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Immobile myosin-ll plays a scaffolding role during
cytokinesis in budding yeast
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ore components of cytokinesis are conserved from

yeast to human, but how these components are

assembled into a robust machine that drives cyto-
kinesis remains poorly understood. In this paper, we show
by fluorescence recovery after photobleaching analysis
that Myo1, the sole myosin-Il in budding yeast, was mo-
bile at the division site before anaphase and became im-
mobilized shortly before cytokinesis. This immobility was
independent of actin filaments or the motor domain of
Myo1 but required a small region in the Myo tail that is

Introduction

Cytokinesis in animal and fungal cells requires concerted func-
tions of an actomyosin ring (AMR), membrane trafficking, and
localized ECM remodeling at the division site (Balasubrama-
nian et al., 2004; Strickland and Burgess, 2004; Eggert et al.,
2006; Barr and Gruneberg, 2007). The AMR, which consists
of myosin-II and actin filaments, is thought to generate a con-
tractile force that powers the ingression of the plasma mem-
brane (PM). The AMR may also guide membrane deposition
and ECM remodeling during cytokinesis (Vallen et al., 2000;
Fang et al., 2010). Targeted membrane deposition is thought
to increase surface area at the division site (Strickland and
Burgess, 2004; Barr and Gruneberg, 2007) and may also deliver
enzymatic cargoes for chitinous primary septum (PS) formation
in the budding yeast Saccharomyces cerevisiae (Chuang and
Schekman, 1996; VerPlank and Li, 2005) or localized ECM
remodeling in animal cells. Importantly, defects in PS forma-
tion cause cytokinesis block in budding yeast (Bi, 2001; Schmidt
et al., 2002; VerPlank and Li, 2005; Nishihama et al., 2009),
and defects in ECM remodeling cause embryonic lethality
with cells arrested in cytokinesis in Caenorhabditis elegans
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Abbreviations used in this paper: AMR, actomyosin ring; ELC, essential light
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synthetic complete.
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thought to be involved in higher-order assembly. As ex-
pected, proteins involved in actin ring assembly (tropo-
myosin and formin) and membrane trafficking (myosin-V
and exocyst) were dynamic during cytokinesis. Strikingly,
proteins involved in septum formation (the chitin synthase
Chs2) and/or its coordination with the actomyosin ring
(essential light chain, IQGAP, F-BAR, efc.) displayed
Myo1-dependent immobility during cytokinesis, suggest-
ing that Myo1 plays a scaffolding role in the assembly of
a cytokinesis machine.

(Mizuguchi et al., 2003) and mice (Izumikawa et al., 2010).
Thus, there are complex and interdependent relationships
among the cellular events involved in cytokinesis.

It is generally assumed that the AMR consists of sev-
eral sarcomere-like structures, in which myosin-II bipolar fila-
ments slide on actin filaments to generate force for contraction
(Schroeder, 1972; Sanger and Sanger, 1980; Satterwhite and
Pollard, 1992). In addition, AMR contraction must be coupled
with disassembly, as the volume of the ring decreases during
furrow ingression (Schroeder, 1972; Bi, 2010; Mendes Pinto
et al., 2012). This is different from muscle contraction, during
which the number of sarcomeres (or contractile units) remains
unchanged (Huxley, 1969). Experimental evidence in support
of the “sarcomere disassembly” hypothesis is still lacking.
Direct EM examination of the cleavage furrow has revealed that
actin filaments are organized into parallel arrays of opposing
polarity (Sanger and Sanger, 1980; Kamasaki et al., 2007) or as
bundles of actin filaments (Maupin and Pollard, 1986) but failed
to unambiguously identify myosin filaments. Thus, it is not
clear how myosin-II is organized at the division site. FRAP
analysis indicates that myosin-II is largely immobile at the
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cleavage furrow during cytokinesis in C. elegans (Carvalho
et al., 2009) and Drosophila melanogaster (Goldbach et al.,
2010; Uehara et al., 2010) but undergoes rapid turnover in
the fission yeast Schizosaccharomyces pombe (Pelham and
Chang, 2002), Dictyostelium discoideum (Yumura, 2001; Zhou
et al., 2010), and mammalian cells (Kondo et al., 2011). In S.
cerevisiae, myosin-1I is reported to be dynamic in one study
(Lister et al., 2006) but undergoes a dynamic to immobile tran-
sition from G2/M to cytokinesis in another study (Dobbelaere
and Barral, 2004). These observations suggest that there are at
least two modes of myosin-II organization at the division site,
but their functional significance and regulatory mechanisms remain
unknown. In this study, we show that Myol, the sole myosin-II
heavy chain in S. cerevisiae (Bi et al., 1998; Lippincott and Li,
1998a), displays cell cycle-regulated changes in mobility at the
division site and that Myol immobility during cytokinesis is
regulated through a putative assembly domain in its tail.

Core components of cytokinesis are conserved from yeast
to human, but how these components are assembled into a
robust machine that drives cell cleavage is not well understood.
In this study, we performed FRAP analysis on 13 cytokinesis
proteins in budding yeast to compare their individual and col-
lective behaviors. We also performed similar analysis on these
proteins in different mutants to determine their dependency
relationships. We found that different proteins display distinct
dynamics during the cell cycle and that the immobility of all
other proteins during cytokinesis depends on Myol, but not vice
versa, suggesting that Myol plays a scaffolding role in the as-
sembly of a cytokinesis machine.

Results

Myosin-Il is mobile at the division site
during the early part of the cell cycle and
becomes progressively immobilized from
anaphase to the onset of cytokinesis

To determine the dynamics of the AMR components, we first
analyzed the dynamics of Myol, the sole myosin-II heavy chain
in budding yeast, during the cell cycle. When the entire Myol-
GFP ring at the bud neck was photobleached, the mean of the
maximal fluorescence recovery was <8% regardless of cell
cycle stages (Fig. S1, A—C; Video 1; and the entire FRAP data
with individual curves and quantitative analyses were also shown
in Figs. S3 and S4), which are marked by bud size (see Materials
and methods for details) and septin—hourglass splitting (see
associated videos; not depicted in figures), a cellular event that
coincides with the onset of cytokinesis (Lippincott et al., 2001).
The recovery was noticeably higher in small-budded cells
(7.2 £ 1.1%) than in cells undergoing cytokinesis (1.1 + 1.3%).
These FRAP data suggest that there is a limited exchange of
Myol between the bud neck and the cytosol throughout the cell
cycle, which could be caused by a slow rate of exchange and/
or a small pool of Myol in the cytosol.

