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Mitotic spindle (DIS)orientation and DISease:

Cause or consequence?

Anna Noatynska,' Monica Gotta,' and Patrick Meraldi'2
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?Institute of Biochemistry, Eidgendssische Technische Hochschule Zirich (ETHZ), 8093 Zurich, Switzerland

Correct alignment of the mitotic spindle during cell divi-
sion is crucial for cell fate defermination, tissue organiza-
tion, and development. Mutations causing brain diseases
and cancer in humans and mice have been associated
with spindle orientation defects. These defects are thought
to lead to an imbalance between symmetric and asym-
metric divisions, causing reduced or excessive cell prolif-
eration. However, most of these disease-linked genes
encode proteins that carry out multiple cellular functions.
Here, we discuss whether spindle orientation defects are
the direct cause for these diseases, or just a correlative
side effect.

Introduction
During cell division the orientation of the division plane usually
defines the content, the position, and the fate of daughter cells
within tissues (Siller and Doe, 2009). As a consequence, it de-
lineates the architecture of the organ, its shape, and function
(Castanon and Gonzdlez-Gaitan, 2011). In polarized cells, the
division plane orientation determines whether a cell undergoes
symmetric or asymmetric cell division (Fig. 1). In symmetric
divisions the division plane is parallel to the polarity axis so that
cell fate constituents, although polarized, will be equally segre-
gated into daughter cells (Fig. 1 A). By contrast, if the division
plane is perpendicular to the polarity axis, daughter cells will
inherit different contents and diverge in their development
(Fig. 1 B; Siller and Doe, 2009). In certain cases, however, cell
fate can be induced regardless of division plane orientation
(Clayton et al., 2007; Fleming et al., 2007; Kosodo et al., 2008).
The orientation of the spindle, and the position of cen-
trosomes, determines the orientation of the division plane
(Bornens, 2012). Centrosomes are composed of centrioles and
the pericentriolar material that nucleates astral and spindle
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microtubules. Astral microtubules connect the spindle to the
cell cortex and control its orientation (Fig. 2). Studies in Cae-
norhabditis elegans and Drosophila melanogaster have con-
tributed considerably to our understanding of the molecular
mechanisms regulating spindle orientation, which have been
recently reviewed (Morin and Bellaiche, 2011; Fig. 2). How-
ever, the relevance of spindle orientation control in mammals
had remained mostly unexplored. In recent years several studies
linked spindle orientation defects to human diseases, in particu-
lar brain pathologies (Fish et al., 2006; Yingling et al., 2008;
Godin et al., 2010; Lizarraga et al., 2010) and cancer (Pease and
Tirnauer, 2011). Here, we explore the connection between
human diseases and spindle orientation defects, and discuss
to which extent these defects can be considered causative agents
of these diseases.

Neurological diseases

In vertebrates the central nervous system arises through a series
of symmetric and asymmetric cell divisions (Fig. 3 A; Peyre
and Morin, 2012; Shitamukai and Matsuzaki, 2012). At em-
bryogenesis it is composed of a single layer of stem cells, the
neuroepithelial stem cells (NESCs), which divide symmetri-
cally. At the onset of neurogenesis, NESCs acquire characteris-
tics of glial cells and are called radial glia cells (RGs). Both
NESCs and RGs have apico—basal polarity and are also called
apical progenitors. RGs divide asymmetrically to give origin to
intermediate progenitors (IPs); IPs do not display apico—basal
polarity, they detach from the apical side and divide one time to
generate two neurons. Recently, a new kind of progenitor cell
was identified, the outer radial glial cells (o0RGs; Fietz et al.,
2010; Hansen et al., 2010). These cells delaminate from the api-
cal side but maintain an attachment to the basal side. o0RGs can
divide either asymmetrically, giving origin to an IP and an oRG,
or symmetrically, to expand their pool.

Spindles parallel to the apical plane will give rise to pla-
nar, symmetric (and proliferative) divisions, whereas vertical or
oblique spindles will result in asymmetric (and differentiative)
divisions (Fig. 3 B; (Huttner and Brand 1997; Haydar et al.,
2003; Kosodo et al., 2004). This implies that interfering with
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Figure 1. Orientation of the mitotic spindle: symmetric vs. asymmetric
divisions. In polarized cells, orientation of the spindle perpendicular to
the polarity axis causes a symmetric (proliferative) division (A). However,
spindle orientation parallel to the polarity axis results in an asymmetric
(differentiative) division (B).

