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ohesin is a conserved multisubunit protein com-
plex that participates in chromosome segregation,
DNA damage repair, chromatin regulation, and
synaptonemal complex (SC) formation. Yeast, but not
mice, depleted of the cohesin subunit Rec8 are defective
in the formation of the axial elements (AEs) of the SC, sug-
gesting that, in mammals, this function is not conserved. In
this paper, we show that spermatocytes from mice lacking

Introduction

In mammalian spermatogenesis, a subset of spermatogonia
undergoes a terminal round of DNA replication and then
enters meiosis. Meiosis is a specialized process in which two
successive rounds of chromosome segregation and cell divi-
sions occur without intervening DNA replication. This re-
duces the number of each chromosome from four copies in
the meiocyte to one copy in haploid gametes. At the initiation
of the prophase I, a proteinaceous structure called the axial
element (AE) begins to form along replicated sister chroma-
tids. Subsequently, the AEs of homologues become juxta-
posed by transverse element proteins (e.g., SYCP1, beginning
in zygonema), and the paired axes joined by transverse ele-
ments form the tripartite synaptonemal complexes (SCs) that
connect all homologues at pachynema (Yang and Wang,
2009). This dynamic protein complex provides the structural
framework in which homologous chromosomes undergo
close juxtaposition and repair of double-strand breaks (DSBs)
by recombination. Subsequently, but before the first meiotic
division, homologues desynapse but retain stable connections
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the two meiosis-specific cohesin subunits RAD21L and
REC8 were unable to initiate RAD51- but not DMC1-
mediated double-strand break repair, were not able to
assemble their AEs, and arrested as early as the leptotene
stage of prophase I, demonstrating that cohesin plays an
essential role in AE assembly that is conserved from yeast
to mammals.

formed by resolution of certain recombination events as
crossovers (visible as chiasmata). In most organisms, chias-
mata are required to enable proper orientation of homologues
on the meiosis I spindle before the first meiotic division. Sister
chromatid cohesion distal to crossovers maintains chiasmata
at their initial positions until anaphase I.

During meiosis, sister chromatid cohesion is lost in two
consecutive steps. Loss of chromosome arm cohesion in ana-
phase I releases the linkage between homologues, allowing
them to segregate to opposite poles (Page and Hawley, 2003).
However, maintenance of centromeric cohesion by the action of
Shugoshin-like—2 in mammals ensures the generation of tension
by the proper attachment of sister chromatids to the meiosis II
spindle, enabling their proper segregation to opposite poles
(Llano et al., 2008; Gutiérrez-Caballero et al., 2012).

During the mitotic cell cycle, sister chromatid cohesion
is mediated by the multisubunit cohesin complex between
S phase and anaphase (Gruber et al., 2003; Unal et al., 2007;
Haering et al., 2008; Zhang et al., 2008). Structurally, the mi-
totic cohesin complex comprises four core proteins: SMCla,
SMC3, RAD21, and a HEAT repeat domain protein (STAG1

© 2012 Llano et al. This article is distributed under the terms of an Attribution—
Noncommercial-Share Alike-No Mirror Sites license for the first six months after the pub-
lication date (see http://www.rupress.org/terms). After six months it is available under a
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and STAG2; Watanabe, 2005; Hirano, 2006). SMCla and
SMC3 are members of the structural maintenance of a chro-
mosome family of ATPases, which heterodimerize in an anti-
parallel orientation. The a-kleisin subunit RAD21 closes the
ring cohesin complex and is the substrate of the protease sepa-
rase (Uhlmann et al., 2000). There are meiosis-specific mam-
malian paralogues of RAD21, SMCla, and STAG1-2, namely,
REC8 and RAD21L, SMCI1p, and STAG3, respectively
(Parisi et al., 1999; Prieto et al., 2001; Gruber et al., 2003;
Gutiérrez-Caballero et al., 2011), which lead to a variety of
meiosis-specific cohesin complexes (Ishiguro et al., 2011;
Gutiérrez-Caballero et al., 2011). Interestingly, yeast Rec8 is
necessary for stepwise release of sister chromatid cohesion in
meiosis, and this role is widely conserved across eukaryotes
(Klein et al., 1999; Golubovskaya et al., 2006; Severson et al.,
2009). Furthermore, the analysis of yeast mutants of Rec8
revealed additional functions in AE assembly, pairing of
homologues, synapsis, and recombination (Klein et al., 1999;
Watanabe and Nurse, 1999).

