression of Ena is suffi-
cient to mimic a mild Hippo pathway loss-of-function pheno-
type, with F-actin accumulating throughout the Ena-expressing 
clusters and delayed migration during stage 9 (Fig. 6 E). However, 
Ena-expressing clusters recover and are not delayed by stage 10 
(Fig. 6 F). Expression of phospho-mutant EnaS187A has a stron-
ger effect, with clusters delayed at both stage 9 and 10, whereas 
expression of an Ena S187D phosphomimic mutant does not 
delay migration (Fig. 6, G–K). Live imaging of Ena-expressing 

junctions. We find that the polarity determinant aPKC is normally 
localized in wts mutant border cell clusters, as is the adherens 
junctions protein Armadillo/-catenin (Fig. 4, E–H).

Phosphorylation of Yki by Wts does not 
mediate the effect of Hippo signaling in 
polarizing the actin cytoskeleton
In many tissues, Hippo signal transduction proceeds by the  
Wts kinase phosphorylating and inhibiting the transcriptional 
coactivator Yorkie (Yki; YAP/TAZ in mammals; Huang et al., 
2005; Dong et al., 2007). In Drosophila, most known phenotypes 
of hpo and wts mutants can be phenocopied by ectopic expression 
of Yki (Huang et al., 2005; Shaw et al., 2010; Staley and Irvine, 
2010). We therefore expected ectopic expression of Yki to inhibit 
border cell migration. In contrast, we find that expression of wild-
type Yki or a constitutively active form of Yki lacking the major 
Wts phosphorylation site (YkiS168A) does not inhibit border cell 
migration and instead accelerates it (Fig. 5, A–J). This surpris-
ing result indicates that Hpo and Wts act directly to promote 
border cell migration, rather than by signaling through Yki to 
the nucleus, and that repression of Yki by the Hippo pathway 
provides negative feedback to limit migration.

The Hippo pathway regulates the activity 
of the Ena/Capping protein system to 
organize cluster architecture and motility
To explore how the Hippo pathway regulates the actomyosin 
cytoskeleton, we considered the role of the actin regulator Enabled 
(Ena; VASP in mammals). At the leading edge of migrating 
cells in culture, Ena/VASP proteins are known to drive actin  
polymerization and cortical protrusions by inhibiting the activity 

Figure 5.  Repression of Yki does not mediate 
the function of Wts but rather provides nega-
tive feedback. (A–C) Control egg chambers at 
stage 8 (A), 9 (B), or 10 (C) labeled with phal-
loidin (red) to visualize the actin cytoskeleton, 
GFP (green) to mark the clones of cells gener-
ated using actin flipout GAL4, and DAPI (blue) 
to stain all nuclei. (D–I) Egg chambers with bor-
der cell clusters (arrows) that overexpress wild-
type UAS-Yki at stage 8 (D), 9 (E), or 10 (F), 
or constitutively active UAS-YkiS168A at stage 8 
(G), 9 (H), or 10 (I) (all clones GFP positive). In 
all these Yki-expressing genotypes, border cell 
migration is accelerated and all the clusters 
migrate posteriorly toward the oocyte prema-
turely. (J) Quantification of the percentage of 
stage 9 border cell clusters that prematurely 
reach the oocyte (n > 20 for each genotype). 
Anterior is to the left in all panels. Insets show 
F-actin staining in border cell clusters. Bars,  
50 µm (5 µm for insets).
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Video 7). These results indicate that Hippo signaling promotes 
border cell migration by inhibiting Ena and thus promoting 
Cpb activity inside the cluster to help restrict F-actin to the 
outer rim of migrating clusters.

Discussion
Our results show that the Hippo pathway provides a mechanism 
linking determinants of cell polarity with polarization of the  
actin cytoskeleton—a mechanism that is responsible for orga-
nizing the architecture and motility of collectively migrating 
border cell clusters. Collective migration depends on actomyosin 
polymerizing and contracting around the outer rim of the cluster, 
where border cells migrate over their nurse cell substrates, but 
not in the center of the cluster, where polarity determinants 

clusters revealed a tumbling motion highly reminiscent of wts 
mutant clusters (compare Video 5 with Videos 2–4). These re-
sults indicate that Ena is a key target of Hippo pathway in polar-
izing the actin cytoskeleton during border cell migration.

