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Lysosomal storage diseases (LSDs) are a family of dis-
orders that result from inherited gene mutations that per-
turb lysosomal homeostasis. LSDs mainly stem from
deficiencies in lysosomal enzymes, but also in some non-
enzymatic lysosomal proteins, which lead to abnormal stor-
age of macromolecular substrates. Valuable insights into
lysosome functions have emerged from research into these
diseases. In addition to primary lysosomal dysfunction,
cellular pathways associated with other membrane-bound
organelles are perturbed in these disorders. Through
selective examples, we illustrate why the term “cellular
storage disorders” may be a more appropriate description
of these diseases and discuss therapies that can alleviate
storage and restore normal cellular function.

Lysosomal storage disorders:

A brief overview

Inborn errors of metabolism are a common cause of inherited
disease (Burton, 1998), of which lysosomal storage diseases
(LSDs) are a significant subgroup (Platt and Walkley, 2004;
Fuller et al., 2006; Ballabio and Gieselmann, 2009). The com-
bined incidence of LSDs is estimated to be approximately
1:5,000 live births (Fuller et al., 2006), but the true figure is
likely greater when undiagnosed or misdiagnosed cases are
accounted for. Common to all LSDs is the initial accumulation
of specific macromolecules or monomeric compounds inside
organelles of the endosomal—autophagic—lysosomal system.
Initial biochemical characterization of stored macromolecules
in these disorders led to the implication of defective lysosomal
enzymes as a common cause of pathogenesis (Hers, 1963;
Winchester, 2004). Although most LSDs result from acidic
hydrolase deficiencies (Winchester, 2004), a considerable number
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of these conditions result from defects in lysosomal membrane
proteins or non-enzymatic soluble lysosomal proteins (Saftig
and Klumperman, 2009). Therefore, LSDs offer a window into
the normal functions of both enzymatic and non-enzymatic
lysosomal proteins.

Clinical phenotypes of LSDs

The age of clinical onset and spectrum of symptoms exhibited
amongst different LSDs vary, depending on the degree of pro-
tein function affected by specific mutations, the biochemistry of
the stored material, and the cell types where storage occurs.
Apart from lysosomal diseases involving substrate storage in
bone and cartilage (e.g., the mucopolysaccharidoses; Table 1)
most babies born with these conditions appear normal at birth.

The classical clinical presentation of an LSD is a neurodegener-
ative disease of infancy/childhood (Wraith, 2002), but adult-
onset variants also occur (Spada et al., 2006; Nixon et al., 2008;
Shapiro et al., 2008). A health surveillance program tasked with
diagnosing all neurodegenerative disease cases in UK children
has so far revealed that lysosomal disorders are amongst the
most commonly confirmed diagnoses of neurodegeneration
(45% of cases) and will provide a robust frequency of infantile/
juvenile onset cases as the study gathers more data over the
coming years (Verity et al., 2010). Key molecular and clinical
features of the storage diseases mentioned in this review are
summarized in Table 1. In addition, detailed medical descrip-
tions on the various disorders are available on the Online Meta-
bolic and Molecular Bases of Inherited Disease (OMMBID)
website (Valle et al., 2012).

Relatively few lysosomal diseases lack pathology in the
central nervous system (CNS; Wraith, 2004). In the majority of
LSDs, CNS involvement is common and neurodegeneration
can occur in multiple brain regions (e.g., thalamus, cortex, hip-
pocampus, and cerebellum). Neuropathology in LSDs involves
unique temporal and spatial changes, which often entails early
region-specific neurodegeneration and inflammation, before
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Table 1. The causes of lysosomal storage diseases, the organelles affected, and maijor sites of pathology

Mechanism of Disease examples Lysosomal protein defect Substrate(s) Maijor peripheral organ CNS
lysosomal storage (gene symbol) stored systems affected pathology
Lysosomal enzyme Aspartylglucosaminuria Aspartylglucosaminidase aspartylglucosamine Skeleton, +
deficiencies (glycosylasparaginase, AGA) (N-acetylglucosaminyl- connective fissue
asparagine)
Fabry a-Galactosidase (Lyso-)Globotriaosylceramide Kidney, heart -
(GLA)
Gaucher types 1, 2, B-Glucocerebrosidase Glucosylceramide, Spleen/liver, +
and 3 (GBA) glucosylsphingosine bone marrow
GM1-gangliosidosis B-Galactosidase GM1-ganglioside, Skeleton, heart +
(GLB1) oligosaccharides
Krabbe (globoid cell Galactocerebrosidase (GALC) Galactosylceramide Heart +
leukodystrophy)
Metachromatic Arylsulfatase A Sulfogalactosylceramide +
leukodystrophy (ARSA)
Mucopolysaccharidoses Enzymes involve in Mucopolysaccharides Cartilage, bone, +P
mucopolysaccharide heart, lungs
catabolism
Multiple sulfatase SUMF1 (Formylglycine- Multiple, including sulfated Spleen/liver, +
deficiency generating enzyme glycosaminoglycans bone, skin
needed fo activate
sulfatases)
Pompe a-Glucosidase (GAA) Glycogen Skeletal muscle -
Sandhoff B-hexosaminidase A GM2-ganglioside +
and B (HEXB)
Trafficking defect Mucolipidosis type Il N-acetyl glucosamine phospho-  Carbohydrates, lipids, Skeleton, heart +
of lysososomal (I-cell disease) ryl transferase o/B (GNPTAB) protfeins
enzymes
Mucolipidosis type llA  N-acetyl glucosamine phospho-  Carbohydrates, lipids, Skeleton, heart +/—
(pseudo-Hurler ryl transferase o/B (GNPTAB) proteins
polydystrophy)
Defects in soluble Niemann-Pick disease NPC2 (soluble cholesterol Cholesterol and Liver +
non-enzymatic type C2 binding protein) sphingolipids
lysosomal proteins
Defects in lysosomal Cystinosis Cystinosin (cysteine Cystine Kidney, eye -
membrane transporter, CTNS)
protfeins
Danon disease Lysosomal-associated Glycogen and other Cardiac and +
membrane protein 2, autophagic components skeletal muscle
splicing variant A (LAMP2)
Free sialic acid Sialin (sialic acid transporter, Free sialic acid Liver/spleen, +
storage disorder SLC17A5) skeleton
Mucolipidosis IV Mucolipin{ (MCOLNT) Mucopolysaccharides Eye +
and lipids
Niemann-Pick disease NPC1 (membrane protein in- Cholesterol and Liver +
type C1 volved in lipid transport) sphingolipids
Enigmatic lysosomal Neuronal ceroid Disparate group of diseases Autofluorescent lipofuscin is a +