spindle orientation to favor oblique, differentiative divisions
will favor neurogenesis at the expense of stem cell pool ex-
pansion, leading to smaller brains. Consistent with this model,
several genes implicated in neuropathologies resulting in small
brains have been implicated in the control of spindle orienta-
tion. However, this model is controversial because in vivo
observation of rodent neurogenesis showed that the choice
between an asymmetric and a symmetric cell division does
not only rely on the orientation of the spindle axis (Noctor
et al., 2008). Moreover, it was shown that randomization of
spindle orientation does not necessarily lead to a small brain
(Konno et al., 2008). Keeping this controversy in mind, we
summarize here the link between spindle orientation defects
and three neurological diseases.
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Figure 2. Spindle orientation is regulated by a conserved set of molecules
in metazoans. (A) The C. elegans one-cell embryo is polarized along the
anterior—posterior axis and divides asymmetrically in a somatic anterior
cell (AB) and a posterior germline precursor cell (P1). The conserved PAR
(partitioning defective) proteins are localized asymmetrically at the cortex:
PAR-3, PAR-6, and PKC-3 at the anterior and PAR-1 and PAR-2 at the pos-
terior. Spindle positioning is regulated downstream of polarity by GOA-1
and GPA-16 (Ga subunits of heterotrimeric G proteins), which localize
around the entire cortex (not depicted), GPR-1 and GPR-2 (receptor-
independent activators of G protein signaling), LIN-5 (coil-coiled protein),
and the motor dynein (not depicted; Morin and Bellaiche, 2011). GPR-1/2
and LIN-5 are enriched at the posterior cortex in a PAR-dependent manner.
The data suggest a model in which the GPR-GaGDP-LIN-5 complex pro-
motes higher activity of dynein at the posterior cortex, resulting in posterior
spindle pulling (Morin and Bellaiche, 2011). (B) D. melanogaster neuro-
blasts are stem cell-like precursors that generate the fly’s central nervous
system. They divide asymmetrically along the apical-basal axis to give rise
to a self-renewed neuroblast and a ganglion mother cell. Baz (PAR-3), Paré
(PAR-6), and aPKC (PKC-3) form a complex that localizes at the apical
cortex. PINS (GPR-1/2) binds to Ga and localizes to the apical complex
by interacting with the Baz-binding protein Inscuteable. (C) The same set
of proteins regulates spindle orientation in mammalian cells (Lechler and
Fuchs, 2005; Williams et al., 2011; see also Table 1).
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Figure 3. Mammalian neuronal progenitors and spindle orientation. (A) Cell subtypes in the developing mammalian brain. NESCs, neuroepithelial stem
cells. RG, radial glia. IP, intermediate progenitor. oRG, outer radial glia. IP, transit amplifying intermediate progenitors. Adherens junctions are in red.
(B) A putative role of spindle orientation in the decision of symmetric vs. asymmetric division.

Microcephaly. Primary microcephaly (MCPH) is an
autosomal, recessive “small brain” disease. Microcephalic brains
are structurally normal but exhibit reduced surface of the neo-
cortex due to a reduced number of cortical neurons (Bond et al.,
2002). Patients bearing microcephaly are mentally retarded but
do not display other neurological disorders (Thornton and
Woods, 2009). Genetically, the pathology is quite heterogeneous.
Mutations in nine different genes have been linked with micro-
cephalic brain (Table 1; Thornton and Woods, 2009; Alkuraya
et al., 2011; Bakircioglu et al., 2011; Sir et al., 2011).

All of the MCPH proteins can localize to centrosomes
and are involved in centriole biogenesis, centrosome matura-
tion, and spindle organization (Table 1; Bettencourt-Dias et al.,
2011; Loffler et al., 2011). The most commonly affected gene
is aspm (abnormal spindle-like microcephaly associated, MCPHS;
Thornton and Woods, 2009). In human culture cells, ASPM
localizes to centrosomes and spindle poles, similar to its fly
and worm orthologue (Table 1; Saunders et al., 1997; Kouprina
et al., 2005; van der Voet et al., 2009). Depletion of ASPM by
RNAI results in spindle misorientation (Fish et al., 2006).
A mutation in ASPM identified in microcephalic patients im-
pairs the ability of ASPM to localize to centrosomes, suggest-
ing that centrosomal localization is crucial for ASPM’s role
(Higgins et al., 2010).

Mouse aspm is highly expressed during early brain devel-
opment (Bond et al., 2002). Aspm also decorates centrosomes
in dividing NESCs (Kouprina et al., 2005; Fish et al., 2006).
NESCs depleted of ASPM by RNAI fail to orient the mitotic
spindle perpendicular to the ventricular surface of the neuroepi-
thelium, resulting in an asymmetric, differentiative division
instead of the symmetric proliferative divisions, therefore re-
ducing the pool of neuronal precursors (Fig. 3; Fish et al., 2006).
However, a mutant that encodes a truncated version of ASPM
results in microcephaly without interfering with spindle orien-
tation (Pulvers et al., 2010).