As a complementary approach to FRAP, we also used fluor-
escence loss in photobleaching (FLIP) to probe the dynamics
of Myol at the bud neck. A cytosolic region of a mother cell
with a small bud was photobleached sequentially four times
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(Fig. S1 D). The fluorescence intensity of Myol-GFP at the bud
neck decreased only 30% in 23 min after the initial bleaching in
the cytosol, in comparison to a 20% fluorescence loss in an un-
bleached control cell in the same imaging field during the same
period (Fig. S1 E). In contrast, when a similar experiment was
performed on a cell carrying Tpm2-GFP (tropomyosin), which is
highly dynamic (see Fig. 5 A), the fluorescence intensity of Tpm?2
at the bud neck decreased 50% in 50 s even after one bleach in
the cytosol, whereas little or no change was observed for the con-
trol cell in the same field during the same period (Fig. S1, F-H).
These FLIP data suggest that Myol cycles between the bud neck
and the cytosol slowly. We also monitored the kinetics of Myol
localization during the cell cycle, and found that Myol signal at
the bud neck reached its peak from bud emergence to the small-
budded stage (in <30 min; unpublished data). From this point on,
Myol remained fairly constant at the bud neck (Fig. S1, I and J).
Approximately 20 min before septin-hourglass splitting, Myol
intensity was briefly increased by ~20% and then decreased in a
linear fashion during AMR constriction (Fig. S1, I and J; Tully
et al., 2009). Direct measurement of Myo1-GFP (the sole source
of Myol expressed from its native promoter at its physiological
locus) showed that nearly all of the Myol molecules were local-
ized to the bud neck around the small-budded stage. Because of
the very dim signal of Myol-GFP in the cytosol, it was rather
difficult to obtain an accurate and meaningful measurement of
Myol in this pool. However, based on fluorescence recovery after
full-ring bleaching (Fig. S1 A) and the measurement of Myol in-
tensity at the bud neck throughout the cell cycle (Fig. S1, I and J),
we estimate that 280% of the total cellular Myol is localized to
the bud neck before cytokinesis. Together, these data indicate
that the majority of Myol are localized to the division site early
in the cell cycle and maintained there with little flux between the
ring and the cytosol.

To determine Myol dynamics within the ring structure at
the bud neck, we bleached a half of the ring in cells at different
stages of the cell cycle. In small-budded cells, Myo1-GFP signal
in the bleached region recovered quickly with a recovery rate
(t12) of 20.4 = 1.3 s and a maximal recovery of 19.3 + 0.8%
(Fig. 1 A, solid circles; and Video 2, left), whereas the GFP sig-
nal in the unbleached region decreased correspondingly (Fig. 1 A,
open circles), suggesting that Myol moves laterally from the
unbleached region to the bleached region. The magnitude of
recovery is significant, considering that the maximally possi-
ble recovery would be 50% if all the recovery in the bleached
half were attributed to lateral movement within the ring structure.
This is a reasonable assumption given that Myol displays little
flux between the ring and the cytosol (see the preceding para-
graphs). In large-budded cells, the maximal recovery was limited
to7.1 +1.1% (Fig. 1 B and Video 2, middle). In cells undergoing
cytokinesis, virtually no recovery was observed (Fig. 1 C and
Video 2, right). Thus, Myol is mobile within the ring structure
during the early part of the cell cycle and becomes immobilized
toward the late part of the cell cycle.

To determine the transition point in Myol mobility within
the ring structure more precisely, we performed similar FRAP
analysis on cells carrying mCherry-labeled Nup57, a component
of the nuclear pore complex (Alber et al., 2007) that marks the
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Figure 1. Myol1 displays cell cycle-regulated dynamics at the division site. (A-C) Myo1 is mobile at the division site in small-budded cells (A), becomes
less mobile in large-budded cells (B), and is immobilized during cytokinesis (C), indicated by the presence of a double septin ring at the division site,
which is not shown in any figure but can be seen in the figure-associated video. A half of the Myo1-GFP ring from cells at different stages of the cell cycle
(indicated by bud size) of the strain XDY286 (MYO1-GFP CDC3-RFP) was photobleached, and fluorescence recovery in the bleached and unbleached
regions was followed over time. Except where noted, FRAP analysis was performed in a similar way throughout the study. Quantitative analysis and the
corresponding kymograph for a single representative cell are shown in each plot of the main figures. Individual recovery curves for all cells examined for
a given protein at a specific cell cycle stage and their associated quantitative analyses are shown in Figs. S3 and S4. (D-F) Myo1 becomes immobilized
in late anaphase or felophase. Large-budded cells (n = 12) of the strain YEF6036 (MYO1-GFP CDC3-RFP NUP57-RFP) at different phases of the cell cycle
(indicated by the nuclear pore protein Nup57-RFP) were subjected to FRAP analysis to determine the precise timing of Myo1 immobilization during the cell
cycle. WT, wild type.

nuclear position in the cell. In wild-type cells, the penetration of
the nucleus from the mother into the daughter cell compartment
is correlated with the onset of anaphase (Yang et al., 1997). We
found that Myo1 became increasingly immobile from middle or
late anaphase to the onset of cytokinesis (Fig. 1, D-F). In addi-
tion, Myol remained highly mobile in mutants arrested at the
onset of anaphase (cdcl6 and cdc23) and was nearly immobile
in mutants arrested at the mitotic exit (cdcl5-2 and dbf2-1

dbf20A; unpublished data). Together, these data indicate that
Myol is mobile within the ring structure before the onset of ana-
phase, increasingly immobilized from anaphase to telophase,
and becomes completely immobile during cytokinesis.

We then probed the dynamics of the regulatory light chain
(RLC) and the essential light chain (ELC) for Myol. Mlc2, the
RLC for Myol, displays a localization pattern identical to Myol
throughout the cell cycle, and its localization to the bud neck

Dynamics and scaffolding role of Myo1 in cytokinesis
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Figure 2. Actin filaments are not required for

Myo1 immobility during cytokinesis. (A) Myo1

remains immobile during cytokinesis in bnilA A
cells. Myol1-GFP ring in a cell of the strain

YEF6116 (bnilA MYO1-GFP CDC3-RFP) un- 100
dergoing cytokinesis was analyzed by FRAP.
(B-E) Myo1-GFP displays similar dynamics
in LatA- and DMSO-treated cells. Cells of the ~—
strain XDY286 (MYO1-GFP CDC3-RFP) were
subjected to FRAP analysis in the presence  *g5
LatA (B-D) or DMSO (E, control) during the indi- €
cated stages of the cell cycle. WT, wild type. Q
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completely depends on its binding to Myol (Luo et al., 2004).
Mlc2-GFP showed nearly identical dynamics as Myol-GFP
during the cell cycle when either the entire ring (not depicted)
or a half of the ring (Fig. S2, A—C) was bleached.

Micl, the ELC for Myol (Luo et al., 2004), also binds to
Myo2 (a myosin-V in budding yeast) and Iqg1 (the sole IQGAP
in budding yeast) via their respective IQ motifs (Stevens and
Davis, 1998; Boyne et al., 2000; Shannon and Li, 2000). In
small-budded cells, Mlc1 localizes to the bud cortex as puncta,
reflecting its association with myosin-V and secretory vesicles
(Wagner et al., 2002; Luo et al., 2004). These puncta were highly
dynamic (Fig. S2 D). Micl localizes to the bud neck only in
large-budded cells and cells undergoing cytokinesis (Shannon
and Li, 2000; Wagner et al., 2002; Luo et al., 2004). In these

.glj!*";?m! e

G

200 300 400 0 100 200 300 400

Time(s)

e Bleached area

cells, Mlc1 displayed immobility from its initial localization
to the completion of cytokinesis (see Fig. 7 A and Video 8).
Together, these data indicate that myosin-II undergoes cell cycle—
regulated changes in dynamics, being mobile within the ring
structure early in the cell cycle and becoming progressively im-
mobilized from anaphase to the onset of cytokinesis.

The change in Myol dynamics is also reflected by the dy-
namics of its binding partners during the cell cycle. Bni5, a
septin-binding protein (Lee et al., 2002), mediates Myol target-
ing to the division site from late G1 to the onset of telophase,
whereas Mlc1 and Iqgl mediate Myol targeting from the onset
of anaphase to the end of cytokinesis (Fang et al., 2010). Not
surprisingly, Bni5 was mobile at the division site during its entire
stay in the presence or absence of Myol (Fig. S2, E-H; and
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Video 3, left); in contrast, Mlc1 (see Fig. 7 A and Video 8) and
Iqgl (see Fig. 7 B) displayed immobility throughout their local-
ization at the division site.