disorders

lipofuscinoses (NCLs,

including Batten disease)

common feature,
with convergent clinical
signs, e.g., visual system

defects/blindness

with genetic defects in
apparently unrelated genes,
not all of which are associated
with the lysosomal system.
Not known if these genes
cooperate in common
cellular pathways.

Listed are the diseases discussed in the main text. Mucopolysaccharidoses and neuronal ceroid lipofuscinoses refer to collections of related disorders.

“Types 2 and 3.

®Most mucopolysaccharidosis disorders.
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Lysosomes as catabolic centers of the cell. Lysosomes utilize four distinct pathways for the degradation of cellular material. (A) Macroautophagy

begins with the formation of isolation membranes that sequester regions of the cytosol that include denatured proteins, lipids, carbohydrates, and old/damaged
organelles into encapsulated vesicles known as autophagosomes. The dynamic kinetics of autophagosome production and clearance by lysosomes is
known as autophagic flux. (B) Endosomal degradation by lysosomes predominantly targets late endosomes/multivesicular bodies. Fusion between late
endosomes and lysosomes can occur by (i) full fusion/degradation or {ii) kiss-and-run content mixing, where transient endosomal docking occurs.
(C) Microautophagy involves the pinocytosis of cytosolic regions surrounding lysosomes. (D) Chaperone-mediated autophagy (CMA) selectively targets
proteins with a KFERQ motif for delivery to lysosomes using Hsc-70 as its chaperone and LAMP-2A as its receptor.

global brain regions are affected. The main reasons for this
are threefold: (1) specific storage metabolites exert differential
effects on neuronal subtypes, (2) varying proportions of macro-
molecules are synthesized in different neuronal populations,
and (3) there is differential neuronal vulnerability to storage (e.g.,
Purkinje neurons degenerate in many of these diseases leading
to cerebellar ataxia). Activation of the innate immune system is
also prevalent in the brain of LSDs, which directly contributes
to CNS pathology (Vitner et al., 2010). Astrogliosis (activation
of astrocytes) is another common feature of LSDs, which dam-
ages neurons through an inflammatory process known as glial
scarring (Jesionek-Kupnicka et al., 1997; Vitner et al., 2010).
The additive detrimental effects that astrogliosis has on neuron
function is recapitulated in animal models of lysosomal diseases
(Farfel-Becker et al., 2011; Pressey et al., 2012).

A notable non-neuronopathic LSD is Type 1 Gaucher
disease (3-glucocerebrosidase deficiency), which is a relatively
common LSD, particularly within the Ashkenazi Jewish com-
munity. The major cell type affected by glucosylceramide stor-
age in this disease is the macrophage (“Gaucher cells”), whose
dysfunction affects the production and turnover of cells belong-
ing to the hematopoietic system. Gaucher cells infiltrate into
various organs and affect the immune system, bone strength,
spleen, and liver function.

A key question currently challenging this field is how
endosomal-lysosomal storage leads to pathogenesis and how
expanding this knowledge will improve treatment for patients
(Bellettato and Scarpa, 2010; Cox and Cach6n-Gonzilez, 2012).
This review aims to delineate regulatory systems and organelles

that become disrupted in these disorders, highlighting the com-
plexity of cellular storage, its consequences on pathogenesis,
and implications for therapy.

Endosomal-autophagic-lysosomal function
and dysfunction in storage diseases
Lysosomes play a central role in processing the clearance of
cellular substrates from multiple routes within the endosomal—
autophagic—lysosomal system (Fig. 1). Lysosomes are acidic
organelles that contain enzymes required for the degradation
of macromolecules, and efflux permeases that facilitate the
inside-out translocation of small molecules generated through
macromolecule catabolism. In comparison to endosomes and
autophagosomes, lysosomes are smaller in size, are highly
enriched in particular transmembrane proteins and hydrolytic
enzymes (including proteases, glycosidases, nucleases, phos-
phatases, and lipases), have a higher buoyant density, an electron-
dense appearance by transmission electron microscopy, and
a high proton and Ca®* content (Luzio et al., 2007; Saftig
and Klumperman, 2009; Morgan et al., 2011). Lysosomes
differ from endosomes in their degree of acidification and more
abundant levels of lysosomal membrane proteins (LMPs) such
as LAMP1 and LAMP2. Most nascent lysosomal enzymes bind
to mannose-6-phosphate receptors (M6PRs) in the trans-Golgi
network (TGN), which traffic the enzymes to early and late
endosomes (Ghosh et al., 2003). Lysosomes in turn receive
these enzymes when endosomal-lysosomal fusion occurs.
Notably, dense lysosomes do not contain M6PRs. Acidotropic
reagents such as Lysotracker are useful for labeling lysosomes;