How ASPM regulates spindle orientation is not known.
In C. elegans, ASPM-1 binds to the NuMA homologue LIN-5
and is required to recruit it to meiotic spindle poles. LIN-5
together with dynein promotes meiotic spindle rotation (van
der Voet et al., 2009). Therefore, it is possible that ASPM
controls spindle orientation in mice and humans by recruit-
ing NuMA to centrosomes.

Two other genes mutated in microcephaly, Microcephalin
(MCPH1) and CDK5RAP2 (MCPH3), are required for timely

centrosome maturation, which allows centrosomes to nucleate
many more microtubules in mitosis (Barr et al., 2010; Gruber
et al., 2011). In mcphl-deleted mice the checkpoint kinase Chk1
does not localize to centrosomes, resulting in premature mitotic
entry in the presence of immature centrosomes. This causes a
spindle alignment defect, which increases asymmetric cell di-
visions of neuroprogenitors at the expense of symmetric, pro-
liferative divisions, and results in smaller brains (Gruber et al.,
2011) Similarly, in CDKSRAP2-depleted cells the checkpoint
kinase Chkl is not localized to centrosomes and spindles are
misoriented (Barr et al., 2010; Lizarraga et al., 2010).

Depletion of CPAP (MCPH6) and STIL (MCPH?7), which
are essential for centriole biogenesis, result in spindle orienta-
tion defects in culture cells (Kitagawa et al., 2011; Brito et al.,
2012), suggesting that impairing centriole biogenesis leads to
spindle misalignment. A newly identified mcph gene, cep63,
is also required for centriole formation (Sir et al., 2011). CEP63
is important to localize CEP152 (MCPH4) to centrioles, while
CEP152 recruits CPAP to centrosomes (Cizmecioglu et al., 2010;
Sir et al., 2011). However, a role for CEP63 and CEP152 in
spindle orientation has not been investigated.

Lissencephaly. Morphologically, lissencephalic brains
are small, and have almost a smooth surface and abnormal orga-
nization of the neocortex due to neuronal migration defects (lis-
sencephaly means “smooth brain”; Wynshaw-Boris, et al., 2010).
Patients are mentally retarded, epileptic, and die during their
childhood. Genetic analyses of cases with type 1 lissencephaly
identified mutations in mainly one gene, /is/ (Reiner et al., 1993;
Lo Nigro et al., 1997). The role of Lisl in spindle orientation
was first reported in culture epithelial and neuronal cells where
Lis1 stabilizes microtubules via interaction with the dynein—
dynactin complex (Faulkner et al., 2000; Smith et al., 2000).
In vitro and structural studies indicate that Lis1 and its cofactor
NudE regulate dynein, and that Lis1 transforms dynein in a pro-
cessive, high-load microtubule motor protein (McKenney et al.,
2010; Huang et al., 2012). Such a role fits with the functions that
have been assigned to Lis1, such as transport of nuclei, chromo-
somes, centrosomes, large vesicles in axons, or in the case of
spindle orientation, pulling of the entire spindle at the cell cortex
(Table 1 and Fig. 2; Wynshaw-Boris, et al., 2010).