Actin filaments, motor domain, and light
chain binding sites are not required for
Myo1 immobility during cytokinesis
The timing of Myol mobility changes during the cell cycle cor-
relates with the timing of actin ring assembly and AMR constric-
tion (Epp and Chant, 1997; Bi et al., 1998; Lippincott and Li,
1998a). To determine the possible role of actin ring assembly in
regulating Myol immobility, we examined Myol dynamics in
bnilA cells during the cell cycle. Bnil and Bnrl are two formins
in budding yeast that share an essential role in nucleating actin
cable assembly to mediate polarized cell growth during budding
(Pruyne et al., 2002; Sagot et al., 2002). During cytokinesis,
Bnil is the only formin localized at the division site (Buttery
et al., 2007) and plays an important role in actin ring assembly
and cytokinesis (Vallen et al., 2000; Tolliday et al., 2002). We
found that deletion of BNI! did not affect Myol dynamics dur-
ing the cell cycle, including its immobility during cytokinesis
(a cell in which Myo1-GFP failed to constrict presumably be-
cause of the absence of the actin ring; Fig. 2 A and Video 3, right).
Because about one third of bnilA cells are still able to form a
faint actin ring, we disrupted all actin filaments using latrunculin
A (LatA; Ayscough et al., 1997) and then examined Myol dy-
namics. The LatA treatment did not affect Myol behavior during
the cell cycle (Fig. 2, B-E; and Video 3, right). Myo1 was mobile
at the division site in small-budded cells (¢, 27.8 + 7.5; maximal
recovery, 18.6 + 3.7%; n = 6), less mobile in large-budded cells
(maximal recovery, 6.9 + 1.2%; n = 5), and became immobile
during cytokinesis (n = 6). As expected, Myo1-GFP failed to con-
strict in LatA-treated cells (Fig. 2 D and Video 3, right), in con-
trast to the DMSO-treated control cell (Fig. 2 E). These data
indicate that the actin ring and thus AMR constriction are not re-
quired for Myol immobility during cytokinesis.

The tail of Myol is sufficient for directing the assembly of
a “headless” AMR (Fang et al., 2010), which largely fulfills its
role in cytokinesis (Lord et al., 2005; Fang et al., 2010). How-
ever, this headless AMR constricts with ~70-80% of the con-
striction rate of a normal AMR (Lord et al., 2005; Fang et al.,
2010). To determine whether the head domain of Myol, which
includes its motor domain, a putative actin binding site, and the
binding sites for both ELC and RLC, plays any role in regulat-
ing its immobility during cytokinesis, we performed FRAP
analysis on yeast cells in which the chromosomal copy of MYO!
was precisely replaced with the Myol tail (residues 856—1,928)—
coding sequence (Fang et al., 2010). Surprisingly, the dynamic
behavior of the Myol tail was very similar to that of the full-
length protein, being mobile at the division site in small-budded
cells (t15, 22.7 + 3.2; maximal recovery, 27.3 + 2.8%; n = 12;
Fig. 3 A and Video 4, left) and less mobile in large-budded cells
(maximal recovery, 12.4 + 1.6%; n = 7; Fig. 3 B and Video 4,
middle) but becoming immobilized during cytokinesis (n = 7,
Fig. 3 C and Video 4, right). Thus, the regulation of Myol dy-
namics during the cell cycle is largely mediated by its tail not its
head domain.
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Figure 3. The tail of Myo1 confers its dynamic property during the cell
cycle. (A-C) Myo1-Tail-GFP in a small-budded cell (A), a large-budded cell
(B), and a cell undergoing cytokinesis (C) of the strain XDY288 (myo I-Tail-GFP
CDC3-RFP) was analyzed by FRAP.

A small region near the C terminus

of Myo1 is required for its immobility
during cytokinesis

All myosin-IIs from animal cells can assemble into bipolar fil-
aments in vitro, and this assembly invariably depends on a re-
gion near their C termini, called the assembly domain, which
is required for antiparallel interaction of myosin-II molecules
(Trybus, 1991; Tan et al., 1992). Myol tail also contains a putative
assembly domain near its C terminus, which can only localize to

Dynamics and scaffolding role of Myo1 in cytokinesis ¢ Wloka et al.
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the division site if it coexists with a Myol molecule harboring
the targeting domains (mTD1 and TD2) near the middle of its
tail (Fig. 4 A; Fang et al., 2010). Strikingly, seven of the 10
point mutations in MYO! that are synthetically lethal with the
deletion of HOF1 (Nishihama et al., 2009), which encodes an
F-BAR protein involved in cytokinesis (Kamei et al., 1998;
Lippincott and Li, 1998b; Vallen et al., 2000), are clustered
within or near the putative assembly domain, highlighting the
importance of this region in Myol function and cytokinesis
(Fig. 4 A). Six of the seven are stop codon mutations, which de-
fine five distinct truncation alleles of MYOI (Fig. 4 A). Based
on these observations, we hypothesized that Myo1l may undergo
cell cycle—triggered higher-order assembly, forming bipolar
filaments during cytokinesis that account for its immobility.

To test this hypothesis, we performed FRAP analysis on
cells carrying one of four truncation alleles of MYO1 (stopped
at residue 1,483, 1,535, 1,633, or 1,798) isolated from the hof1
synthetic lethal screen as well as a truncation allele deleted for
the coding sequence of a smaller C-terminal region (stopped
at residue 1,903), including the predicted nonhelical tailpiece
(Fig. 4 A). Similar nonhelical regions have been implicated in
filament assembly for smooth muscle and nonmuscle myosin-IIs
(Trybus, 1991). Like the wild-type protein, Myol lacking the
putative nonhelical region was immobile during cytokinesis, as
indicated by the half-ring bleaching (Fig. 4 B and Video 5, left),
and virtually no recovery was observed when the entire ring
was bleached (Fig. 4 C). Thus, the putative nonhelical region
of Myol is not required for its immobility during cytokinesis.
In contrast, Myol-(AA1-1798) was mobile at the division site
during cytokinesis (#;,, 12.7 + 3.4; maximal recovery, 18.3 +
2.1%; n = 8; Fig. 4 D and Video 5, right), even though its ex-
pression level was similar to that of the full-length protein or
Myol lacking the putative nonhelical region (Fig. 4 F). In addi-
tion, when the entire ring was bleached during cytokinesis, the
recovery was noticeably higher than that of the full-length pro-
tein (Fig. 4 E compare with Fig. S1 C). The other three Myol
variants with larger truncations also displayed mobility, al-
though their overall signal at the bud neck was dimmer than
the full-length or Myo1-(AA1-1798) proteins during cytoki-
nesis (unpublished data). Together, these data demonstrate that
a 105-aa fragment (residues 1,798-1,903) near the C terminus
of Myol is essential for the establishment and/or maintenance
of its immobility during cytokinesis.