Lysosomal storage disorders ¢ Platt et al.
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Figure 2. Subtypes of storage organelles accumulate in LSDs. In dif-
ferent LSDs, cells display a unique spectrum of dysfunctional organelles
depending on the specific lysosomal enzyme or non-enzymatic protein
affected. (A) In primary LSDs, deficiencies in degradative enzymes pre-
vent the clearance of autophagic and endocytic substrates, resulting in
the accumulation of (i) autolysosomes (LC3-Il (+), LAMP-1 (+)), (i) en-
dolysosomes (CI-MPR (+), LAMP-1 (+)), and (iii), in the case of certain
lipase deficiencies, lipid-rich multilamellar bodies (CI-MPR (+), LAMP-1
(+)). (B) In a secondary storage disease such as Niemann-Pick type C1,
lysosomal enzyme function remains intact, but impaired heterotypic
fusion of autophagic and endocytic organelles with lysosomes results in
the accumulation of (iv) autophagosomes (LC3-Il (+), LAMP-1 (=)), (v) late
endosomes (CI-MPR (+), active cathepsin D (—)), and (vi) endosome-
derived multilamellar bodies (lipid-rich, CI-MPR (+), active cathepsin D
(=)). Note: many primary storage diseases also accumulate organelles
seen in secondary storage diseases (see text].

however, the mildly acidic interiors of late endosomes and
autophagosomes also allows Lysotracker to label these organelles
to varying degrees (Bampton et al., 2005).

The biogenesis and functioning of endosomal and auto-
phagosomal pathways is controlled by transcription factor EB
(TFEB), which regulates the expression of 471 genes that con-
stitute the CLEAR (coordinated lysosomal expression and
regulation) gene network (Sardiello et al., 2009; Palmieri et al.,
2011). Recent work indicates that non-active TFEB is highly
phosphorylated and associates with late endosomes/lysosomes
(Roczniak-Ferguson et al., 2011). Autophagy-inducing con-
ditions (e.g., deprivation of glucose or amino acids) result in
reduced and altered TFEB phosphorylation, leading to its trans-
location into the nucleus (Pefia-Llopis et al., 2011) and tran-
scriptional expression of CLEAR genes (Palmieri et al., 2011).

Degradation of endosomal and autophagosomal material
takes place upon exchange of content (via transient “kiss-and-run”
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Figure 3. Summary of organelles affected in LSDs. Also shown are selec-
tive examples of LSDs. See Table 1 and main text for details.

contacts) or fusion with lysosomes, forming endolysosomes
(Tjelle et al., 1996; Bright et al., 1997, 2005; Mullock et al.,
1998) and autolysosomes (Jahreiss et al., 2008; Fader and
Colombo, 2009; Orsi et al., 2010), respectively (Fig. 1, A and B).
Lysosomes can be regarded as storage compartments for acidic
hydrolases that enter cycles of fusion and fission with late endo-
somes and autophagosomes, while the digestion of endocytosed
and autophagic substrates takes place primarily in endolyso-
somes and autolysosomes (Tjelle et al., 1996; Luzio et al.,
2007). Under physiological conditions, endolysosomes and
autolysosomes are transient organelles.

Cells deficient in lysosomal hydrolytic enzymes, lysosomal
membrane proteins, or non-enzymatic soluble lysosomal proteins
accumulate excessive levels of undegraded macromolecules (en-
zyme deficiency) or monomeric catabolic products (efflux per-
mease deficiency) and contain numerous endo/autolysosomes
(Fig. 2). When very high levels of macromolecules/monomers
accumulate in endo/autolysosomes, they inhibit catabolic en-
zymes and permeases that are not genetically deficient, which re-
sults in secondary substrate accumulation (Walkley and Vanier,
2009; Lamanna et al., 2011; Prinetti et al., 2011). For example,
lysosomal proteolytic capacity is reduced in fibroblasts from
various LSDs, such as mucopolysaccharidoses I and VI, and
GM1-gangliosidosis, which are themselves not caused by prote-
ase deficiency (Kopitz et al., 1993). The accumulation of primary
and secondary substrates sets off a cascade of events that impacts
not only the endosomal—-autophagic—lysosomal system, but also
other organelles, including mitochondria, the ER, Golgi, peroxi-
somes (Fig. 3), and overall cell function (Fig. 4).

Autophagic pathways. The autophagic (“self—eating”)
pathway constitutively targets intracellular cytosolic components
for lysosomal degradation, and is essential for maintaining cellular
energy and metabolic homeostasis (Kuma and Mizushima, 2010;
Singh and Cuervo, 2011). To date, three distinct forms of autoph-
agy have been characterized: macroautophagy, microautophagy,
and chaperone-mediated autophagy (Fig. 1, A, C, and D). All three
autophagic processes culminate in lysosomal degradation; how-
ever, routes taken by substrates to the lysosome differ between each
form. Macroautophagy involves the bulk sequestration of cytosolic
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Figure 4. Hypothetical cascade of events in LSD
pathology. How gene mutations in lysosomal
enzymes and non-enzymatic lysosomal proteins
could lead to LSDs. Endo/autolysosomal events
are confined to the darker shaded background,
whereas processes taking place in the cytoplasm
that affect autophagosomes, the ER, Golgi, per-
oxisomes, and mitochondria are on the lighter
background. Processes depicted have been ob-
served in a number of LSDs but do not necessarily
apply to all LSDs.