Yingling et al. (2008) have shown that depletion of Lisl
in NESCs results in less stable astral microtubules and loss
of dynein cortical localization in mouse. This deflects the mito-
tic spindle from a horizontal position, leading to premature
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Table 1.  Genes regulating spindle orientation and mutated in diseases
Gene name - species Cellular function Associated Molecular
disease characteristics
Vertebrate Fly Worm
lis1 lis1 lis-1 Dynein-based movement, nucleokinesis (vertebrate, fly, worm), Lissencephaly ~ Coiled-coil domain,
spindle orientation (vertebrate, fly), chromosome alignment  (Reiner et al., 1993;  WDA40 repeats
(vertebrate), centrosome separation (fly, worm) spindle Lo Nigro
positioning (worm) (Swan et al., 1999; Dawe et al., 2001; etal., 1997)
Cockell et al., 2004; Siller and Doe, 2008; Wynshaw-Boris
etal., 2010)
dex CG17528° zyg-8 Microtubule polymerization (vertebrate, worm), spindle Lissencephaly ~ Doublecortin domain,
orientation (vertebrate), spindle positioning (worm) (des Portes et al., kinase domain
(Génczy et al., 2001; Pramparo et al., 2010; 1998; Gleeson
Wynshaw-Boris et al., 2010) etal., 1998)
ndel nudE nud-2 Centrosome duplication and maturation, chromosome Microlissencephaly ~ Coiled-coil domain
alignment, spindle orientation, nucleokinesis (vertebrate), (Alkuraya et al.,
kinetochore function, chromosome congression, centrosome 2011; Bakircioglu
behavior (fly), nuclear migration (worm) (Wainman et al., etal., 2011)
2009; Fridolfsson et al., 2010; Chansard et al., 2011)
Gail, Gai2, Guail goa-1, Spindle orientation (vertebrate, fly), ACD (fly, worm), spindle - GTPase subunit
Gail gpa-16 positioning, chromosome segregation (worm) (Srinivasan of heferotrimeric
et al., 2003; Morin and Bellaiche, 2011) G proteins
numa mud lin-5 ACD, chromosome segregation (vertebrate, fly, worm), Leukemia Coiled-coil domain
spindle orientation, spindle pole integrity (vertebrate, fly), (Wells et al., 1997)
spindle positioning, cytokinesis (worm) (Lorson et al., 2000;
Radulescu and Cleveland, 2010; Capalbo et al., 2011;
Morin and Bellaiche, 2011; Kolano et al., 2012)
pins/Ign/ pins gpr-1, ACD (vertebrate, fly, worm), spindle orientation (vertebrate, Non-syndromic Goloco motif,
gpsm2/ gpr-2 fly), chromosome segregation (vertebrate, worm), spindle deafness (Walsh tetratricopeptide
ags3 positioning (worm) (Du et al., 2001; Srinivasan et al., et al., 2010), brain (TPR) domains
2003; Morin and Bellaiche, 2011) malformations and
deafness in Chudley-
McCullough
syndrome (Doherty
etal., 2012)
insc insc - Spindle orientation (vertebrate, fly), asymmetric cell division - Armadillo repeats
(fly) (Morin and Bellaiche, 2011)
htt htt F21G4.6° Neuronal transport, spindle orientation (vertebrate, fly) The Huntington’s  Polyglutamine tract,
(Gunawardena et al., 2003; Godin and Humbert, 2011) Disease polyproline
Collaborative sequence, HEAT
Research Group repeats
(1993)
magoh mago mag-1 RNA processing (vertebrate, fly worm), RNA localization - Mago nashi
(vertebrate, fly), spindle orientation and integrity, genomic domain
stability (vertebrate), cytoskeleton organization (fly) (Li et al.,
2000; Kataoka et al., 2001; Palacios, 2002; Le Hir and
Andersen, 2008; Silver et al., 2010)
apc apcl, apc2 apr-1 Wht signaling, ACD, microtubule stability (vertebrate, fly, Familial adenoma-  Armadillo repeats,
worm), spindle orientation (vertebrate, fly), chromosome tous polyposis (FAP),  oligomerization
segregation, tumor suppressor (vertebrate) (Yamashita et al.,  gastrointestinal tu- ~ domain, CRMT,
2003; Mizumoto and Sawa, 2007; McCartney and Nathke, mors (Minde et B-catenin,
2008; Bahmanyar et al., 2009) al., 20171) microtubule-binding
domains,
vegf pvfl, pvf2, pvf-1 Cell migration (vertebrate, fly), growth factor, oncogene, Epithelia skin PDGF domain
pvf3 spindle orientation, angiogenesis (vertebrate) (Duchek et cancer (Beck
al., 2001; Tarsitano et al., 2006; Beck et al., 2011; etal., 2011)
Sitohy et al., 2012)
vhl vhl vhl-1 HIF 1« regulation (vertebrate, fly, worm), microtubule stability, ~ Renal cell carcinoma  Cullin E3 ubiquitin

endocytosis, cell migration (vertebrate, fly), tumor suppressor,

spindle orientation, genome integrity (vertebrate) (Thoma et

al., 2009; Hsu, 2012)
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Table 1.  Genes regulating spindle orientation and mutated in diseases (continued)