In mammals, cohesins colocalize and interact with the
structural AE components SYCP3 and SYCP2 (Suja and
Barbero, 2009). However, there is disagreement as to whether
the mammalian cohesin complex is an integral part of the AE
itself (Eijpe et al., 2003) or constitutes a different structure
of the chromosomal core (Pelttari et al., 2001). Mouse sper-
matocytes lacking SMCI1p, RECS, or RAD21L are able to
assemble AEs but undergo meiotic arrest at the zygotene or
early pachytene stages, with partially synapsed chromosomes
(Bannister et al., 2004; Revenkova et al., 2004; Herran et al.,
2011). REC8 is also dispensable for AE and SC assembly in
many higher eukaryotes, suggesting that cohesin may not be
universally required for AE assembly (Bhatt et al., 1999;
Bannister et al., 2004). However, Caenorhabditis elegans
depleted of the three meiosis-specific kleisins (Rec8, COH-3,
and COH-4) are unable to form AEs, similar to yeast bear-
ing rec8A or smc3A alleles (Klein et al., 1999; Severson
et al., 2009). These results suggest that this AE assembly
function might be obscured in other higher eukaryotes, such
as mammals, owing to the involvement of multiple kleisins
(Gutiérrez-Caballero et al., 2011; Ishiguro et al., 2011; Lee
and Hirano, 2011).

To better understand the role that cohesins play in
AE and SC assembly in mammals, we performed a genetic
depletion of the two meiosis-specific kleisins REC8 and
RAD21L in mice (Bannister et al., 2004; Herrdn et al., 2011).
Our results reveal that either of these kleisins is each suffi-
cient for association of the AE proteins SYCP3 and SYCP2
with chromosomes and that AE formation fails only in mice
lacking both kleisins. This failure to assemble AEs leads to
accumulation of cells with leptotene-like morphology, which
is, to the best of our knowledge, the earliest arrest of mouse
spermatogenesis ever reported. This evidence indicates that
meiotic cohesin complexes are essential structural components of
the AE from yeast to mammals. In addition, we show that mei-
otic cohesins function downstream of the SPO11-mediated DSB
formation and upstream of RADS1- but not DMC1-mediated
DSB repair.

JCB « VOLUME 197 « NUMBER 7 « 2012

Results and discussion

Mice lacking RADZ21L and RECS8 develop
normally but are infertile

Mice lacking either of two meiosis-specific cohesin subunits,
RECS8 or RAD21L, show similar defects in meiosis. To test for
possible overlap in the functions of these two kleisin proteins,
we generated kleisin double-knockout (dKO) mice. Rad211™"~
Rec8"~, henceforth dKO-kls animals, were obtained from crosses
of double heterozygotes (Rec8”~ and Rad211"'") in the expected
Mendelian ratios and analyzed. dKO-kls mice developed nor-
mally and displayed no overt defects besides infertility. As ex-
pected from the phenotypes of the single Rec8 and Rad21l
mutants, all the dKO-kls mice (n = 11) were infertile (unpub-
lished data; Bannister et al., 2004; Herran et al., 2011). The
testes from dKO-kls mice were reduced in size, weighing 30 +
3 mg at 6-8 wk of age compared with 103 + 8 mg in wild-type
males (Fig. 1 A and Table S1). Furthermore, histological exam-
ination of testes from 6—8-wk-old dKO-kIs males revealed sem-
iniferous tubules that were always devoid of postmeiotic cell
types, despite the presence of spermatogonia, and Sertoli and
Leydig cells (Fig. 1 B and not depicted). Similar defects were
also observed in the Rec§-deficient and Rad21L-deficient mice
(Fig. 1, A and B; Bannister et al., 2004; Herran et al., 2011).