[ Increased reactive] [Aberrant inflammatory and]

oxygen species

apoptotic signaling

regions into double- or multi-membrane bound autophagosomes,
which are trafficked to lysosomes for content digestion (Fig. 1 A).
A diverse range of cellular material is degraded via macroautoph-
agy, including lipids, carbohydrates and polyubiquitinated proteins,
RNA, mitochondria, and fragments of the ER (Eskelinen and
Saftig, 2009). The most characterized protein associated with auto-
phagosomes is the lipidated (phosphatidylethanolamine) form of
microtubule-associated protein light chain 3 (MAP-LC3), known
as LC3-II, which is generated early in the autophagic process but
degraded in the final phase of autophagic digestion.

Autophagic flux (the rate at which autophagic vacuoles
are processed by lysosomes) is reduced in most LSDs (Ballabio,
2009; Ballabio and Gieselmann, 2009; Raben et al., 2009). This
is evident from the combined elevation of autophagic substrates
and autophagosome-associated LC3-II. LSD cells often display
increased numbers of LC3(+) organelles, of which only a sub-
group carry lysosomal markers, suggesting that both autopha-
gosomes and autolysosomes persist in these conditions. For
example, in mouse models of Batten disease (a neuronal ceroid
lipofuscinosis [NCL] disorder; Table 1), most LC3-positive
compartments are not positive for LAMP1 (Koike et al., 2005),
and in multiple sulfatase deficiency and juvenile neuronal
ceroid lipofuscinosis, LC3 and LAMP1 are predominantly
localized in separate organelles, which is even more pronounced
after starvation (Cao et al., 2006; Settembre et al., 2008). Endo-
some-lysosome and autophagosome-lysosome fusion is also
impaired in mucolipidosis type IIIA and multiple sulfatase-
deficient mouse embryonic fibroblasts (Fraldi et al., 2010).

Microautophagy does not involve de novo synthesis of
nascent vacuoles, but rather occurs via the direct pinocytosis of
cytosolic material by lysosomes (Fig. 1 C). The membrane
dynamics regulating microautophagy are similar to those involved
in the formation of intra-luminal vesicles (ILVs) found in multi-
vesicular bodies/late endosomes (Sahu et al., 2011). Currently,
little is known about the repercussions of lysosomal storage on
microautophagy, but this process appears to be impaired in pri-
mary myoblasts from patients with the muscle-wasting condi-
tion Pompe disease (Takikita et al., 2009).

Chaperone-mediated autophagy (CMA) is a selective
form of autophagic proteolysis that targets proteins containing a
KFERQ motif for degradation (Dice et al., 1990; Cuervo and
Dice, 2000). The eponymous chaperone that recognizes and
binds to proteins destined for CMA is the heat shock cognate
protein of 70 kD (Hsc70). Substrate-bound Hsc70 docks on
lysosomes via contact with lysosomal-associated membrane
protein 2A (LAMP-2A), allowing entry of proteins into lyso-
somes (Fig. 1 D). Mutations in LAMP-2A cause Danon disease,
and specifically affect CMA (Eskelinen et al., 2003; Fidziafiska
etal., 2007). CMA is also known to be impaired in mucolipido-
sis I'V, where mutations in transient receptor potential muco-
lipin-1 (MCOLN1) lead to reduced amounts of LAMP-2A and
substrate uptake into lysosomes (Venugopal et al., 2009).

Both endolysosomes and
autolysosomes extend tubular structures where lysosomal
hydrolases and LMPs concentrate (Tjelle et al., 1996; Bright
et al., 1997, 2005; Pryor et al., 2000; Yu et al., 2010). At the

Lysosomal storage disorders
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ends of these tubules, [LC3(—), LAMPI1(+)] vesicles bud off
and acidify, maturing into dense lysosomes, a fission process
referred to as lysosome reformation. This event completes each
cycle of endocytic and autophagic degradation, yielding dense
lysosomes that are available to fuse with newly generated endo-
somes and autophagosomes.

Efficient processing of endo/autolysosomal substrates is
essential for lysosome reformation. This is well illustrated in a
study that monitored exogenous sucrose metabolism in rat kid-
ney fibroblasts (Bright et al., 1997). Sucrose is a disaccharide
composed of the monosaccharides glucose and fructose, and is
itself indigestible by cells. In this study, sucrose-filled endo-
somes fused with lysosomes and formed large endolysosomes,
which accumulated in the cytosol. A depletion of dense-core
lysosomes was seen under these conditions; however, dissolution
of the accumulated sucrose by uptake of exogenous invertase
resulted in the reappearance of dense-core lysosomes. This
study and another more recent one from Yu et al. (2010) indicate
that lysosome biogenesis does not occur de novo, but is rather
born out of a reformation/budding from endolysosomes. Lyso-
some reformation appears to be defective in sialic acid storage
disease as skin fibroblasts from diseased individuals lack dense
lysosomes, while lysosomal enzymes persist in intermediate or
light organelles (Schmid et al., 1999).

Interestingly, impairment of lysosome reformation ap-
pears to be the primary cellular defect in Niemann-Pick type C2
(NPC2)-deficient cells, indicating that the NPC2 protein has a
crucial role in this process (Goldman and Krise, 2010). Consid-
ering that NPC1 and NPC2 deficiencies have the same patho-
logical consequences (Niemann-Pick type C disease; Table 1),
this suggests that lysosome reformation is as essential as endo-
some/autophagosome-lysosome fusion, which is impaired in
NPC1-deficient cells.