Gene name - species Cellular function Associated Molecular
disease characteristics
Vertebrate Fly Worm
pten pten daf-18 PI3K signaling (vertebrate, fly, worm), tumor suppressor, PTEN hamartoma  Protein and lipid
spindle orientation, genome integrity, cell growth (vertebrate),  tumor syndromes phosphatase
cell growth, actin cytoskeleton organization, (fly) (Ogg and (PHTS) (Hollander
Ruvkun, 1998; Stocker and Hafen, 2000; von Stein et al., etal., 2011)
2005; Toyoshima et al., 2007; Hollander et al., 2011)
mcph1/ mcph] - DNA damage response, centrosome integrity, chromosome Microcephaly BRCA1 Cerminal
micro- segregation (vertebrate, fly), spindle orientation (vertebrate) (Jackson et al., (BRCT) domains
cephalin/ (Thornton and Woods, 2009; Gruber et al., 2011) 2002)
brit1
mcph2/ - - Centrosome integrity, spindle orientation, chromosome Microcephaly, WD40 repeats
wdr62 alignment (vertebrate) (Bogoyevitch et al., 2012) lissencephaly,
schizencephaly
(Bilgivar et al.,
2010; Nicholas
etal.,, 2010;
Yu et al., 2010)
mcph3/ cnn - Centrosome assembly, spindle orientation, chromosome Microcephaly  Coiled-coil domains,
cdk5rap2/ segregation (vertebrate, fly), DNA damage response (Bond et al., 2005) cenfrosomin
cep215 (vertebrate) (Siller and Doe, 2008; Megraw et al., 2011) motives (CM)
1 and 2
mcph4/ asl - Centriole formation and duplication (vertebrate, fly), genome Microcephaly  Coiled-coil domains
cepl52 integrity (vertebrate) (Kalay et al., 2011; Brito et al., 2012) (Guernsey et al.,
2010), Seckel
syndrome (Kalay
etal., 2011)
meph5/ asp aspm-1 Spindle assembly, spindle orientation, cytokinesis Microcephaly ~ Calponin homology
aspm/ (vertebrate, fly), the integrity of spindle poles and the (Bond et al., 2002),  (CH) domains,
calmbp] central spindle (fly), meiotic spindle orientation (worm) tumorigenesis (Lin IQ-repeat motifs
(Varmark, 2004; van der Voet et al., 2009; et al., 2008)
Higgins et al., 2010)
mcph6/ sas4 sas-4 Centriole duplication (vertebrate, fly, worm), spindle Microcephaly  Coiled~oil motives,
cenpj/ orientation (vertebrate), ACD (fly) (Leidel and Génczy, 2005; (Bond et al., 2005),  PN2-3 domain,
cpap Basto et al., 2006; Kitagawa et al., 2011; Brito et al., 2012)  Seckel syndrome ~ T-complex protein
(Al-Dosari et al., 10 (TCP) domain
2010)
mcph7/ ana?2 sas-5 Centriole duplication (vertebrate, fly, worm), spindle Microcephaly  Coiled-coil domain,
stil /sil orientation (vertebrate, fly), ACD (fly) (Kumar et al., 2009), STIL/ANA2
(Leidel and Gdnczy, 2005; Wang et al., 2011; leukemia (Aplan et (STAN) motif
Brito et al., 2012) al., 1991)
cepb3 - - Spindle assembly, mitotic entry, genome maintenance, Microcephaly ~ Coiled-coil domains
centrosome duplication (vertebrate) (Smith et al., 2009; (Siretal., 2011)

Loffler et al., 2011)

In many cases genes mutated in these pathologies control spindle orientation at the cellular level. ACD, asymmetric cell division.

“The function of the genes has not been characterized.

asymmetric divisions and finally apoptosis of the arising daugh-
ter cells. As a consequence, the pool of brain stem cells is mas-
sively diminished early in development, decreasing the number
of neurons, causing severe brain abnormalities and eventually
embryonic death (Yingling et al., 2008).

Consistent with a role for Lisl in regulation of spindle
orientation in mouse, recent work shows that mutations in the
exon junction protein Magoh results in reduced Lisl levels,
spindle orientation defects, and abnormal brain development
(Silver et al., 2010). Although expression of Lisl in these mu-
tants can rescue the brain developmental defects, the authors
did not investigate whether the spindle orientation defect was

also rescued (Silver et al., 2010). Furthermore, mutations in
genes encoding for DCX (doublecortin) and NDE1, both of
which function in dynein-dependent processes and physi-
cally interact with Lis1, result in spindle orientation defects in
C. elegans and mice (Gonczy et al., 2001; Feng and Walsh,
2004; Pramparo et al., 2010) and cause lissencephaly in humans
(des Portes et al., 1998; Gleeson et al., 1998; Alkuraya et al., 2011;
Bakircioglu et al., 2011).

Huntington. Another pathology where spindle orienta-
tion may play a role is Huntington’s disease. Huntington’s disease
is a neurodegenerative disorder that manifests in adult life and
leads to cognitive defects, dementia, and muscle coordination
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defects (Borrell-Pages et al., 2006). Huntingtin (htt), the protein
mutated in Huntington’s disease, interacts with microtubules
and dynein and mediates neuronal transport (Borrell-Pages et al.,
2006). In cultured cells, depletion of htt results in the loss of
dynein, dynactin, and NuMA at centrosomes and in spindle
misalignment (Godin et al., 2010). Huntingtin is also required
for proper spindle orientation in D. melanogaster neuroblasts
and mouse cortical progenitors (Godin et al., 2010). As Hun-
tington is a disease that develops later in life, this finding raises
the possibility that a defect of neurogenesis during embryonic
development contributes to the origin of the disease.