Actin ring-associated proteins and
membrane trafficking components are
dynamic during cytokinesis

To gain insight into the construction of the cytokinesis machin-
ery, we compared the dynamics of Myol and other cytokinesis
proteins by performing FRAP analysis on those proteins in-
volved in actin ring assembly, membrane trafficking, and sep-
tum formation. Because GFP-tagged actin is not functional and
does not label actin cables or the actin ring (Doyle and Botstein,
1996), we probed the dynamics of actin ring—associated proteins
(formins and tropomyosin) instead of actin itself. Both formin
and tropomyosin are universally required for nucleating and sta-
bilizing the actin filaments in the AMR (Balasubramanian et al.,
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2004; Moseley and Goode, 2006; Pollard, 2008). The formin
Bnil localizes to the sites of polarized growth during the cell
cycle, including the bud neck during cytokinesis, whereas the
formin Bnrl localizes to the mother side of the bud neck from
bud emergence to the onset of cytokinesis (Pruyne et al., 2004;
Buttery et al., 2007). Thus, Bnil is the only formin associated
with the actin ring during cytokinesis. FRAP analysis indicates
that Bnil-3GFP, expressed from its native promoter, is dynamic
at the bud cortex as well as at the bud neck (Buttery et al., 2007).
In contrast, the neck-localized Bnrl1-GFP, expressed from its
native promoter, is relatively immobile (Buttery et al., 2007).
These observations are essentially confirmed in our study. In our
experiments, GFP-tagged Bnil, expressed from its native pro-
moter and carried on a high-copy plasmid (a single GFP-tagged
Bnil did not produce a signal strong enough for our study),
localized to the division site at the onset of cytokinesis and was
highly dynamic (Fig. S2 J). After full-ring bleaching, Bnil dis-
played a recovery rate (¢;,,) of 14.6 = 1.3 s and a maximal recov-
ery of 31.1 + 1.9%. As expected, GFP-tagged Bnrl, expressed
from a methionine promoter carried on a plasmid, was largely
immobile throughout the cell cycle (Fig. S2 I).

GFP-tagged tropomyosins have been used to label the
actin ring in live cells of the budding and fission yeasts (Pelham
and Chang, 2002; Yoshida et al., 2006). We found that GFP-
tagged Tpm?2 localized to the division site 1-2 min before the
onset of cytokinesis and was highly dynamic, with a recovery
rate (t1) of 2.0 = 0.5 s and a maximal recovery of 18.6 £ 2.9%
(Fig. 5 A and Video 6, left). Together, these data indicate that
actin ring—associated proteins, in contrast to myosin-II, are dy-
namic at the bud neck throughout cytokinesis.

To determine the dynamics of membrane trafficking com-
ponents during cytokinesis, we performed FRAP analysis on
cells carrying GFP-tagged Myo2 (myosin-V) and Exo84 (a sub-
unit of the exocyst). Myo?2 is required for the transport of post-
Golgi vesicles along actin cables to the sites of polarized growth,
including the bud neck during cytokinesis (Bretscher, 2003).
Exo084 is a vesicle-associated subunit of the exocyst that is re-
quired for the tethering of post-Golgi vesicles to the PM during
polarized cell growth and cytokinesis (Guo et al., 2000; Boyd
et al., 2004). Both Myo2 and Exo84 arrive at the division site
around the onset of cytokinesis (Fang et al., 2010; Wloka et al.,
2011). Upon full-ring bleaching, Myo2-GFP recovered with a
fast rate (t,) of 11.0 = 1.3 s and a maximal recovery of 47.1 +
5.0% (Fig. 5 B and Video 6, middle) throughout cytokinesis
(AMR constriction was marked by RFP-tagged Myol in the
same cells). Similarly, Exo84 recovered with a fast rate (¢,) of
12.2 + 0.6 s and a maximal recovery of 35.9 + 2.0% (Fig. 5 C
and Video 6, right; Boyd et al., 2004). The dynamic properties
of Myo2 and Exo84 are consistent with their role in membrane
trafficking during cytokinesis.

Proteins involved in septum formation

or its coordination with the AMR

display Mvyo1-dependent immaobility

during cytokinesis

Chs2, the chitin synthase II, is delivered to the bud neck at
the onset of cytokinesis by the exocytic machinery to execute
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Figure 4. A small C-terminal region of Myol
is required for its immobility during cytokinesis.
(A) Myo1 motifs and the positions of myo ! mutations
that are synthetically with hof1A. (B and C) Myol
dynamics are not affected by the deletion of its
putative nonhelical region. Half (B) and full (C) rings
of Myol1-(AA1903Stop)-GFP in cells of the strain
YEF6617 (myo1-{AA1903Siop)-GFP CDC3-RFP)
were photobleached during cytokinesis. (C and D)
The putative assembly domain of Myo1 is required
for its immobility during cytokinesis. Half (C) and
full (D) rings of GFP-Myo1-(AA1798Stop) in cells
of the strain YEF6616 (GFP-myol-[AA1798Stop)
CDC3-RFP) were photobleached during cytokinesis.
Except where noted, the first bleaching always cor-
responds to time 0, and additional bleaching (either
half bleach or total bleach) is indicated by the ar-
rowhead. (F) Expression level of the fulllength and
truncation alleles of MYOT. Cell lysates of strains
YEF6618 (GFP-MYOI), YEF6617, YEF6616, and
YEF473 (MYOI, negative control) were probed for
the expression levels of Myo1 variants by Western
blotting using a GFP antibody. As a loading control,
the levels of the septin Cdc11 from the same cell
lysates were probed using an anti-Cdc11 antibody.
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Figure 5. Actin ring-associated proteins and membrane trafficking com-
ponents are dynamic during cytokinesis. (A) Tropomyosin is highly dy-
namic during cytokinesis. The full ring of Tpm2-GFP from a cell of the strain
YEF6197 (TPM2-GFP CDC3-RFP) undergoing cytokinesis was analyzed by
FRAP. (B and C) Membrane trafficking components are dynamic during
cytokinesis. The full rings of Myo2-GFP and Exo84-GFP from cells of the
strains YEF6001 (MYO2-GFP, pRS316-MYO1-mCherry) and YEF5862
(EXO84-GFP CDC3-RFP) during cytokinesis were analyzed by FRAP. WT,
wild type.

its essential role in PS formation (Sburlati and Cabib, 1986;
Chuang and Schekman, 1996; VerPlank and Li, 2005). Bleach-
ing of the full (unpublished data)- or half-ring of Chs2-GFP
within the first 3—4 min after its localization to the bud neck led
to a full recovery (Fig. 6 A and Video 7), which presumably
reflects its timed and continuous delivery to the division site
by the exocytic machinery. After this period, Chs2 became
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immobile (Fig. 6 A and Video 7). Together, these results sug-
gest that (a) Chs2 delivery to the division site is complete within
a few minutes of its initial localization; (b) once delivered, Chs2
may be closely associated with Myol; and (c) Chs2 is not recy-
cled back to the furrow membrane after its endocytic removal
during the late stage of cytokinesis. Thus, Chs2 displays bipha-
sic dynamics during cytokinesis.

To determine whether the immobility of Chs2 during
cytokinesis depends on Myol, we examined Chs2 dynamics
in myolA cells. Strikingly, Chs2 became mobile throughout
cytokinesis and, as expected, failed to constrict (Fig. 6 B and
Video 7), suggesting that Chs2 is immobilized in a Myol-
dependent manner.