Meiotic kleisins are essential for the
formation of AEs in spermatocytes
We staged and examined spermatocyte spreads by immuno-
localization of SYCP3. In the absence of RAD21L and RECS, AE
assembly and synapsis between homologues were disrupted
very early (Fig. 1, C and D). dKO-kIs spermatocytes arrested at
a leptotene-like stage (100% of cells) were characterized by the
punctate aggregates of SYCP3. In contrast, thin threads were
observed in late leptotene spermatocytes from wild-type and
single mutant mice (Fig. 1, C and D). SYCP2, another axial pro-
tein, colocalized with SYCP3 in these aggregates (Fig. 1 D).
Antibodies against SYCP1 were used to determine whether trans-
verse components of the SC assembled in dKO-kls mutant sper-
matocytes. The aggregates of AE proteins did not show reactivity
with SYCP1 antibodies, indicating an absence of transverse fila-
ment assembly (n = 120; Fig. 1 D). In agreement with previous
studies, spermatocytes of Rad21l and Rec8 single mutant mice
arrested at a zygotene-like stage, displaying several fragmented
AFEs and some partially synapsed lateral elements (LEs) that
never progressed to the expected 19 fully synapsed autosomal
bivalent chromosomes observed in wild-type pachynema (un-
published data; Bannister et al., 2004; Herran et al., 2011).
Tubule section in wild-type mice can be categorized in
stages running from I to XII according to the spectrum of germ
cell types that are present (Russell et al., 1990). Following these
criteria, dKO-kls, Rad2 11, and Rec8 mutant mice appeared to be
arrested at stage IV of the seminiferous epithelium cycle (Fig. 1 B;
Herrén et al., 2011). In wild-type tubules, stage IV typically corre-
sponds to midpachynema. At this stage, mutant spermatocytes
that fail to complete recombination and/or chromosome synap-
sis will usually undergo apoptosis (de Rooij and de Boer, 2003).
As examples, MSH5-, DMCI1-, or SPO1 1-deficient spermatocytes
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Figure 1. Absence of RAD21L and REC8 arrest mouse spermatogenesis in early prophase 1. (A) dKO-ls mice show a 70% reduction in testes size compared
with wild type. Similar reductions are observed in Rad2 1/~ and Rec8 7~ males. (B) Mutation of both Rad2 1/ and Rec8 elicits an arrest of spermatogenesis
at stage IV characterized by intermediate spermatogonia (arrows) in a representative section of a seminiferous tubule. Massive apoptosis of spermatocytes
(condensed nuclei indicated by asterisks) and absence of mature spermatozoa/spermatids are observed in the dKO-xkls tubules. A similar arrest is observed
in seminiferous tubules from singly mutant Rad21/ and Rec8 mice. (C) Immunolabeling for SYCP3 in spermatocytes from a wild-type mouse at early and
late leptonema and spermatocytes arrested at a leptotene-like stage from a dKO-kIs mouse. (D) dKO-kls spermatocytes arrested at the leptotene-like stage
show absence of chromosomal synapsis. Double immunolabeling for SYCP3 and SYCP2 or SYCP1 shows SYCP3/SYCP2 aggregates without synapsis
as indicated by the lack of SYCP1 labeling in double mutant spermatocytes. Spermatocytes from Rad21/~/~ (zygotene-like arrest), Rec8 7/~ (zygotene-like
arrest), and wild-type (zygotene stage) mice show AEs and synapsed LEs with stretches of SYCP1. Bars: (A) 5 mm; (B) 25 pm; (C and D) 100 pm.
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Figure 2. Meiotic cohesins are dispensable for DSB formation but not for normal loading of RAD51. (A) Double immunolabeling of SYCP3 and y-H2AX.
In wildtype spermatocytes, y-H2AX labels the chromatin from leptonema to pachynema when the signal disappears from autosomal chromosomes and
remains only on sex body chromatin (not depicted). In the single and dKO-kls mutants, y-H2AX also labels leptotene chromatin. (B) Double immunolabel-
ing of SYCP3 and RADS51. In wild-type spermatocytes and spermatocytes of single Rad2 1/ or Rec8 mutants, RAD51 localizes to AEs/LEs at leptonema. In
Rec87/~ Rad21//~ spermatocytes, there is an 8.5-fold reduction in the number of RAD51 foci. Bars, 100 pm.

arrest at stage [V, but the terminal stage was described as zygo-
nema, late zygonema, and midpachynema, respectively, based
on the progression of synapsis (Yoshida et al., 1998; de Vries
et al., 1999; Baudat et al., 2000). Interestingly, dKO-kls sper-
matocytes arrest at a stage best described as leptonema be-
cause they lack AEs yet remain viable up to stage IV. The
absence of later stages indicates that these spermatocytes
then undergo apoptosis, likely caused by activation of meiotic
checkpoints. Thus, disruption of the meiotic cohesin complexes

leads to absence of AEs, which elicits spermatocyte death after
an extended leptotene-like stage.