Carcinogenesis

Because the loss of several tumor suppressor genes or over-
expression of certain oncogenes results in spindle orientation
defects, carcinogenesis is the second disease class that has
been associated with defective spindle orientation (Pease and
Tirnauer, 2011). Cancer formation results from the uncontrolled
proliferation of cells, which impairs tissue function, and from
the ability of cells to invade new tissues during metastasis. One
prominent hypothesis is that spindle orientation defects increase
cell numbers by suppressing the asymmetric, differentiative
divisions of stem cells while increasing their symmetric, pro-
liferative divisions (Morrison and Kimble, 2006). Moreover,
defective spindle orientation might disorganize tissue architec-
ture, a typical feature of malignant transformation (McAllister
and Weinberg, 2010). The best evidence for a defective fate
determination of stem cells is found in D. melanogaster, where
there is a clear distinction between asymmetric differentiative
and symmetric proliferative stem cell divisions, and where loss
of asymmetric stem cell division results in an uncontrolled in-
vasive cell proliferation (Caussinus and Gonzalez, 2005; Lesage
et al., 2010). More recent studies postulated a similar mecha-
nism in mammals, based on experiments performed in mam-
mospheres and mouse models for colon cancer or gliomas
(Cicalese et al., 2009; Quyn et al., 2010; Sugiarto et al., 2011).
This mechanism could favor the uncontrolled proliferation
of stem cells, leading to the formation of cancer stem cells.
Indeed, in some cancers, such as papillomas (Driessens et al.,
2012), cancer stem cells undergo rapid proliferative divisions,
with the ability to be at the origin of an entire tumor cell popu-
lation. However, there are several caveats to consider. First,
there is conflicting evidence as to whether mammalian stem
cells undergo asymmetric or symmetric cell divisions (Quyn
et al., 2010; Snippert et al., 2010; Bellis et al., 2012); second,
the idea of cancer stem cells itself is hotly debated, both as a
concept and whether it is applicable to all cancer types (Lobo
et al., 2007; Magee et al., 2012); third, cancer stem cells may
not necessarily originate from stem cells. Keeping these cave-
ats in mind, we present here the molecular evidence linking
spindle orientation to carcinogenesis.

APC: Adenomatous polyposis coli. Mutations in
the apc gene are found in a vast majority of colon cancers and
in familial adenomatous polyposis disease, where they predis-
pose patients to intestinal cancer (Fodde and Smits, 2001; Minde
et al., 2011). APC is a tumor suppressor that inhibits canonical
Wnt signaling by impairing 3-catenin—dependent transcriptional
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activity (Reya and Clevers, 2005). APC can inhibit $-catenin
through direct binding, or by promoting its nuclear export to
favor its ubiquitin-dependent degradation. APC also plays a
crucial role during mitosis, where it binds the microtubule plus-
end scaffold protein EB1 (Su et al., 1995) to promote micro-
tubule stability (Fodde and Smits, 2001; Kaplan et al., 2001).
APC mutations or deletions cause spindle orientation and chro-
mosome alignment defects, and lead to chromosomal instability
and cytokinesis failure in mammalian cells (Fodde and Smits,
2001; Kaplan et al., 2001; Green and Kaplan, 2003; Tighe et al.,
2004; Caldwell et al., 2007). Furthermore, in D. melanogaster
APC is required for correct spindle orientation and asymmet-
ric cell division in germline stem cells and in the syncytium
(McCartney et al., 2001; Yamashita et al., 2003), but not in neuro-
blasts (Rusan et al., 2008).

The molecular mechanism by which APC controls spin-
dle orientation is still under debate: it could be its ability to
stabilize astral microtubules and/or its regulation of cell polar-
ity (Akiyama and Kawasaki, 2006). In vivo APC mutations or
loss of APC lead to a rapid cellular transformation, and to
cancer formation in the small and large intestine in mice; it
correlates with misoriented spindles in both compartments,
suggesting that loss of asymmetric divisions promotes tissue
overgrowth (Caldwell et al., 2007; Fleming et al., 2009; Quyn
et al., 2010). This could occur either through an aberrant dis-
tribution of cell fate determinants into daughter cells and/or
incorrect placement of the arising daughters within the tissue
(Nathke, 2006). However, a recent report challenged this view,
showing that APC mutant mice develop colon cancer in the
absence of spindle orientation defects (Bellis et al., 2012). Fur-
thermore, the induction of (3-catenin signaling alone is suffi-
cient to induce carcinogenesis, implying that the tumor suppressor
activity of APC cannot be explained only in terms of spindle
orientation control (Harada et al., 1999).