Ena is thought to antagonize the action of Capping pro-
teins, which compete with Ena for binding to F-actin barbed 
ends (Bear and Gertler, 2009). Ena promotes F-actin polymer-
ization, whereas Capping proteins inhibit polymerization. In 
border cells, mutation of cpb caused clusters to accumulate  
F-actin inside the cluster and to exhibit delayed migration at 
stage 9 and 10 (Fig. 7, A–D). Around 10% of cpb mutant clusters 
disintegrated, highly similar to wts or hpo mutants (Fig. S1; 
Video 3 and Video 6). Finally, overexpression of Cpb was 
able to fully rescue the migration defect and F-actin polariza-
tion defects of wts mutant border cell clusters (Fig. 7, E–G; 

Figure 6.  Wts phosphorylates Ena and represses its ac-
tivity to polarize F-actin and promote border cell migra-
tion. (A) Conserved Wts phosphorylation sites in Yki/YAP 
and Ena/VASP proteins from different species. (B) Recom-
binant Wts kinase can directly phosphorylate Ena on its 
conserved Wts site in vitro. (C) hpo42-47, ena210 double 
mutant clusters migrate almost normally. (D) Quantifica-
tion of hpo42-47 single mutant (n = 62), hpo42-47, ena210 
double mutant (n = 50), and ena210 single mutant (n = 35) 
cluster migration at stage 10. The double mutant clusters 
migrate as well as the ena210 single mutant and do not 
show the strong delays observed in a hpo42-47 mutant (see 
Fig 1). (E) Overexpression of Ena causes delayed border 
cell migration during stage 9, with prominent accumu-
lation of F-actin throughout the border cell cluster (inset).  
(F) Ena-expressing clusters recover to achieve normal mi-
gration at stage 10. Inset shows increased levels of F-actin, 
but the cytoskeleton is still polarized. (G) Overexpression 
of EnaS187A phosphomutant causes delayed migration 
at stage 9 with F-actin accumulation throughout the clus-
ter. (H) EnaS187A-expressing clusters can still be delayed 
at stage 10. (I) Overexpression of EnaS187D phospho-
mimic does not delay migration or depolarize F-actin at 
stage 9. (J) Overexpression of EnaS187D phosphomimic  
does not delay migration or depolarize F-actin at stage 10. 
(K) Quantification of migration delay at stage 10 for control 
(n = 69), UAS.Ena (n = 80), UAS.EnaS187A (n = 102), 
and UAS.EnaS187D (n = 63). Note all three transgenes 
are inserted in the same second-chromosomal attP landing 
site. Bars, 50 µm (5 µm for insets).
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Ena or overexpression of Capping protein, respectively. Notably, 
the rescued clusters show normal polarization of F-actin and 
can migrate normally, indicating that mechanisms other than 
polarization of Ena activity must also exist to help polarize the 
actin cytoskeleton in border cells, consistent with the fact that 
aside from Ena there are many other regulators of F-actin poly
merization. Nevertheless, Hpo–Wts signaling is clearly one 
important mechanism of F-actin polarization for border cells 
because its disruption leads to the majority of border cell clusters 
migrating slowly in a tumbling fashion or even disintegrating.

Our results show that the role of the Hippo pathway in  
restraining F-actin polymerization at inner membranes is a direct 
one that is not mediated by the nuclear signaling effector Yki. 
Instead, our results indicate that repression of Yki by Wts func-
tions solely as a negative feedback loop that is important to limit 
the speed of migration. Previous work has shown that excessive 
F-actin levels can cause a loss of Hippo pathway activity, which 
activates Yki, inducing expression of several key upstream com-
ponents of the Hippo pathway to bolster pathway activity at the 
cortex (Fernández et al., 2011; Sansores-Garcia et al., 2011). In 
the context of border cell migration, such a negative feedback 
loop mechanism may be important for homeostatic control of 
F-actin polymerization. Excessive F-actin levels might there-
fore be expected to feedback to restrain F-actin polymerization 
via the Yki-mediated negative feedback loop. This phenomenon 
may explain the unusual behavior of Ena-overexpressing clusters, 
which strongly up-regulate F-actin and delay migration at stage 9, 

localize to sites of contact between border cells. Our results 
show that upstream components of the Hippo pathway—Kib, 
Ex, and Mer—are recruited to border cell contacts and signal 
through Hpo and Wts to polarize the actin cytoskeleton. Double 
mutants for ex, kib have an even stronger phenotype than loss of 
hpo or wts, demonstrating that these upstream components have 
an additional role aside from activating Hippo signaling that is 
likely to involve directly assisting polarization of polarity deter-
minants (Fletcher et al., 2012). Nevertheless, the upstream com-
ponents also signal via Hpo and Wts to polarize the actin 
cytoskeleton and promote migration.