We next sought to determine how recombination mechanisms are
affected by the absence of RAD21L and RECS8. Programmed
DSBs that initiate meiotic recombination are normally generated
by the nuclease SPO11 at the early leptotene stage (Keeney, 2001).
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Figure 3. Normal loading of DMC1 and RPA accumulation at leptonema-
arrested dKO-kls spermatocytes. Double immunolabeling of SYCP3 and
DMCT or RPA. (A) In wild-type and dKO-kls spermatocytes, DMC1 protein
localizes to AEs/LEs at leptonema. (B) In dKO-kls spermatocytes, there is a
threefold increase in the numbers of RPA foci at the leptotene-like arrest in
comparison with wild-type spermatocytes. Bars, 100 pm.

We analyzed break formation in mutant spermatocytes using
antibodies against the y-H2AX, a histone variant that is phos-
phorylated during early prophase I in response to SPO11-induced
DSBs in an ATM-dependent manner (Mahadevaiah et al., 2001).
As seen in Fig. 2 A, 100% of leptotene-like arrested spermato-
cytes from dKO-kls mice showed a positive staining that was
similar to that observed in the wild-type mice (87 + 30 vs. 92 + 56;
Table S1). This suggests that the formation of programmed
DSBs is not markedly altered in dKO-kls mice. However, the
presence of y-H2AX staining in all the arrested spermato-
cytes from dKO-kls animals indicates that breaks are not
repaired efficiently.

We further analyzed the recombination process to ad-
dress why DSBs are not repaired in the double mutant sper-
matocytes. After DSBs are induced, the broken ends are
resected, and the strand invasion enzymes RAD51 and DMC1
are recruited to the resulting single-strand DNA overhangs to
promote homologue pairing and DNA repair (Symington and
Gautier, 2011). In wild-type leptotene spermatocytes, RAD51
and DMC1 assemble on the AEs/LEs of bivalents and dis-
appear toward pachynema, with the exception of the unsyn-
apsed portions of the sex chromosome AEs (Tarsounas et al.,
1999). As shown in Fig. 2 B, wild-type spermatocytes showed
70-150 RADS1 foci (111 + 32). In contrast, the dKO-kls con-
tained only a few RADS1 foci (14 £ 5, P < 0.05; Table S1). Next,
we monitored the loading of DMC1, a meiosis-specific para-
logue of RADS1. In wild-type spermatocytes, both recombinases
colocalize extensively such that most recombination-associated
foci contain both proteins (Tarsounas et al., 1999). Intriguingly,
immunofluorescence with a DMC1-specific antibody revealed
no detectable difference in numbers of DMCI1 foci between
wild type and dKO-kls in leptonema (52 + 20 vs. 54 = 19;
Table S1 and Fig. 3 A). The presence of an equivalent number
of DMC1 foci in double mutant leptotene spermatocytes im-
plies that the y-H2AX labeling in the dKO-kIs spermatocytes
is very likely generated by the meiotic SPO11 nuclease.