VEGF: Vascular endothelial growth factor.
VEGTF is an oncogene that promotes angiogenesis in cancer
tissues (Ferrara, 2002). Studies investigating the behavior of
cancer stem cells in skin papilloma found that inhibition of
VEGEF results in reduced proliferative symmetric stem cell divi-
sions, reappearance of asymmetric divisions, and tumor re-
gression. These asymmetric divisions correlate with a mitotic
spindle oriented perpendicular to the epidermis (Beck et al., 2011),
suggesting that high levels of VEGF impair spindle orientation.

VHL: von Hippel-Lindau gene. Mutations in vhl, a
tumor suppressor gene, predispose patients to cancer forma-
tion in multiple tissues, in particular in kidneys (Frew and
Krek, 2007; Kaelin, 2008). VHL is an adaptor protein with mul-
tiple interactors and functions, one of which is to target the
hypoxia-inducible factor 1 «, HIF1a, for ubiquitin-dependent
degradation (Kaelin, 2008). Loss of VHL leads to angiogen-
esis, thus favoring cancer growth. However, VHL also regu-
lates microtubule dynamics both in vertebrates and flies (Hergovich
et al., 2003; Thoma et al., 2007, 2009; Duchi et al., 2010), and it
plays a crucial role during vertebrate mitosis. VHL depletion
or knock-out in culture cells randomizes spindle orientation due
to unstable astral microtubules, and weakens the spindle check-
point, resulting in chromosomal instability (Thoma et al., 2009).

920z Ateniged 80 uo 3senb Aq 4pd-G1L060210Z A0l/8¥89.61/SZ01/L/66 L /4pd-8jonie/qol/Bio-sseidnu//:dny woy pepeojumoq



ACD sSCD
Lg; D SCD ACD
tumor tissue lisencephaly,
formation homeostasis microcephaly
Figure 4. Equilibrium between symmetric and asymmetric divisions con-

fers proper development and tissue homeostasis. Schematic representation
of the balance between symmetric and asymmetric cell division and its
relevance. ACD, asymmetric cell division. SCD, symmetric cell division.

Cancer patients can carry vil mutations affecting only HIF 1o
stability or only microtubule stability, indicating that both
phenotypes are sufficient to induce tumorigenesis (Thoma et al.,
2009). One attractive hypothesis is that the elongation of renal
tubes requires oriented cell divisions; misregulation of divi-
sion plane leads to an increase in tube diameter and cyst de-
velopment, a feature of VHL syndrome (Fischer et al., 2006).
However, only very few of those cysts will develop into a car-
cinoma, suggesting that spindle orientation defects and the
ensuing cysts are not sufficient, per se, to induce cancer forma-
tion in kidneys. Moreover, loss of VHL may prone cells for aneu-
ploidy, another potential cause of cancer formation (Weaver
and Cleveland, 2009).

PTEN: Phosphatase and tensin homologue.
PTEN is a lipid phosphatase that controls cell growth by regu-
lating phosphatidylinositol kinase signaling, and it is one of the
most frequently mutated tumor suppressor genes (Hollander
et al., 2011). PTEN was shown to control spindle orientation in
human tissue culture cells (Toyoshima et al., 2007). This study
found that phosphatidylinositol-3-phosphate (PIP3) molecules
are enriched at the cell equator, and that PIP3 localization
directs the correct localization of dynein at the cell cortex. Loss
of PTEN or inactivation of PI3-kinase respectively saturate or
abolish PIP3 localization in the entire cell cortex, leading to
randomization of spindle orientation (Toyoshima et al., 2007).
However, as these data were only obtained in cultured cell lines,
it will be important to examine whether loss of PTEN also im-
pairs spindle orientation in tissues.

Spindle orientation defects: Cause,
aggravating factor, or symptom?

Given the correlation between spindle orientation defects and
the appearance of neurological diseases and cancers, it is tempt-
ing to postulate that the loss of spindle orientation control is at
the origin of these pathologies. Although neurological disorders
would be caused by a premature shift from symmetric to asym-
metric divisions and consequent reduction in neuron number,
cancers would be the results of uncontrolled symmetric and
thus proliferative cell divisions (Fig. 4). This would reflect the
fact that the controlled balance of symmetric or asymmetric cell
divisions is essential for development and tissue homeostasis,
and that the consequences of spindle misorientation strongly
depend on the biological context. A causal link between spindle
orientation defects and carcinogenesis has been made in D. mela-
nogaster (Caussinus and Gonzalez, 2005; Castellanos et al., 2008).