To determine whether Myol and other major components
of the division machinery act in unison during cytokinesis such
that deletion of one component will change the organization
and/or the dynamics of other components, we examined Myol
dynamics during cytokinesis in several cytokinesis mutants. In
chs2A or innlA cells, in which PS formation is completely
blocked and cytokinesis is more defective than in myolA cells
(Bi, 2001; Schmidt et al., 2002; VerPlank and Li, 2005; Sanchez-
Diaz et al., 2008; Nishihama et al., 2009; Meitinger et al., 2010),
Myol remained immobile (Fig. 6, C and D; and Video 7). The
Myol immobility was also observed in mlc2A, bnilA, bnriA,
hoflA, and cyk3A cells (unpublished data). Myol dynamics
during cytokinesis could not be probed in mic/A and igglA
cells, as both Mlc1 and Iqgl are required for Myol targeting
to the division site during cytokinesis (Fang et al., 2010), and
mlclA and igglA are lethal in most strain backgrounds under
normal growth conditions (Epp and Chant, 1997; Stevens and
Davis, 1998). Together, these data indicate that the immobility
of Chs2 during cytokinesis, but not its delivery to the division
site, depends on Myol; in contrast, Myol immobility does not
depend on any other aforementioned cytokinesis proteins.

Besides Chs2, several other proteins (Mlcl, Iqgl, Innl,
Hofl, and Cyk3) have been implicated in PS formation or
its coordination with the AMR (Korinek et al., 2000; Wagner
et al., 2002; Nishihama et al., 2009; Meitinger et al., 2010).
To determine their dynamics and explore their relationships
with Myol during cytokinesis, we performed FRAP analysis
of these proteins in wild-type and myolA cells. As described
earlier, in a wild-type strain, Mlc1, the ELC for Myol, was
immobile upon its localization to the bud neck in large-budded
cells and remained immobile during cytokinesis (Fig. 7 A, left;
and Video 8). However, in myoIA cells, Mlc1 became dynamic
(Fig. 7 A, right; and Video 8). Both half-ring and full-ring
(Fig. 7 A, arrowhead) bleaching indicates that the recovery is
largely caused by cytosol-neck exchange. Like Mlcl, Iqgl was
immobile during cytokinesis (Fig. 7 B, left; and Video 8) but
became dynamic in myolA cells (Fig. 7 B, right; and Video 8).
These data suggest that even though Mlc1 and Iqg1 are recruited to
the neck in a Myol-independent fashion and are actually required
for Myol localization at the division site during cytokinesis (Fang
etal., 2010). Myol, in turn, is required for their organization.

Innl plays an essential role in PS formation and interacts
with the SH3 domain of the F-BAR protein Hof1 and of the trans-
glutaminase domain—containing protein Cyk3 through distinct
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Figure 6. Chs2 displays biphasic dynamics during cytokinesis, and its immobility depends on Myo1. (A) Chs2 is dynamic and then immobile during
cytokinesis. Chs2-GFP in the strain YEF5874 (CHS2-GFP CDC3-RFP) was bleached sequentially during cytokinesis. Time O corresponds fo the initial local-
ization of Chs2 to the bud neck. Arrowheads denote bleaching events. Solid and dashed lines indicate the intensity measurements for the unbleached and
bleached areas, respectively. (B) Chs2 immobility depends on Myo1. Chs2-GFP in the strain YEF6336 (myolA CHS2-GFP CDC3-RFP) was subjected to
FRAP analysis. Note that the duration of Chs2 at the bud neck was shorter, and the Chs2 signal was weaker in the myo 14 strain than in the wild-type (WT)
strain. (C and D) Myo1 immobility during cytokinesis does not depend on Chs2 and Inn1. Myo1-GFP in strains YEF6273 (chs2A MYO1-GFP CDC3-RFP)

and YEF6230 (inn1A MYO1-GFP CDC3-RFP) was analyzed by FRAP.

PXXP motifs in its C terminus (Nishihama et al., 2009). Both
Hofl and Cyk3 are also involved in PS formation (Korinek
et al., 2000; Vallen et al., 2000; Meitinger et al., 2010). Inn1 local-
ized to the bud neck at the onset of cytokinesis (Sanchez-Diaz
et al., 2008; Nishihama et al., 2009) and remained immobile
throughout the division process (Fig. 7 C, left; and Video 9).
However, in myolA cells, Inn1 became more dynamic (Fig. 7 C,
right; and Video 9). Hofl was relatively dynamic until the
onset of cytokinesis when it quickly became immobile and
remained so during cytokinesis (Fig. 7 D, left; Video 9; and not
depicted). Hofl became much more dynamic in myolA cells
(Fig. 7 D, right; and Video 9). Thus, the immobility of Innl
and Hof1 depends on Myol. Interestingly, Cyk3 was dynamic
throughout cytokinesis (71, of 7.4 £ 0.9 s and maximal recov-
ery of 31.7 + 1.9% after full-ring bleaching; Fig. S2 K). These
results suggest that Innl and Hof1 are closely associated with
Myol during cytokinesis, whereas Cyk3 is fluxing between
the bud neck and the cytosol. Together, our data indicate that
proteins involved in PS formation, with the exception of Cyk3,
display Myol-dependent immobility during cytokinesis.

Because Myol immobility depends on a small region near
its C-terminal end, we examined Chs2 and Hof1 dynamics in cells
carrying the myol-(AA1798Stop) allele (compare with Fig. 4,
A and D). Both Chs2 (Fig. 8 A and Video 10, left) and Hof1
(Fig. 8 B and Video 10, right) became mobile at the division site
during cytokinesis in the majority of the cells examined. We
also probed the dynamics of Chs2 and Hof1 in cells carrying the
myol-(AA1535Stop) allele (compare with Fig. 4 A). In this case,
Chs2 and Hof1 were mobile in all cells examined (unpublished
data). Thus, the immobility of Chs2 and Hofl depends on the
immobility, not just the presence, of Myol at the division site.

Discussion

Myo1 tail dictates its dynamics during

the cell cycle

In this study, we show that Myol undergoes only limited ex-
change between the bud neck and the cytosol. However, Myol
organization at the bud neck is clearly cell cycle regulated.
Myol moves laterally at the bud neck before anaphase and then
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Figure 7. Proteins involved in septum forma-
tion or its coordination with the AMR display
Myo1-dependent immobility during cytoki-
nesis. (A-D) The immobility of Mic1, IqgT,
Inn1, and Hof1 during cytokinesis depends on
Myo1. FRAP analysis was performed on the
indicated proteins in cells undergoing cyto-
kinesis of the following strains: (A) YEF6065
(CDC3-RFP, pUG34-MLC1; left) and YEF6351
(myolA CDC3-RFP, pUG34-MLC1; right); (B)
YEF6140 (CDC3-RFP, pUG351QGT; left) and
YEF6356 (myolA CDC3-RFP, pUG351QGT;
right, full-ring bleaching); (C) YEF6138 (INN1-
GFP CDC3-RFP; left) and YEF6357 (myolA
INN1-GFP CDC3-RFP; n = 5; right); and (D)
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becomes immobilized from late anaphase to telophase and re-
mains immobile during cytokinesis. This progressive immobi-
lization of myosin-II from anaphase to cytokinesis also occurs
in Drosophila (Goldbach et al., 2010; Uehara et al., 2010).
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Similarly, myosin-II does not undergo rapid exchange be-
tween the AMR and the cytosol during cytokinesis in C. elegans
(Carvalho et al., 2009). In contrast, myosin-II exchanges
rapidly between the AMR and the cytosol in D. discoideum
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Figure 8. The immobility of Chs2 and Hof1 depends on a small region near the C-terminal end of Myo1. (A and B) Chs2 and Hof1 become mobile at the
division site during cytokinesis in myo I-(AA1798Stop) cells. Chs2-GFP in strain YEF6771 (myo1-(AA1798Stop) CHS2-GFP CDC3-RFP; A) and Hof1-GFP
in strain YEF6769 (myo 1-(AA1798Stop) HOF 1-GFP CDC3-RFP; B) were analyzed by FRAP during cytokinesis. Arrowheads denote bleaching events. Solid
and dashed lines indicate the intensity measurements for the unbleached and bleached areas, respectively.