Next, we determined the distribution of the replication
protein A (RPA) in dKO-kls spermatocytes. RPA is a single-
stranded DNA-binding protein that enhances the formation of
RADS51 and DMCl filaments in vitro. RPA is first detected in
few foci at leptonema. The initial binding of RPA to single-
strand DNA at the resected ends of DSBs is supposed to be too
transient to be cytologically detected by immunofluorescence
because RPA is rapidly displaced by RAD51/DMCI (Yang et al.,
2008). Subsequently, after RAD51/DMC1 loading, abundant
RPA foci are detected in the synapsed regions of the LEs at
zygonema (Krogh and Symington, 2004; Moens et al., 2007).
Intriguingly, despite failure to proceed beyond leptonema, RPA
foci were increased threefold in the dKO-kls spermatocytes rel-
ative to wild type (55 £ 19 vs. 18 £+ 10, P < 0.05; Table S1 and
Fig. 3 B), which is very likely caused by the sharp reduction in
the loading of RADS1 (Fig. 2 B; Roig et al., 2010). TRIP13 is
the mammalian orthologue of the yeast Pch2 (pachytene check-
point 2) gene, and its deletion leads to a block of spermatogen-
esis and oogenesis because of defects in DSB repair (Li and
Schimenti, 2007; Roig et al., 2010). Interestingly, 7rip13 mutant
spermatocytes accumulate RPA foci in leptonema and also show
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Figure 4. Cohesin complexes in the absence of RAD21L and REC8. Double immunofluorescence of SYCP3 and either RAD21, SMC3, SMC18, or STAG3.
In wildtype leptotene spermatocytes, the cohesins RAD21, SMC3, SMC18, and STAG3 colocalize with SYCP3 along the AEs of the chromosomes. In
Rad2 11 and Rec8 single mutant leptotene spermatocytes, RAD21, SMC3, SMC18, and STAG3 colocalize also with SYCP3 along the AEs/LEs of the chro-
mosomes. In spermatocytes from dKO-ls, arrested at leptonema, SMC18 and STAG3 are not detected by immunofluorescence, whereas immunolabeling
for RAD21 and SMC3 renders robust and very faint fluorescence signals, respectively. Bar, 100 pm.

a sharply reduced number of RADS51 foci and an accumulation can be genetically dissected. Collectively, our results indicate
of DMC1 foci at leptonema (Roig et al., 2010). Thus, the RADS51 that meiotic cohesins are dispensable for the loading of DMC1
and DMC1 homologous recombination pathways, although but are essential for normal loading of RADS51 (Xu et al., 2003;
very similar biochemically (Kagawa and Kurumizaka, 2010), Sharan et al., 2004; Yang et al., 2008; Roig et al., 2010).

620z JequiedeQ z0 uo 3senb Aq 4pd001 102102 Aol/£99v LS |/228/2/L6\4Pd-8one/qol/Bio sseidny/:dpy woly pepeojumoq



Rec8"
Rad21l"

Rec8**
Rad21I**

Cohesin complexes in mutant
spermatocytes

In the absence of SYCP3, the cohesin complex persists at a re-
sidual AE-like chromosomal core in mouse meiocytes (Pelttari
et al., 2001; Kolas et al., 2004; Kouznetsova et al., 2005). We
evaluated whether deficiency of both RAD21L and REC8
compromised the loading of other cohesin subunits by immuno-
staining for the cohesin subunits STAG3, SMC3, SMCI1,
and RAD21 (Fig. 4). Surprisingly, we observed robust stain-
ing only for RAD21, which colocalized with SYCP3 labeling,
and much fainter staining of SMC3 (Fig. 4). We did not detect
either STAG3 or SMCI1p (Fig. 4), suggesting that these co-
hesin subunits are complexed in vivo with REC8 and RAD21L
kleisins. Collectively, these data suggest that the two o-kleisins,
RAD21L and RECS, are not epistatic and sustain most, if
not all, meiosis-specific cohesin complexes involved in AE
formation and SC assembly. Our results are consistent with
the observation that RAD21 is present on chromosome axes
from leptonema to diplonema in mouse spermatocytes (this
paper; Herran et al., 2011) but contrast with one study in which
RAD?21 was first detected in the pachytene stage (Ishiguro
et al., 2011). Because we observed RAD21 immunolabeling
in the Rad211™"~, Rec8™'~, and dKo-kls spermatocytes (Fig. 4),
cross-reactivity of our antibody with RAD21L and/or REC8 is
not likely the reason for these contrasting results, as previ-
ously claimed (Ishiguro et al., 2011). This early localization of
RAD21 would suggest a direct role of this kleisin in establish-
ing cohesion in premeiotic S phase.