Our results indicate that Wts acts by regulating the Ena/
Capping protein system, which is one system that cells use to 
control polymerization of actin (see model in Fig. 8). Loss of 
Wts results in excessive F-actin polymerization inside the cluster. 
Loss of Capping protein has the same effect, as does overex-
pression of the Capping protein inhibitor Ena. Ena contains a 
conserved Wts phosphorylation site located at the start of the 
proline-rich region (PRR) domain, which mediates binding to 
Profilin, so phosphorylation might disturb this binding inter
action and thus inhibit Ena function. Our results support the  
notion that Ena is inactivated upon Hippo signaling, so that 
Capping protein can be active and thereby repress actin poly
merization on inner membranes. Hence, in hpo or wts mutants, 
ectopic Ena activation inhibits Capping protein activity and 
leads to ectopic F-actin polymerization inside the cluster. In sup-
port of this view, hpo or wts mutants can be rescued by loss of 

Figure 7.  Capping protein activity mediates the function 
of Wts in polarizing F-actin and promoting border cell mi-
gration. (A) Control egg chamber at stage 9. (B) Control 
egg chamber at stage 10. (C and D) Capping protein  
(cpbM143) mutant border cell clusters are strongly delayed 
at stage 9 (C) and 10 (D), with strong accumulation of 
F-actin throughout the border cell cluster (inset), similar to 
a wtsX1 mutant (see Fig 3). (E and F) wtsX1 mutant clusters 
rescued by expression of UAS.cpb at stage 9 (E) or 10 
(F) migrate normally and show normal F-actin polarization 
and levels (insets). (G) Quantification of migration index 
in stage 10 wtsX1 (n = 17) and cpbM143 mutants (n = 31) 
and of the rescue of wtsX1 mutants by overexpression of 
cpbM143 (n = 41). Bars, 50 µm (5 µm for insets).
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promoter (Xu and Rubin, 1993; Lee and Luo, 1999). Flies of the following 
genotypes were generated: yw hsFLP UAS-nucGFPmyc; FRT42D hpo42-47/
FRT42D tubGal80; tubGal4/+ (Wu et al., 2003); yw hsFLP UAS-nucGFPmyc; 
FRT42D hpoJM1/FRT42D tubGal80; tubGal4/+ (Jia et al., 2003); yw hsFLP, 
tubGal4, UAS-nucGFPmyc; FRT82B wtsX1/FRT82B tubGal80 (Xu et al., 1995); 
yw hsFLP, tubGal4, UAS-nucGFPmyc; FRT82B kib32/FRT82B tubGal80 (Genevet 
et al., 2010); yw hsFLP; exAP50 FRT40A/FRT40A ubi-GFP (Hamaratoglu  
et al., 2006); yw hsFLP; exAP50 FRT40A/FRT40A ubi-GFP; FRT82B kib32/
FRT82B ubi-GFP; yw hsFLP, tubGal4, UAS-nucGFPmyc; FRT82B cpbM143/
FRT82B tubGal80 (Fernández et al., 2011); yw hsFLP, tubGal4, UAS-
nucGFPmyc; UAS.cpb/+; FRT82B wtsX1/FRT82B tubGal80; yw hsFLP UAS-
nucGFPmyc; FRT42D hpo42-47, ena210/FRT42D tubGal80; tubGal4/+.

The slbo-lacZ enhancer trap line was obtained from the Bloomington 
Stock Center (Bloomington, IN) and the upd-lacZ enhancer trap line has 
been described previously (Shaw et al., 2010). Information on these and 
other transgenes is available at http://www.flybase.org.

To obtain mutant border cell clones, 1–3-d-old female progeny was 
heat-shocked at 37°C for 1 h, twice a day, during 3 d and ovaries were dis-
sected 4–6 d after heat-shock.

The “Flip-out” actin.FRT.CD2.FRT.Gal4/UAS system (Pignoni and  
Zipursky, 1997) was used to express the following UAS.Yki constructs: 
UAS.Yki (Huang et al., 2005), UAS.YkiWTGFP, and UAS.YkiS168AGFP  
(Oh and Irvine, 2008), as well as UAS.YkiWTV5, UAS-YkiS168AV5, and  
UAS.YkiS111AS168AS250AV5 (Oh and Irvine, 2009). UAS.Ena (Bloomington) 
was also expressed with the Flip-out Gal4 driver. UAS.EnaS187A and 

but always recover to reach the oocyte by stage 10. In contrast, 
border cells never recover from loss of Capping protein, which, 
unlike overexpressed Ena, cannot be ameliorated by Wts phos-
phorylation. Hence, our results provide a physiological context 
for understanding the role of Yki as a negative feedback regula-
tor of Hippo signaling.