(Yumura, 2001; Yumura et al., 2008; Zhou et al., 2010) yet dis-
plays no lateral movement within the AMR during cytokinesis
(Yumura, 2001). On the other hand, myosin-II in the fission
yeast S. pombe and mammalian cells is clearly mobile at the
division site during cytokinesis (Pelham and Chang, 2002;
Clifford et al., 2008; Kondo et al., 2011). However, in both
cases, only one of the myosin-II isoforms (Myo2 in fission yeast
and myosin-IIA in mammalian cells) has been analyzed. Our
preliminary study indicates that Myp2, the other myosin-II in
fission yeast, is immobile during cytokinesis (unpublished data).
In mammalian cells, isoform-specific myosin-II dynamics have
been observed in the context of cell migration (Sandquist and
Means, 2008). It is possible that different isoforms of myosin-II
are optimized for different functions during cytokinesis. For ex-
ample, the immobile myosin-IIs, such as Myol in budding yeast
or Myp2 in fission yeast, may have evolved to efficiently coor-
dinate AMR constriction with PS formation (or localized ECM
remodeling in animal cells) during cytokinesis, whereas the fast
turnover myosin-IIs, such as Myo2 in fission yeast, may have
evolved to mainly drive PM ingression through force produc-
tion. Thus, it will be very informative to investigate whether
and why different isoforms of myosin-II in a given organism
display distinct dynamics during cytokinesis.

Regulation of myosin-II dynamics during cytokinesis re-
mains poorly understood. In this study, we show that actin fila-
ments, motor domain, and light chain (ELC and RLC) binding
sites in the head domain are largely dispensable for the estab-
lishment of the Myol immobility during cytokinesis. In con-
trast, Myol tail, especially a 105-aa region within the putative
assembly domain (Fang et al., 2010), is required for this pro-
cess. Thus, we speculate that Myol might form bipolar fila-
ments during cytokinesis, which accounts for its immobility as
well as maximal maintenance at the division site. Indeed, cell
cycle-regulated filament assembly is associated with myosin-II

immobility during cytokinesis in Drosophila (Uehara et al.,
2010). In this case, when the RLC is locked in a state promoting
myosin filament assembly, myosin-II becomes much more im-
mobile even in metaphase, when it is usually highly dynamic
(Uehara et al., 2010). Unfortunately, the role of the assembly
domain in regulating myosin-II immobility during cytokinesis
could not be examined in Drosophila, as myosin-II lacking this
domain fails to accumulate at the division site (Uehara et al.,
2010). However, it has been demonstrated that the assembly
domain dictates isoform-specific myosin-II dynamics in mi-
grating mammalian cells (Sandquist and Means, 2008). Col-
lectively, it is likely that cell cycle-regulated Myol1 filament
assembly accounts for its immobility during cytokinesis.

Myo1 plays a scaffolding role

during cytokinesis

How does the cell build a division machine? To address this
question, we analyzed the dynamics of 13 cytokinesis proteins in
budding yeast during the cell cycle under the same experimental
conditions (Fig. 9). Different cytokinesis proteins display dis-
tinct and functionally relevant dynamics, ranging from rapid
turnover to complete immobility. The AMR displays a dichot-
omy in dynamics, with myosin-II (myosin heavy chain, RLC,
and ELC) being immobile and actin ring—associated compo-
nents (formin and tropomyosin) being dynamic. Actin and actin-
associated proteins are also dynamic during cytokinesis in fission
yeast (Pelham and Chang, 2002) and cultured mammalian cells
(Guha et al., 2005; Murthy and Wadsworth, 2005). As expected,
components of the membrane trafficking machine, such as
myosin-V and the exocyst, are dynamic during cytokinesis.
Surprisingly, the secretory cargo Chs2 displays a unique biphasic
behavior during cytokinesis, showing myosin-V-like dynamics
during its initial localization to the division site, followed by
myosin-II-like dynamics during the rest of cytokinesis, suggesting
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Figure 9. Localization and dynamics of cyto-
kinesis proteins during the yeast cell cycle.
Straight bars indicate the duration of the cyto-
kinesis proteins at the mother—bud neck during
the cell cycle. Green bars indicate rapid recov-
ery caused by cytosol-neck exchange or laf-
eral movement within the ring structure. Dark
green bars (for Bnr1 and Hof1 before cytoki-
nesis) indicate less recovery. Black gradient
bars indicate near-immobile behaviors. Black
bars indicate immobility. Vertical dashed lines
indicate the onset of anaphase and telophase,
respectively. The generic names of yeast pro-
teins are highlighted in red in parentheses.
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that Chs2, after its full delivery to the division site, is immo-
bilized onto myosin-II for PS formation. This strongly supports
the hypothesis that the AMR guides PS formation in yeast (or
localized ECM remodeling in animal cells) during cytokinesis
(Fang et al., 2010). Like Myol, proteins involved in PS forma-
tion or its coordination with the AMR, such as ELC, IQGAP,
F-BAR, and Inn1, except Cyk3, are immobile during cytokinesis
regardless of their dynamic state early in the cell cycle.

Taking the advantage of yeast genetics and combining it
with FRAP analysis, we found that the immobility of all other
cytokinesis proteins depends on Myol, but Myol immobility
does not depend on other proteins. These findings and the previ-
ous observation that Myol is required for actin ring assembly
(Bietal., 1998) suggest that Myol plays a scaffolding role dur-
ing cytokinesis. This novel role of Myol may define a general
principle for the assembly of a division machine in other sys-
tems, as the core components and the mechanisms of cytokine-
sis are conserved from yeast to humans.

Materials and methods

Strains and growth conditions

Yeast strains used in this study are listed in Table 1. Standard culture media
and genetic methods were used throughout this study (Guthrie and Fink,
1991). For LatA experiments, cells were grown in synthetic complete (SC)
media at 23°C to exponential phase and then treated with 200 pM LatA
(Wako Chemicals USA) or DMSO (solvent in which LatA was dissolved) for
10 min before being subjected to timelapse and FRAP analysis.
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Construction of plasmids and yeast strains
All primers were purchased from Integrated DNA Technologies. Sequenc-
ing of constructs was performed at the DNA Sequencing Facility, Univer-
sity of Pennsylvania. Plasmid Ylp128-CDC3-mCherry (integrative, LEU2)
carries N-terminally mCherrytagged CDC3 under the control of its own
promoter (Gao et al., 2007). Plasmid Ylp204-CDC3-mCherry (integrative,
TRP1) was constructed by subcloning a 5.3-kb Sall-EcoRI fragment carry-
ing mCherry-CDC3 from Ylp128-CDC3-mCherry into Ylpalc204 (Gietz
and Sugino, 1988). Plasmid pRS316-MYO1-mCherry (CEN, URA3) car-
ries Cterminally mCherry-tagged MYOT under the control of its own pro-
moter (Fang et al., 2010). Plasmids pUG34-MLC1 (CEN, HIS3) and
pUG35-QG1 (CEN, URA3) carry N-+erminally GFPtagged MLC1 and
C-erminally GFPtagged IQG 1 under the control of the MET25 promoter,
respectively (provided by A. Ragnini-Wilson, Tor Vergata University of
Rome, Rome, ltaly; Wagner et al., 2002). Plasmid pUG23-BNR1 (CEN,
HIS3) was constructed by gap repairing the BNRT ORF into EcoRI-
digested pUG23 (supplied by J.H. Hegemann, Heinrich-Heine-Universitat
Disseldorf, Disseldorf, Germany), resulting in Cterminally GFPtagged
BNR1 under the control of the MET25 promoter. Plasmid YEp13-BNI1-GFP
(2, LEU2), carrying C-terminally GFPtagged BNIT under the control of its
own promoter, was constructed by a PCR-based method (Longtine et al.,
1998). The PCR products were generated using the plasmid pFA6a-GFP-
KanMXé (Longtine et al., 1998) as the template DNA and a pair of prim-
ers composed of sequences flanking the stop codon of BNIT and then
transformed into a yeast strain carrying the plasmid YEp13-BNI1, which
was isolated from a YEp13-based genomic library. Plasmids NRB884
(integrative, URA3) and pG1331 (integrative, TRPI) carry the 3’ region
of EXO84 and TPM2 with a GFP inserted in frame after their last codon,
respectively (W. Guo, University of Pennsylvania, Philadelphia, PA).
These plasmids were digested with Bglll and integrated at the EXO84 and
TPM2 loci, respectively.