Sister chromatid cohesion in the absence
of meiotic kleisins

In addition to their role in AE formation and DNA looping
(Revenkova and Jessberger, 2006; Novak et al., 2008), cohesin
complexes must tether the two sister chromatids from S phase
until the onset of anaphase, when separase is activated, cleaves
the a-kleisin RAD21 subunit, and leads to opening of the cohe-
sin ring (Hauf et al., 2001). Thus, a deficiency for two out of the
three mammalian kleisins could partially affect chromosomal
cohesion and/or replication of the premeiocyte/meiocyte. To
test this possibility, we performed FACS analysis of whole cells
from seminiferous tubules, which showed the existence of tetra-
ploid compartment in dKO-kls testes (Fig. S1). Next, we per-
formed FISH analysis (one probe from the X and one probe

Figure 5. dKO-kls spermatocytes are proficient for sister
chromatid cohesion. Hybridization of two DNA probes to the
X and Y chromosomes renders a single dot signal for each
probe in both wildtype and dKO-kIs spermatocytes. Clear
FISH signals for both probes can be observed in 63% of the
90 leptonema-like cells analyzed. Bar, 100 pm.

from the Y chromosomes) in dKO-kls spermatocytes (Fig. 5).
The results revealed a single signal for each chromosome probe
(corresponding to two closed and tethered sister chromatids).
Collectively, these results suggest that sister chromatid cohe-
sion is properly established in the preceding S phase through
the somatic a-kleisin RAD21 subunit complexed with the
SMC3 and SMCla or SMC1 subunits. This result implies that
meiosis-specific cohesin complexes are dispensable for cohe-
sion, by itself, and are specifically required for SC structure.

To our knowledge, deletion of both REC8 and RAD21L
leads to the earliest arrest of mouse meiotic prophase reported
to date, including the mutations for the individual cohesins
RECS8, SMCI1p, and RAD21L and the structural additional
components SYCP3, SYCP1, and SYCP2 (Yuan et al., 2000;
Bannister et al., 2004; Revenkova et al., 2004; de Vries et al.,
2005; Yang et al., 2006; Herrdn et al., 2011). Interestingly, it
was reported very recently that SYCP1 and SYCP3 double de-
ficiency does not abolish the loading of the meiotic cohesin
complexes nor the presynaptic pairing and early homologous
recombination in mouse meiocytes (Kouznetsova et al., 2011).
Thus, the meiotic cohesin complexes are required to initiate
AE/LE assembly in mammals (and not vice versa), which is a
prerequisite for SC formation. Our findings provide evidence
for a crucial role for meiotic cohesins (REC8- and RAD21L-
containing cohesin complexes) in the very early assembly of the
AEs of the mammalian SC, revealing that this process is con-
served from yeast to mammals.

Materials and methods

Immunocytology and antibodies

Testes were detunicated and processed for spreading using the “dry-down”
technique (Peters et al., 1997). The slides were rinsed three times for 5 min
in PBS and incubated overnight at room temperature with primary anti-
bodies diluted in PBS. The primary antibodies used for immunofluorescence
were rabbit «SMC3 serum K987 (1:20), rabbit «SMC18 serum K974
(1:20; Prieto et al., 2004), rabbit «STAG3 serum K403 (1:20; Prieto et al.,
2001), rabbit aRAD21 IgG K854 (1:5; Prieto et al., 2002), rabbit «SYCP2
serum K1035 (1:20), mouse aSYCP3 IgG sc-74569 (1:100), rabbit
aRADS1 sc-8349 (1:30), and PC130 (1:5; EMD; provided by J. Page,
Universidad Autonoma de Madrid, Madrid, Spain), rabbit «DMC1 sc-22768
(1:20; Santa Cruz Biotechnology, Inc.), rabbit aSYCP1 IgG ab15090
(1:200; Abcam), rabbit anti—y-H2AX (ser139) IgG (#07-164; 1:200; Mil-
lipore), and rabbit aRPA IgG (1:300; provided by E. Marcon, Toronto Uni-
versity, Toronto, Canada). The secondary antibodies used were TRITC
a-mouse 115-095-146/a-rabbit 111-025-144 and FITC a-mouse 115-
095-146/a-rabbit 111-095-045 (Jackson ImmunoResearch Laboratories,

Cohesins are essential for axial element assembly ¢ Llano et al.
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Inc.; all 1:100). Slides were visualized at room temperature using a micro-
scope (Axioplan 2; Carl Zeiss) with 63x objectives with an aperture of 1.4
(Carl Zeiss). Images were taken with a digital camera (ORCA-ER; Hamamatsu
Photonics) and processed with OPENLAB 4.0.3 (PerkinElmer) and Photo-
shop (Adobe).

