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The ATM protein: The importance of being active
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The ataxia telangiectasia mutated (ATM) protein kinase
regulates the cellular response to deoxyribonucleic acid
(DNA) double-strand breaks by phosphorylating nu-
merous players in the extensive DNA damage response
network. Two papers in this issue (Daniel et al. 2012.
J. CellBiol. http://dx.doi.org/10.1083/jcb201204035;
Yamamoto et al. 2012. J. Cell Biol. http://dx.doi
.org/10.1083/jcb201204098) strikingly show that, in
mice, the presence of a catalytically inactive version of
ATM is embryonically lethal. This is surprising because
mice completely lacking ATM have a much more mod-
erate phenotype. The findings impact on basic cancer
research and cancer theropeutics.

Maintenance of genomic stability is essential for prevention
of undue cell death or neoplasia (Cassidy and Venkitaraman,
2012). Critical DNA lesions, such as double-strand breaks
(DSBs), activate the DNA damage response (DDR)—a wide-
spread signaling network that involves DNA repair, activation
of cell cycle checkpoints, and extensive modulation of gene
expression and many metabolic pathways (Ciccia and Elledge,
2010; Hiom, 2010). DSBs are induced by ionizing radiation,
radiomimetic chemicals, and endogenous oxygen radicals.
They accompany replication fork stalling and are formed and
resealed in meiotic recombination and the rearrangement of the
antigen receptor genes during the development of the immune
system. Major repair pathways for DSBs are error-prone non-
homologous end joining (NHEJ) or high-fidelity homologous
recombination repair (HRR; Holthausen et al., 2010; Lieber,
2010). The broad, powerful signaling network evoked by DSBs
begins with rapid accumulation at DSB sites of a large group of
proteins dubbed “sensors” or “moderators” and continues with
the activation of several protein kinases (“transducers”) with
partially redundant functions that relay the signal to numerous
downstream effectors, which are typically key players in the
various DDR branches (Lovejoy and Cortez, 2009; Ciccia and
Elledge, 2010; Lukas et al., 2011).

The primary transducer of the DSB alarm is the serine-
threonine kinase ataxia telangiectasia (A-T) mutated (ATM;
Banin et al., 1998; Canman et al., 1998), which is acti-
vated in response to DSB induction (Bakkenist and Kastan,
2003) and goes on to phosphorylate a plethora of substrates
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(Matsuoka et al., 2007; Bensimon et al., 2010). ATM belongs to
a conserved family of phosphoinositide 3-kinase-like protein
kinases (PIKKs) that includes, among others, two other major
DDR transducers: the catalytic subunit of the DNA-dependent
protein kinase catalytic subunit (DNA-PKcs) and ATR (ataxia
telangiectasia and Rad3 related). These three kinases maintain
close functional relationships (Lovejoy and Cortez, 2009).
Recent evidence suggests that ATM’s broad capacity as a
protein kinase enables it to regulate other processes, such as
oxidative stress levels (Guo et al., 2010), and play a role in
cytoplasmic, non-DDR arenas, among them mitochondrial ho-
meostasis (Yang et al., 2011; Valentin-Vega and Kastan, 2012;
Valentin-Vega et al., 2012).

Human germline mutations that abrogate cellular re-
sponses to DNA damage cause severe genomic instability
syndromes (Jeppesen et al., 2011). The ATM gene is mutated in
the genomic instability syndrome, A-T (Savitsky et al., 1995).
A-T is characterized by progressive neurodegeneration, immuno-
deficiency, cancer predisposition, genomic instability, and sen-
sitivity to DSB-inducing agents (McKinnon, 2012). The disease
is caused by null ATM mutations, and the patients usually ex-
hibit complete loss of the ATM protein (Gilad et al., 1996).

Studies of ATM-dependent processes typically rely on
human wild-type versus A-T cells, ATM knockdown using
RNAI, reconstitution of ATM-deficient cells by ectopic ex-
pression of wild-type or kinase-dead ATM protein, or treating
cultured cells with ATM inhibitors. Laboratories using these
experimental systems have long felt that the physiological con-
sequences of ATM loss as opposed to harboring inactive ATM
may not be similar (Choi et al., 2010). The papers by Daniel
et al. and Yamamoto et al. (both in this issue) provide solid
evidence of this notion and mark a turning point in our view of
ATM’s mode of function. Both works are based on manipulat-
ing the Atm gene in the mouse.