Recent reports have provided a mechanistic link between
the failure of endo/autolysosomal clearance and the deficit of
lysosome reformation. Central to this pathway is mTOR, a ser-
ine/threonine kinase that has an overarching role in coordinating
cellular metabolism with nutritional status (Laplante and Sabatini,
2012). During the course of the autophagic process, mTOR goes
through a cycle of phosphorylation-dependent inactivation and
reactivation, with the latter being required for autophagic lyso-
some reformation (Yu et al., 2010). In turn, mTOR reactiva-
tion depends on the completion of autolysosomal substrate
digestion, and sufficient levels of luminal amino acids (Zoncu
et al., 2011). Limited information is currently available on the
extent of lysosome reformation and mTOR reactivation in
LSDs. However, inadequate autolysosomal degradation may
preclude mTOR reactivation and, hence, also impede lysosome
reformation, leaving affected cells deprived of dense lysosomes.
Consequently, in addition to stalled autolysosomes, autophago-
somes may persist due to a deficiency of dense lysosomes, ex-
plaining the low level of colocalization of autophagosomal and
lysosomal markers. mTOR activity is reduced in the brain of a
mouse model of juvenile neuronal ceroid lipofuscinosis (Cao et al.,
2006), in fibroblasts from mucopolysaccharidosis type I S, Fabry
disease and aspartylglucosaminuria subjected to starvation-induced
autophagy (Yu et al., 2010), in NPC1- and NPC2-knockdown
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human umbilical vein endothelial cells (Xu et al., 2010), and in
MCOLN -deficient Drosophila pupae (Wong et al., 2012), but
not in brain samples from Sandhoff, GM1-gangliosidosis, and
NPCI1 mice (Boland et al., 2010). Considering the myriad of
cellular signaling pathways that mTOR is involved in (Laplante
and Sabatini, 2012), it may be necessary to differentiate mTOR
activity in affected cell populations of different brain regions. In
addition, electron microscopy remains a powerful tool for the
ultrastructural classification of autophagosomes and autolyso-
somes in LSD cells, and could also be used to monitor the ex-
tent of lysosome reformation.

Mitochondrial dysfunction and cytoplasmic
protein aggregation. In LSDs, a reduction of autophagic
flux has a major impact on mitochondrial function and on cyto-
plasmic proteostasis. Constitutive macroautophagy maintains
mitochondrial quality by selectively degrading dysfunctional mito-
chondria via a process known as mitophagy (Kim et al., 2007).
Mitochondrial proteins are consistently found in the proteomes of
highly purified autolysosomes, especially subunits of the mito-
chondrial ATPase (Schroder et al., 2010). Reduced autophagic
flux in LSDs leads to the persistence of dysfunctional mitochon-
dria, which is highly pronounced in Batten’s disease neurons
(Ezaki et al., 1996). Several LSDs (mucolipidosis types IV, TIIA
[pseudo-Hurler polydystrophy], and II [I-cell disease], late infan-
tile neuronal ceroid lipifuscinosis [CLN2], mucopolysac-
charidosis VI, and GM1 gangliosidosis) display mitochondrial
abnormalities, including replacement of the extended filamentous
mitochondrial network with high numbers of relatively short
mitochondria, and loss of mitochondrial calcium-buffering
capacity and membrane potential (Jennings et al., 2006; Settembre
et al., 2008; Takamura et al., 2008; Tessitore et al., 2009). Studies
into aging and autophagosome formation have shown that mito-
chondria are involved in signaling pathways regulating apoptosis
and innate immunity, and that reduced autophagic flux and sub-
sequent accumulation of dysfunctional, reactive oxygen species—
generating mitochondria renders cells more sensitive to apoptotic
and inflammatory stimuli (Terman et al., 2010; Green et al., 2011,
Nakahira et al., 2011; Zhou et al., 2011). Therefore, the aberrant
functioning of mitochondria may be responsible for apoptosis
and inflammation in the CNS of multiple LSDs.

In addition, a lack of autophagy completion in LSDs leads
to the persistence of ubiquitinated and aggregate-prone poly-
peptides in the cytoplasm, including p62/SQSTM1, a-synuclein,
and Huntingtin protein (Ravikumar et al., 2002; Suzuki et al.,
2007; Settembre et al., 2008; Tessitore et al., 2009). Alpha-
synuclein itself contributes to neurodegeneration by reducing
the efficiency of autophagosome formation (Winslow et al.,
2010), and is also a main component of Lewy bodies that are
notably elevated in Parkinson’s disease and other forms of de-
mentia. Diminished quality control of cytosolic proteins may
thus also contribute to LSD pathology.