In conclusion, our findings establish a novel role for Hippo 
signaling in collective migration and provide a novel mechanism 
for polarization of the actin cytoskeleton. Our results suggest that 
examination of the role of the Hippo pathway in human cancer 
should consider not only its potential to regulate cell proliferation 
and survival, but also its potential to regulate cell polarity, the  
actomyosin cytoskeleton, and collective cell invasion.

Materials and methods
Drosophila stocks and genetics
Flies were raised and crossed at 25°C according to standard procedures. 
w or yw flies were used as the wild-type stock. The FLP/FRT site-specific  
recombination system was used to generate mutant clones with a heat-shock 

Figure 8.  Model. The role of the Hippo path-
way in apico-basal polarization of border cells is 
shown schematically. At sites of contact between 
border cells inside the cluster (green), the Hippo 
pathway acts to suppress actin polymerization via 
regulation of the Ena/Capping protein system. 
Consequently, actin polymerization and motility 
occur primarily at the “basal” outer rim of the bor-
der cell cluster.
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to poly-d-lysine–coated imaging chambers containing Schneider’s media, 
insulin, FBS, trehalose, adenosine deaminase, methoprene, ecdysone, and 
FM4-64 dye (Bianco et al., 2007). Videos were acquired on an inverted 
confocal microscope (LSM780; Carl Zeiss) using 40× water immersion ob-
jectives; 15 sections were taken 1.6 µm apart with a 3-min interval period 
between stacks. 3–5 egg chambers were simultaneously imaged using 
multi-position imaging. Sections covering the migrating cluster were pro-
jected for each time point using LSM Image Examiner software (Carl Zeiss) 
and the videos were processed into a montage using MetaMorph software 
(Molecular Devices).

In vitro kinase assay
Peptides used in this study (LRI peptide synthesis) were: Yki S168 HSRLAI-
HHSRARSSPASLQQNY (molecular weight 2,516.8 D); Yki S168A HSR-
LAIHHSRARASPASLQQNY (molecular weight 2,500.8 D); Ena S187 
SPPTPQGHHRTSSAPPAPQPQQQ (molecular weight 2,431.6 D); Ena 
S187A SPPTPQGHHRTSAAPPAPQPQQQ (molecular weight 2,415.6 D).

HPLC purified peptide substrates were diluted with deionised water 
to working dilutions (1 mg/ml) and stored at 20°C. The activity of recom-
binant Lats1 kinase (SignalChem) was measured in a kinase assay with 
8,000 ng of peptide (Yki S168, Yki S168A, Ena S187, Ena S187A) and 
350 ng of Lats1 kinase diluted in kinase dilution buffer III (SignalChem). 
The kinase reaction mixture consisted of 2 µl of 5× kinase assay buffer I 
(SignalChem), 10 µl of ATP cocktail (9.4 µl of kinase dilution buffer III, 10 µM 
cold ATP, and 3 µCi of -[32P]ATP [PerkinElmer]). The kinase assay was in-
cubated for 30 min at 30°C. Samples were blotted on P81 phosphocellu-
lose squares (EMD Millipore) and washed 3× in 0.1% phosphoric acid 
and then in acetone. Incorporation of -[32P] was quantified in counts per 
minute (cpm) by liquid scintillation (LS 6500 counter; Beckman Coulter). 
Relative cpm was determined by dividing the absolute cpm by the cpm in 
the control sample lacking substrate.

Online supplemental material
Fig. S1 shows quantification of disintegration defects in wts mutant clusters. 
Video 1. Shows polarization of F-actin visualized with Utrophin-GFP in bor-
der cells. Video 2 shows tumbling migration of wtsx1 or mats-IR clusters versus 
a control. Video 3 shows disintegration of wtsx1 or mats-IR clusters versus a 
control. Video 4 shows failure of detachment of wtsx1 or mats-IR clusters ver-
sus a control. Video 5 shows tumbling migration of a UAS-ena cluster versus 
a control. Video 6 shows disintegration of a cpbM143 cluster versus a control. 
Video7 shows rescue of wtsx1 mutant migration by expression of Cpb. Online 
supplemental material is available at http://www.jcb.org/cgi/content/full/
jcb.201210073/DC1. Additional data are available in the JCB DataViewer 
at http://dx.doi.org/10.1083/jcb.201210073.dv.
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