Atm knockout mice have long been around. These mice
exhibit most of the symptoms of A-T, including low body
weight, sterility, radiosensitivity, and cancer predisposition, but
neurodegeneration is considerably less marked in these animals
compared with that observed in human A-T patients (Barlow
et al., 1996; Elson et al., 1996; Xu et al., 1996; Borghesani
et al., 2000). Thus, before cancer emergence and without
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Figure 1. Phenotypic comparison of mouse Atm genotypes. Mice express-
ing an inactive protein as their sole source of Atm die in utero (Daniel
et al., 2012; Yamamoto et al. 2012). Heterozygotes resemble wild-type
(WT) animals, indicating lack of a dominant-negative effect. HRR, homolo-
gous recombination repair; kd, kinase dead.

exposure to radiation, the murine Azm '~ phenotype is relatively

moderate. Using mutant Afm transgene expression in an
Atm™'~ background (Daniel et al., 2012) and via direct knockin
(Yamamoto et al., 2012), the two groups generated new mouse
strains that lack Atm activity; rather than being devoid of Atm,
these animals express physiological levels of catalytically in-
active (kinase dead) protein. Strikingly, in both laboratories,
this genotype led to early embryonic lethality, with inherent ge-
nomic instability that was higher than that observed in Atm '~
animals (Fig. 1). Conditional expression of the mutant protein
in the immune system reduced the efficiency of V(D)J (variable,
diversity, and joining) recombination and immunoglobulin class
switching—two processes that involve the NHEJ pathway of
DSB repair and require active ATM for optimal function. How-
ever, this reduction was comparable to that caused by absence
of Atm. Collectively, the data from both laboratories suggest
that the HRR pathway of DSB repair, rather than NHEJ, may
be affected to a greater extent by the presence of inactive Atm
compared with the effect obtained after Atm loss.

This dramatic phenotype is presumably caused by severe
malfunction of the DDR, attesting once again to its importance
in early development. The critical role of the DDR in develop-
ment has been documented in the past (Phillips and McKinnon,
2007), but the novelty of the current studies lies in the profound
difference between Atm loss and the presence of catalytically
inactive Atm. The same likely applies in humans as well: A-T
patients typically exhibit ATM loss, and in rare cases of cata-
lytically inactive ATM in patients, its level is low enough to
allow for viability. A similar observation was made recently
by Zhang et al. (2011) with another member of the PIKK
family—DNA-PKcs. This group found that mice expressing a
mutant version of DNA-PKcs, lacking three phosphorylation
sites associated with its activation, die shortly after birth as a
result of bone marrow failure. It is interesting to note that in
contrast to this, abolishing three phosphorylation sites in mouse
Atm, whose equivalents in human ATM are phosphorylated
during its activation (Bakkenist and Kastan, 2003; Kozlov et al.,
2006), did not result in any discernible phenotype (Pellegrini
et al., 2006; Daniel et al., 2008).
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It appears, therefore, that the presence of physiologi-
cal levels of inactive Atm severely interferes with the DDR,
certainly more than its absence. Why could this be? Although
the exact mechanism of this phenomenon is unknown, some
assumptions can be made. ATM is recruited to DSB sites
(Andegeko et al., 2001) and is therefore present in the huge
nuclear foci spanning these sites. Many ATM-mediated phosphory-
lations occur within these protein conglomerates. Importantly,
the recruitment of kinase-dead Atm to sites of DNA damage
was found by Daniel et al. (2012) and Yamamoto et al. (2012) to
occur normally. It is possible that the presence of catalytically
inactive Atm within these DDR hubs severely disturbs the abil-
ity of the cell to respond to the damage. Presumably, it inter-
feres with the ordered temporal dynamics of events within these
protein factories (Lukas et al., 2011). Deeper understanding of
the spatial organization of these protein assemblies (Chapman
et al., 2012) and the temporal hierarchy of events within them
may elucidate ATM’s role not only as an enzyme but also as a
protein moiety in these structures. Of note, ATM is a large protein
of 3,056 residues, of which ~10% constitute its active site. The
regulatory functions of the remaining 90% of this polypeptide
are largely elusive. In a broader sense, these studies convinc-
ingly show, at the organismal level, that loss of an enzyme ver-
sus having it residing inactive in the cell can be worlds apart. In
this context, it would be interesting to monitor the development
of malignancies in those animals expressing the mutant Atm in
their lymphoid system. This is particularly important because
the malignancies observed in Afm ™'~ mice, similar to A-T pa-
tients, are primarily lymphoid.

The implications for ATM-related translational research
are notable. ATM has naturally been considered a potential
target to be inactivated in tumor cells to selectively sensitize
them to radiotherapy (Begg et al., 2011; Basu et al., 2012;
Golding et al., 2012). The advent of efficient ATM inhibitors
(Hickson et al., 2004; Golding et al., 2009) has further spurred
these hopes. The good news is that the effect of these inhibi-
tors on cellular radiosensitivity (and, probably, general well
being) might be more profound than previously estimated,
provided that these small molecules could be targeted specifi-
cally into the malignant cells. On the other hand, exposure of
normal, proliferating body tissues to ATM inhibitors may be
undesirable, depending on the type of tissue. Such exposure
of normal tissue to ATM inhibition, even if brief, could lead
to substantial genomic instability—a potential driving force
toward new malignancy.
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