Impairment of autophagy and escalation of cytoplasmic
protein aggregation are shared between neurodegenerative LSDs
and more common neurodegenerative disorders, such as Al-
zheimer’s, Parkinson’s, Huntington’s disease, and amyotrophic
lateral sclerosis (ALS; Garcia-Arencibia et al., 2010; Wong and
Cuervo, 2010). Mutations in presenilin-1, which cause a familial
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form of Alzheimer’s disease, is known to impair lysosomal
clearance of autophagosomes (Esselens et al., 2004; Wilson
etal., 2004; J.H. Lee et al., 2010). Different mechanisms have been
proposed to explain how the partial loss of presenilin function
impairs autophagic flux. Reports from J.H. Lee et al. (2010)
indicate that presenilin 1 is need for the glycosylation and sub-
sequent delivery of VOal protein to lysosomes, where it forms a
subunit of lysosomal v-ATPase. This in turn is thought to impair
lysosomal proteolysis by raising their pH above an optimal acid-
ity of pH4-5. Alternatively, another recent report has indicated
that mutations in presenilin 1 lead to a loss of lysosomal cal-
cium regulation, which in turn affects fusion and clearance of
autophagosomes (Coen et al., 2012). However, considering both
groups confirmed that presenilin 1 mutations affect autophagic
flux, Alzheimer’s disease is beginning to emerge as a neurode-
generative disorder that may share similarities in terms of under-
lying pathogenic mechanisms with lysosomal storage disorders.
Efflux of molecules from endo/autolysosomes.
Some storage molecules in LSDs (glycoconjugates, amino acids,
or insoluble lipids) escape from cells and can be detected in
blood and/or urine, which can be utilized for diagnostic purposes
(Meikle et al., 2004). While glycoconjugates derived from stor-
age cells in multiple tissues could escape as solutes in blood and
urine, lipids extracted from urine are believed to be membrane
associated and predominantly exosomal (Pisitkun et al., 2004).
At the cellular level, a big question that remains to be re-
solved concerns the way in which storage molecules escape the
lysosomal system and affect the function of other organelles
and cellular systems (Elleder, 2006). Theoretically, lipids can
undergo redistribution within cells via membrane trafficking,
fusion, or via altered trafficking pathways characteristic of these
diseases (Chen et al., 1999). Endolysosomal macromolecules may
also be disseminated via membrane contact sites between endoly-
sosomes and the ER (Eden et al., 2010; Toulmay and Prinz, 2011),
and by extracellular secretion of endolysosomal content, including
exosome release. For example, primary kidney cells from arylsul-
fatase A—deficient mice secrete the accumulating lipid (sulfoga-
lactosylceramide) into the culture medium (Klein et al., 2005),
and NPCl1-deficient cells release higher amounts of cholesterol-
rich exosomes (Chen et al., 2010; Strauss et al., 2010). Accord-
ingly, the possibility needs to be considered that exosomes
containing storage molecules are taken up by recipient cells,
and that these macromolecules and lipids affect recipient cell func-
tion by distributing to the plasma membrane and other organelles
outside the endolysosomal system (Simons and Raposo, 2009).
Due to the extraordinarily high levels of lipids in the endo/
autolysosomal system, even a minor redistribution to other cellu-
lar membranes could have functional implications. Over the past
few years, multiple examples have emerged suggesting that this
not only occurs but can actively contribute to the pathogenic cas-
cade (Vitner et al., 2010). A key challenge is to demonstrate ex-
perimentally that particular storage macromolecules are indeed
ectopically present in the membrane of other organelles. This is
technically challenging due to the limitations of conventional
cell fractionation techniques. Currently, the presence of storage
components in non-lysosomal sites is either inferred indirectly or
evidence has been provided by immunostaining methods. To date,

the best examples come from studying the effects of lipid storage
in the ER (Sano et al., 2009; Futerman, 2010).

Lysosomal calcium homeostasis. Endosomes and
lysosomes are regulated calcium stores (Morgan et al., 2011)
that release calcium in response to the second messenger nico-
tinic acid adenine dinucleotide phosphate (NAADP; Churchill
et al., 2002). NPC1 disease is unusual in having a profound
block in late endosome-lysosome fusion (Kaufmann et al.,
2009; Goldman and Krise, 2010), a process known to be cal-
cium dependent (Lloyd-Evans et al., 2008). In NPC1 patient
cells and cultured cells deficient in NPC1 protein, calcium levels
within acidic organelles are approximately 30% of wild-type
cells (Lloyd-Evans et al., 2008; H. Lee et al., 2010). NPC1 cells
do respond to NAADP, but, due to the reduced luminal calcium
levels, release less calcium, thus leading to the fusion deficiency
associated with this disorder (Lloyd-Evans et al., 2008). There-
fore, NPC1 disease demonstrates that acidic calcium stores play
a central role in the regulation of fusion and trafficking within
the endocytic system itself (Morgan et al., 2011).

Endoplasmic reticulum defects. In addition to the
endoplasmic reticulum (ER) being the major site of the secretory
pathway responsible for protein folding/quality control and
N-glycosylation, it is also a regulated calcium store. The lipid and
protein content of the ER is tightly regulated to maintain its
essential quality-control functions. Surprisingly, very few ex-
amples of ER stress (e.g., unfolded protein response) have been
reported among LSDs, with GM1 gangliosidosis being the only
sphingolipid storage disorder in which this has been demon-
strated to date (Tessitore et al., 2004; Sano et al., 2009; Vitner
et al., 2010). Instead, the major impact in lipid storage disorders
is on ER calcium regulation (Futerman and van Meer, 2004;
Futerman, 2010). ER calcium homeostasis is perturbed in the
sphingolipid storage disorders, Gaucher disease, GM1 and
GM2 gangliosidoses, and Niemann-Pick type A (Ginzburg and
Futerman, 2005), leading to elevated cytosolic calcium. In these
diseases, the characteristic lipids being stored, glucosylceramide,
GM1 and GM2 ganglioside, and sphingomyelin, respectively,
may hypothetically escape from endolysosomes and affect ER
calcium channel function. Interestingly, the mechanisms leading
to defective ER calcium homeostasis are specific to each dis-
order and have recently been reviewed (Vitner et al., 2010). In
turn, aberrant ER calcium regulation may impact mitochondria
through ER—mitochondria contact sites, resulting in mitochon-
drial calcium excess and an induction of mitochondria-mediated
apoptosis, as seen in GM1 gangliosidosis (Sano et al., 2009).