In mammals, however, this is only an attractive hypothesis
based on correlative evidence. One of the reasons is that all
the mutations or gene deletions that we have discussed lead to
pleiotropic effects. This ranges from induction of apoptosis
(e.g., MCPH1, CDK5RAP2, or Lisl), loss of growth control (e.g.,
APC, PTEN, VEGF), chromosome segregation defects (e.g.,
Lisl, APC, VHL, MCPH1, CDK5RAP2), and changes in other
microtubule-dependent processes, such as intracellular trans-
port or cell migration (Table 1 and references within). All these
processes are implicated in neuropathologies or tumor forma-
tion. Moreover, many of those gene products are also present in
cilia (e.g., MCPH4, 6, and 7; Bettencourt-Dias et al., 2011) or
involved in cilia formation (VHL and PTEN; Frew et al., 2008;
Hsu, 2012), which could suggest that cilia defects might be at
the origin of some pathologies. Conversely, a number of gene
deletions or mutations classically associated with ciliopathies,
such as Pkdl and ITF88, also impair spindle orientation, raising
the possibility that spindle orientation defects play an aggra-
vating role in ciliopathies (Fischer et al., 2006; Delaval et al.,
2011). Furthermore, it is difficult to establish a direct causality
because mutations affecting spindle orientation can have tissue-
specific effects. At present it is therefore impossible to determine
whether spindle orientation defects are a cause, an aggravating
factor, or just a by-product of these diseases.

One way to address this question would be to test whether
rescuing spindle orientation defects by reintroducing a separation-
of-function mutant suppresses the corresponding pathology.
The C-terminal truncation of aspm in mice is an example for
this approach (Pulvers et al., 2010). This truncation does not
disrupt spindle orientation, but still leads to microcephaly, in-
dicating that spindle orientation defects are not essential for
primary microcephaly. Another possibility would be to in-
troduce a deletion in a second gene to rescue the spindle ori-
entation defects. For example, to counteract a VHL mutant
that cannot stabilize microtubules, one could delete a gene
that destabilizes microtubules, like stathmin-1 (Belmont and
Mitchison, 1996). Stathmin-1 is an oncogene, but knock-out
mice are viable with only minor sociological defects (Schubart
et al., 1996; Shumyatsky et al., 2005). Therefore, one could
test whether stathmin-1 deletion suppresses both spindle de-
fects and cancerogenesis in such a background. One caveat for
the interpretation of this strategy is that the “suppressor” dele-
tion may have other, unwanted effects. Another caveat is that
these experiments only reveal whether spindle orientation de-
fects are essential for disease development in a particular ge-
netic background, and not whether spindle orientation defects,
per se, can induce a pathological state.

A more direct approach will be to test the effect of a “pure”
spindle orientation defect, which has no other side-effects. Two
ideal candidates are LGN and Insc, which only affect spindle
orientation, and do not impair cell polarity or other aspects of
mitotic progression in mammalian systems (Zheng et al., 2010;
Postiglione et al., 2011; Williams et al., 2011). Interestingly,
both genes have been deleted in mice to study their contribution
to brain development (Konno et al., 2008; Postiglione et al.,
2011). Loss of LGN randomized mitotic spindle orientation and
led to tissue architecture defects but did not result in smaller
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brains. On the contrary, loss of Insc led to depletion of vertical
and oblique divisions (Fig. 3 B), and this resulted in production
of fewer neurons and smaller brains. In the future it will be
necessary to closely compare these phenotypes and to combine
both mutants for epistasis analysis to investigate the outcome
and better understand the role of spindle orientation in this pro-
cess. Furthermore, it will be interesting to test if mutations in
LGN or Insc are ever found in human microcephaly patients.

With regards to carcinogenesis, it is striking that LGN
mutant mice have minor developmental defects, but that can-
cers have not been reported (Konno et al., 2008; Williams et al.,
2011). However, before drawing strong conclusions, these mice
should be analyzed for spindle orientation defects in other tis-
sues. Furthermore, one should investigate whether some of the
LGN functions are taken over by the closely related protein,
AGS3 (Sanada and Tsai, 2005; Siller and Doe, 2009).

It will be also important to investigate if spindle orien-
tation defects can play an aggravating role in cancer by com-
bining spindle orientation defects with cancer mutations and
testing for synergistic effects. Ideal cancer mutations could be
loss of the tumor suppressor p53, or overexpression of the Ras
oncogene (Hanahan and Weinberg, 2000). The combinations
of mutations will be interesting even if spindle orientation de-
fects, per se, are sufficient to induce tumor formation, as they
can reveal whether spindle orientation defects lead to an ear-
lier onset of tumor formation and/or accelerate the progres-
sion of the tumor. Overall, such investigations will allow one
to test the attractive hypothesis that spindle orientation is a criti-
cal process for those diseases, opening up new important paths
for possible treatments of these pathologies.
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