Diploid strains carrying a specific truncation allele of MYOT were
constructed as follows. Plasmid pRS316-N-MYO1-GFP, which carries an
N-terminally GFPtagged MYO1 (GFP inserted immediately after the start
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Table 1. Yeast strains used in this study

Strain Genotype Reference or source
YEF473 a/a his3/his3 lev2/lev2 lys2/lys2 trp1/trp1 ura3/ura3 Bi and Pringle, 1996
YEF473A a his3 lev2 lys2 trp1 vra3 Bi and Pringle, 1996
YEF473B a his3 levu2 lys2 trp1 ura3 Bi and Pringle, 1996
YEF5804 As YEF473A, except CDC3-mCherry:LEU2 This study
YEF5862 As YEF5804, except EXO84-GFP:URA3 This study
YEF5874 As YEF5804, except CHS2-GFP:HIS3 This study
YEF5986 As YEF5804, except MYO2-ARG-GFP:HIS3 This study
XDY286 As YEF473A, except MYO1-GFP CDC3-mCherry:LEU2 Fang et al., 2010
XDY288 As YEF473A, except myo I-Tail-GFP CDC3-mCherry:LEU2 Fang et al., 2010
YEF6001 As YEF5986, except [pRS316-MYO1-mCherry) This study
YEF6036 As XDY286, except NUPS7-mCherry:His3MX6 This study
YEF6065 a ade2-1 ura3-52 his3 leu2-3, 112, trp1-1 can1-100 CDC3-mCherry:LEU2 (pUG34-MLC1) This study
YEF6069 As YEF473A, except MLC2-GFP:KanMX6 CDC3-mCherry:LEU2 This study
YEF6116 As YEF473, except bnilA::HIS3/bnilA::HIS3 MYO1-GFP:KanMX6/MYO 1-GFP:KanMXé This study
CDC3-mCherry:LEU2/CDC3
YEF6130 As YEF473, except CYK3-GFP:KanMX6,/CYK3-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6131 As YEF473, except HOF 1-GFP:KanMX6,/HOF 1-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6134 As YEF473, except CDC3-mCherry:TRP1/CDC3 (YEp13-BNI1-GFP) This study
YEF6135 As YEF473, except CDC3-mCherry:LEU2/CDC3 (pUG23-BNR1) This study
YEF6138 As YEF473, except INNT-GFP:KanMX6/INN1-GFP:KanMX6 CDC3-mCherry:LEU2/CDC3 This study
YEF6140 As YEF473, except CDC3-mCherry:LEU2/CDC3 (pUG35-1QG1) This study
YEF6197 As YEF473A, except TPM2-GFP:TRP1 CDC3-mCherry:LEU2 This study
YEF6230 As YEF473A, except inn1A::KanMX6 MYO1-GFP:His3MX6 CDC3- mCherry:LEU2 This study
YEF6273 As YEF473A, except chs2A::His3MX6 MYO1-GFP:KanMX6 CDC3- mCherry:TRP1 This study
YEF6336 As YEF473A, except myo1A::KanMX6 CHS2-GFP:KanMX6 CDC3-mCherry:LEU2 This study
YEF6349 As YEF473A, except myo1A::His3MX6 CDC3-mCherry:LEU2 This study
YEF6351 As YEF473A, except myo 1A ::KanMX6 CDC3-mCherry:LEU2 (pUG34-MLCT) This study
YEF6356 As YEF6349, except (pUG351QGT) This study
YEF6357 As YEF6349, except INNT-GFP:KanMXé This study
YEF6358 As YEF6349, except HOF 1-GFP:KanMX6 This study
YEF6616 As YEF473, except GFP-myo 1-{AA1798Stop):KanMX6/ GFP-myo 1-(AA1798Stop):KanMX6 This study
CDC3-mCherry:LlEU2/CDC3
YEF6617 As YEF473, except myo1-(AA1903Stop)-GFP/myo 1-(AA1903Stop)-GFP This study
CDC3-mCherry:LEU2/CDC3
YEF6618 As YEF473, except GFP-MYO1/GFP-MYO1 CDC3-mCherry:LEU2/CDC3 This study
YEF6769 As YEF473B, except myo1-(AA1798Stop):His3MX6 HOF 1-GFP:KanMXé6 CDC3-mCherry:TRP1 This study
YEF6771 As YEF473B, except myo 1-{AA1798Stop):His3MX6 CHS2-GFP:KanMXé CDC3-mCherry:TRP1 This study
YEF6899 As YEF473A, except CDC3-mCherry:LEU2 BNI5-GFP:KanMX6 This study
YEF6904 As YEF473A, except myo 1A ::His3MX6 CDC3-mCherry:LEU2 BNI5-GFP:KanMX6 This study

codon; Caviston et al., 2003), was digested with Clal and Sall and then
transformed into Masa1243 (a myo1A::URA3-KanMX6 [pUG23-MYO1];
Fang et al., 2010). After a few selective steps (Fang et al., 2010), a hap-
loid strain (Masa1284) carrying the GFPtagged MYOT allele in precise
replacement of the endogenous MYOT was generated. PCR products that
had been amplified from pFAéa-KanMXé using pairs of F3 and R1 primers
(Longtine et al., 1998) were transformed info Masa1284 to generate hap-
loid strains carrying truncated alleles of MYOT that were marked with
KanMX6. F3 primers consist of sequences upstream of the desired trun-
cation site (codons 1,483, 1,535, 1,633, 1,729, 1,798, or 1,903) in
MYOI, including a stop codon. The haploid strains were crossed with a
wild-type strain of opposite mating type to yield diploid strains, which were
then sporulated, and tefrads were dissected to select for haploid strains of
opposite mating types carrying a specific truncation allele of MYOT (GFP-
myo 1 *:KanMX6). These haploid strains were then crossed to generate
diploid strains homozygous for a specific truncation allele. Except for strain
YEF6771 in which CHS2-GFP:KanMX6 was PCR-amplified from the tem-
plate plasmid pFA6a-GFP-KanMX6 (Longtine et al., 1998), all other yeast
strains were made by transferring gene deletions or tagged alleles of genes
from one strain to another using PCR-based approach coupled with stan-
dard yeast genetics. All strains carrying CDC3-RFP were constructed by di-
gesting plasmid YIp128-CDC3-mCherry or YIp204-CDC3-mCherry with
Bglll and infegrating it at the CDC3 locus of the respective strains.