The Golgi. Dysfunction of the Golgi is a common fea-
ture of many lipid storage disorders, and has traditionally been
thought to arise from alterations in sphingolipid trafficking
from the Golgi to the lysosome (Pagano et al., 2000). However,
recently Golgi involvement has been demonstrated in mucopoly-
saccharidosis IIIB (Sanfillipo B syndrome; Vitry et al., 2010).
Surprisingly, this study did not find any evidence that the endo-
cytic and autophagic pathways were affected in Sanfillipo B
syndrome; instead, they noticed that large storage bodies were
enriched in the Golgi matrix protein, GM130, which is required
for vesicle tethering in pre- and cis-Golgi compartments. Fur-
thermore, the morphology of the Golgi apparatus was altered in
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Table 2.  Status of approved treatments and experimental therapies for LSDs with selected bibliography

Therapy Target In vitro In vivo Clinical Regulatory References
organelle POC POC trials approval

Enzyme replacement (ERT) Lysosome + + + + Brady, 2006b; Neufeld, 2011

Bone marrow transplanta- Lysosome + + + N/A Krivit, 2002; Brady, 2006a
tion (BMT)

Substrate reduction therapy Golgi + + + + Platt and Butters, 2004; Platt and
(SRT) Jeyakumar, 2008; Cox, 2010

Enzyme enhancement ER/lysosome + - In progress - Okumiya et al., 2007;
therapy (EET) Fan, 2008

Gene therapy (GT) Nucleus + + In progress - Gritti, 2011; Tomanin et al., 2012

Stop codon read-through Nucleus + - - - Brooks et al., 2006

Calcium modulation ER + + - - Lloyd-Evans et al., 2008
therapy (CMT)

Enhanced exocytosis Exosome + - - - Strauss et al., 2010;
therapy (ExT) Medina et al., 2011

Chaperone therapy by Lysosome + - - - Kirkegaard et al., 2010
HSp70 (CT)

Proteostasis regulation ER + - - - Balch et al., 2008;
therapy (PRT) Mu et al., 2008

Cholesterol removal using Lysosome + + - - Davidson et al., 2009;

cyclodextrin in NPC1
disease

Ward et al., 2010;
Aqul et al.,, 2011

POC, proof of concept.

cells with distended cisternae connected to LAMPI1-postive
storage bodies. This study therefore suggests that Golgi biogen-
esis may be affected in this disease and further studies will shed
light on the molecular mechanisms that underpin Golgi involve-
ment in this neurodegenerative disorder.

Peroxisomes. There are reports of peroxisomal dysfunc-
tion occurring in some lipid lysosomal storage diseases, including
Krabbe (globoid cell leukodystrophy; Haq et al., 2006) and NPC1
disease (Schedin et al., 1997). In Krabbe disease, the major storage
lipid galactosylceramide is converted into its lysosomal metabolite,
galactosylsphingosine, which down-regulates the peroxisome pro-
liferator—activated receptor-o. (PPAR-at). Loss of PPAR-a and
subsequent cell death can be prevented using an inhibitor of secre-
tory phospholipase A2, suggesting a novel therapeutic approach
for Krabbe disease (Haq et al., 2006). In the NPC1 disease mouse
model, peroxisomes appear normal at the ultrastructural level but
have decreased peroxisomal (3 oxidation of fatty acids and catalase
activity, which is an early event in disease pathogenesis (Schedin
et al., 1997). In peroxisomal biogenesis disorders such as Zellwe-
ger syndrome and infantile Refsum disease, a-series gangliosides
(e.g., GM1, GM2) and their precursor GM3 ganglioside are stored.
As these gangliosides are common secondary storage metabolites
in many LSDs, this raises the possibility that peroxisomal dysfunc-
tion underpins secondary ganglioside storage in LSDs and merits
systematic study to test this hypothesis. How peroxisomal function
affects ganglioside metabolism remains unknown but may be part
of a broader lipid regulatory network in mammalian cells.

Cellular metabolic stress. Considering that both
endocytic and autophagic pathways are essential for maintaining
cellular metabolic homeostasis, the diminished efflux of mono-
meric products from endo/autolysosomes is likely to induce
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a state of metabolic insufficiency, where key catabolic inter-
mediates are unavailable to enter a variety of metabolic recycling
pathways (Schwarzmann and Sandhoff, 1990; Walkley, 2007).
For example, in some cell types, the majority of nascent glyco-
sphingolipids are synthesized from endolysosome-derived
sphingoid bases derived from ceramide catabolism (Tettamanti,
2004; Kitatani et al., 2008). Multiple endolysosomal exoglyco-
sidases, including glucocerebrosidase, which is deficient in
Gaucher disease, are involved in this process (Kitatani et al.,
2009). The lack of reutilized sphingolipids/fatty acids that nor-
mally result from endolysosomal degradation would place
such cells under significant metabolic stress. This may also
apply to NPC disease, which is a particularly complex and enig-
matic storage disease caused by mutations in either the NPC1 or
NPC2 genes, with resulting storage of several lipids species
including cholesterol and various sphingolipids (Lloyd-Evans
and Platt, 2010). The NPC1 protein is an integral membrane
protein of late endosomes that may function to efflux sphingo-
sine (protonated at acidic pH) out of endolysosomes and into
the sphingolipid salvage pathway or undergo phosphorylation
to sphingosine- 1-phosphate (S1P), raising the possibility that
S1P deficiency contributes to NPC1 disease pathogenesis
(Lloyd-Evans et al., 2008; Lloyd-Evans and Platt, 2010).