Mice

The mutation at the Rad21/7/~ locus is a null allele generated by gene tar-
gefing using an insertional targeting vector (Herrdn et al., 2011). Mice
were genotyped by genomic Southern blot analysis of tail genomic DNA
digested with Spel and hybridized with a 5" external probe. The probe (1 kb)
was generated by PCR using the primers 5-ACTAGTCTAAATAAAGGTCTT-3’
and 5'-GATITAAGCATGAATGAAGTAAC-3'. The mutation at the Rec8
locus is a null allele (premature stop codon at exon 6) isolated in a forward
genetic screen for mouse infertility (Bannister et al., 2004). Mice were gen-
otyped by direct sequencing of the PCR-amplified exon 6 from genomic
DNA using the primers 5-CCTTTACATCCCTGTTCTC-3’ and 5'-ACAG-
GAACACCAACTAACTC-3'. dKO-kls mice were obtained by genetic
crossing of double heferozygote mice (Rec8*/~ Rad21/*/") and compared
with single mutant and wild-type littermates. All animal experiments were
reviewed and approved by the Consejo Superior de Investigaciones Cienti-
ficas (Spanish Research Council) and the Universidad de Salamanca
National Committee on Bioethics.

FISH andlysis

The mouse Y-specific probes were obtained by PCR using the following
three set of primers: 1S, 5 TAGGATGGTAAGCCCAATGC-3’; 1AS, 5'-TTG-
GTTGGTTAATIGTTTIGGG-3'; 2S, 5-CATGCCCCTTGGACTGAC-3'; 2AS,
5'-CTTTTTTTITCCCCCTCTGG-3'; 3§, 5'-TCCTCTTGCAGAGAAGGGAC-3’;
and 3AS, 5-CCTCCGCTCCAATCCTATCA-3’ (Navin et al., 1996). The
X-specific DNA probe is a pericentromeric DNA fragment cloned in a plas-
mid (Disteche et al., 1985). Both probes were labeled by Nick translation
with Dig-11-deoxy-UTP and Bio-16-deoxy-UTP and hybridized to sper-
matocyte spreads following standard procedures. In brief, slides were pre-
treated with pepsin (0.005% in 0.01 N HCl for 5 min at 37°C), dehydrated,
and RNase treated (0.1 mg/ml in PBS for 1 h at 37°C). After denaturation
in 70% formamide during 3 min at 75°C, slides were dehydrated in ice-
cold ethanol and hybridized overnight at 37°C to a denatured DNA probe.
After washing (50% formamide and 2x SSC at 42°C), biotin- and digoxi-
genin-abeled probes were immunodetected using streptavidin-Cy3/goat
biotinylated antistreptavidin/streptavidin-Cy3 (Jackson ImmunoResearch
Laboratories, Inc.) and mouse antidigoxigenin-FITC/goat anti-mouse/rabbit
anti-mouse-FITC (Roche), respectively (Pendds et al., 1994).

FACS andlysis

Wild-type, Rad21/7/~, and dKO-kls testicular cell preparation and their
DNA content measurement were performed as previously described
(Malkov et al., 1998). In brief, testes were dissected in separation me-
dium (4 mM rglutamine, 1.5 mM sodium pyruvate, 10% fetal calf
serum, and 75 mg/ml ampicillin in DME containing nonessential amino
acids). After decapsulation, the tubules were then treated with collage-
nase for 5 min at 37°C. The sedimented seminiferous cords were
washed in separation medium and treated with 2.5 pg/ml trypsin and
1 U/ml DNase | for 2 min at 37°C. Using a pair of scalpels, the tubules
were disintegrated, and the resulting tissue suspension was passed
through a 50-pm nylon mesh, washed twice by centrifugation, and
counted. Cells were brought to a concentration of 2 x 10° cells/ml in
separation medium, diluted 1:1 with propidium iodide solution (10 mM Tris,
pH 8, T mM NaCl, 0.1% Nonidet P-40, 0.7 mg/ml RNase A, and
0.05 mg/ml propidium iodide), and freshly analyzed by a cell-sorting
instrument (FACSort; BD).

Online supplemental material

Fig. ST shows that the absence of RAD21L and REC8 does not impair DNA
replication and does not provoke loss of chromatid cohesion in dKO-kls sper-
matocytes. Table S1 shows the number of early recombination-associated
foci in spermatocytes and the weight of testis from wild-type and dKO-kls
mice. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.201201100/DC1.
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