Live-cell imaging and quantitative analysis

For all the FRAP and FLIP experiments, cells were grown at 23°C to expo-
nential phase in SC media with selection for the presence of specific plas-
mids carried in the yeast strain. Cells were concentrated by centrifugation,
spotted on SC-dropout media containing 2% agarose, and sealed with nail
polish. Images were acquired at 23°C on a spinning-disk confocal micro-
scope equipped with a scanhead (CSU10; Yokogawa Corporation of
America) combined with a microscope (IX71; Olympus) and a 100x ob-
jective (1.4 NA, Plan S-Apochromat oil immersion; Olympus). Acquisition
and hardware were controlled by MetaMorph version 7.7 (Molecular
Devices). An electron multiplying charge-coupled device camera (model
C9100-13; ImagEM; Hamamatsu Photonics) was used for capture. Diode
lasers for excitation (488 nm for GFP and 561 nm for mCherry/RFP) were
housed in a launch constructed by Spectral Applied Research. FRAP was
performed using a computer-controlled ablation system (MicroPoint; Pho-
tonic Instruments) consisting of a nitrogen-pumped dye laser (wavelength of
435 nm) controlled by MetaMorph. Images were taken every 1 or 3 s (no z
stack) or 10-30 s (with a z stack consisting of 11 x 0.3—pm steps). Whenever
feasible, a maximum projection (as the best adaptation to cell movement)
was created with MetaMorph version 7.7, and quantification was performed
with Image] (National Institutes of Health), drawing a respective polygon
on the region of interest to yield the integrated density for the region. This
integrated density was used in Prism Version 5 (GraphPad Software) to
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create plots and, whenever feasible, to calculate the halftime (f2) (equal
to recovery rate) and a maximum recovery using the one-phase association
function Y =Yg + (plateau — Yo) x (1 — exp (=K x x)) in Prism, in which K
is the rate constant, x is the time (in seconds), Yo is the intensity (in percent)
right after the bleach (time = 0), and plateau is the intensity after which
no more recovery occurred. i, was calculated as In(2)/K, similar to that
described before (Lister et al., 2006), and the maximal recovery was cal-
culated as plateau — Yo. It is worth pointing out that all the #, values pre-
sented in Figs. S3 and S4 were calculated based on individual recovery
curves, and then, the mean and the SEM were determined.

Unless noted otherwise, the following description applies fo the en-
tire study. First, all proteins were GFPtagged at their C termini and ex-
pressed from their native promoters at their endogenous loci and were the
only copy of the gene present in the cell. Second, for clear and accurate
description of the FRAP data, both the quantification and the kymograph of
the same cell are presented in a single plot. The number of cells examined
and the range of their behaviors are described in the text and/or summa-
rized in Figs. 9, S3, and S4. Finally, bud size, which increases with
nuclear cycle progression, and septin-hourglass splitting (septin structures
were marked by mCherry-labeled Cdc3), which is controlled by the mitotic
exit network and coincides with the onset of cytokinesis (Cid et al., 2001;
Lippincott et al., 2001), were used as crude and precise cell cycle markers,
respectively. Using the combination of these markers, three cell cycle stages
were defined: small bud refers to cells with a daughter volume ~20% of
its mother; large bud refers to cells with a daughter volume ~40-60% of its
mother without septin—hourglass splitting during the entire period of image
acquisition; and cytokinesis refers to cells with split septin rings at the
point of bleaching.

Detection of truncated Myo1-GFP proteins by Western blotting

Overnight cultures of yeast strains were diluted into 50 ml YM-P rich me-
dium (Lillie and Pringle, 1980) and grown to an ODgqo of ~1.00 at 23°C.
Cells were pelleted by centrifugation and then resuspended in PBS contain-
ing 0.1% NP-40 and a cocktail of protease inhibitors (Complete; Roche).
Cells were lysed by using acid-washed glass beads in a bead beater for
six cycles of 30-s beating and 1-min chilling on ice. Cell lysates were cen-
trifuged, and 200-pl supernatants were mixed with 50 pl of 6x sample buf-
fer and boiled for 10 min. After centrifugation, the supernatants were
subjected to SDS-PAGE. After transfer to a polyvinylidene difluoride mem-
brane (Immobilon-P; EMD Millipore), the membrane was cut in the middle
for separate incubation with anti-GFP and -Cdc11 antibodies. The primary
antibodies used for Western blotting were a mouse monoclonal antibody
against GFP (catalogue no. MMS-118P and lot no. 14812801; used at
1:7,500 dilution; Covance) and a rabbit polyclonal antibody against
yeast Cdc11 (y-415; catalogue no. sc-7170 and lot no. C0804; used at
1:30,000 dilution; Santa Cruz Biotechnology, Inc.). The secondary anti-
bodies were goat anti-mouse IgG (used at 1:7,500 dilution) and goat
anti-rabbit IgG (used at 1:20,000 dilution) conjugated to HRP (Jackson
ImmunoResearch Laboratories, Inc.). Proteins were detected by using che-
miluminescent HRP substrate obtained from EMD Millipore (Immobilon).

Online supplemental material

Fig. S1 shows the full-ring bleaching of Myo1-GFP at the division site dur-
ing the cell cycle, FLIP analysis of Myo1-GFP and the control Tpm2-GFP,
and Myo1-GFP infensity at the bud neck during the cell cycle. Fig. S2
shows the FRAP analyses of MIc2-GFP, MIc1-GFP (at the bud cortex), Bni5-
GFP, Bnr1-GFP, Bnil-GFP, and Cyk3-GFP during the cell cycle. Fig. S3
shows individual recovery curves and quantitative analyses for the indi-
cated proteins. Fig. S4 shows individual curves and quantitative analyses
for the indicated proteins. Videos 1 and 2 show the full-ring and half-ring
bleaching of Myo1-GFP at different phases of the cell cycle, respectively.
Video 3 shows the half-ring and full-ring bleaching of Bni5-GFP in wild-type
and myolA cells before the onset of cytokinesis and also the halfring
bleaching of Myo1-GFP in bnilA and LatA-reated cells. Video 4 shows the
half-ring bleaching of Myo1-Tail-GFP during the cell cycle. Video 5 shows
the halfring bleaching of Myo1-(AA1903Stop) and Myo1-(AA1798Stop)
during cytokinesis. Video 6 shows the full-ring bleaching of Tpm2-GFP,
Myo2-GFP, and Exo84-GFP during cytokinesis. Video 7 shows the half-ring
bleaching of Chs2-GFP in wildtype and myo 1A cells and of Myo1-GFP in
chs2A and inn1A cells. Video 8 shows the half-ring and/or full-ring bleach-
ing of MIc1-GFP and lqg1-GFP in wildtype and myo 14 cells during cytoki-
nesis. Video 9 shows the half-ring and full-ring bleaching of Inn1-GFP and
Hof1-GFP in wildtype and myo 1A cells during cytokinesis. Video 10 shows
the halfring bleaching of Chs2-GFP and Hof1-GFP in cells carrying the
myo1-(AA1798Stop) allele. Online supplemental material is available at
http://www.jcb.org/cgi/content/full /jcb.201208030/DC1.
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