Therapeutic implications

Over the past two decades there has been a remarkable expansion in
the number of therapeutic strategies for LSDs that target different
cellular organelles (Table 2). The first treatment that led to a li-
censed commercial product was enzyme replacement therapy (ERT)
for type 1 Gaucher disease. The discoveries leading to that seminal
therapeutic advance were recently reviewed by Roscoe Brady, who
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pioneered this approach (Brady, 2010). This therapy “replaces” the
defective enzyme in the lysosome by delivering a fully functional
wild-type enzyme that is endocytosed into macrophages via the
macrophage mannose receptor. Wild-type glucocerebrosidase was
initially purified from human placenta (now recombinant products
are used) and typically given to patients every two weeks by in-
travenous infusion (Charrow, 2009). This strategy leads to a re-
markable degree of therapeutic benefit and has transformed the lives
of patients with this debilitating peripheral storage disease (Charrow,
2009). This success catalyzed the development of ERT for Fabry
disease (Schiffmann and Brady, 2006; Angelini and Semplicini,
2012), Pompe disease (Angelini and Semplicini, 2012), and several
of the mucopolysaccharide storage disorders (Kakkis, 2002).
However, the clinical limitations of ERT are two-fold. First,
product delivery is invasive and time-consuming to deliver, and
second, lysosomal enzymes do not cross the blood—brain barrier
to any significant extent, so cannot effectively treat CNS disease,
which is characteristic of most LSDs. To circumvent this problem,
bone marrow (BM) transplantation from healthy donors has been
evaluated in some of these diseases. Microglia are of BM origin and
over time a few donor-derived monocytes enter the CNS and serve
as local sites of wild-type enzyme production, which can be taken
up via secretion-recapture by neighboring host cells. On the whole,
BM transplantation is only effective if it is performed in early in-
fancy, does not show efficacy in all LSDs, and is not curative
(Wraith, 2001). Further complications include the need for human
leukocyte antigen (HLA) matched donors, the high rate of mortal-
ity associated with recipients, and the lack of standardization amongst
different BMT regimens in different clinical centers.

Another therapy to be developed and subsequently approved
for LSDs was substrate reduction therapy using the oral small mol-
ecule imino sugar drug, miglustat (Lachmann, 2006). This has
been approved for type 1 Gaucher disease (worldwide) for over a
decade, and in 2009 for treating neurological manifestations in
Niemann-Pick type C disease (now approved in most countries/
regions, except the USA; Patterson et al., 2007). Miglustat targets
the Golgi enzyme, glucosylceramide synthase (Platt et al., 1994),
and by partially inhibiting glycosphingolipid biosynthesis it re-
duces the catabolic burden of these molecules on lysosomes that
cannot digest them. It has the potential to be used in diseases with
glycosphingolipid storage, as miglustat inhibits the first committed
step in the biosynthesis of this family of lipids. Also, miglustat
crosses the blood—brain barrier, hence its disease-modifying benefit
in Niemann-Pick type C disease (Patterson et al., 2007). Like all
drugs, this compound has side effects, the primary one being inhi-
bition of disaccharidases, which can lead to gastrointestinal symp-
toms, particularly in the first 1-2 months of therapy. More recently,
eliglustat tartrate (Genz-112638) has entered clinical trials in type
1 Gaucher disease as an oral substrate reduction therapy. As this
drug has a different chemistry to miglustat, it also has a different
side-effect profile (Cox, 2010).

There are currently several alternative therapeutic strate-
gies that have shown utility in tissue culture models and/or in
animal models of these diseases and are summarized in Table 2.
Many of these approaches target non-lysosomal organelles. No
doubt as more is known about pathogenic cascades and their
impact on cellular organelles, additional creative approaches to

Box 1. Open Questions

® How does storage affect other aspects of lysosomal
function, independent of the primary storage metabolite?

e How does storage frigger innate immune activation?

® How does lysosomal storage affect cell signaling?

¢ How do storage lipids escape the lysosome and affect
the function of other organelles?

e What is the hierarchy of the pathogenic cascade in
these diseases, which steps should be targeted for
optimal therapy?

* Do the genetic defects in the neuronal ceroid lipofuscinoses
(NCL disorders) cause convergent symptoms by chance,
or are the disparate genes functioning in common cell
biological pathways?

treatment will emerge and undergo pre-clinical testing. Due to
the severity and complexity of these disorders it is likely that
ultimately a combination therapy will be needed to target multi-
ple steps/organelles in the pathogenic cascade.

Conclusion

In conclusion, we have provided some selective examples illus-
trating the complexity of how lysosomal dysfunction impinges
upon multiple aspects of cell biology, often in unanticipated
ways (summarized in Fig. 3). Many questions remain unan-
swered at the present time, and some of these are highlighted in
Box 1. However, the study of these rare diseases (Table 1) fills
two voids in our knowledge, namely providing fundamental in-
sights into lysosomal biology and in leading to novel approaches
to generate next-generation therapeutic interventions for treat-
ing these truly fascinating yet devastating disorders (Table 2).
It is clear that although storage is primarily initiated in the late
endosomal—autophagic—lysosomal system, it induces a patho-
genic cascade that impacts on multiple cellular systems and
organelles, suggesting that conceptually we should view these
diseases as cellular storage disorders and use this broader
knowledge for the design of therapeutic interventions.
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