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Scoring a backstage pass: Mechanisms of
ciliogenesis and ciliary access

Francesc R. Garcia-Gonzalo and Jeremy F. Reiter

Department of Biochemistry and Biophysics, Cardiovascular Research Insfitute, University of California, San Francisco, San Francisco, CA 94158

Cilia are conserved, microtubule-based cell surface pro-
jections that emanate from basal bodies, membrane-
docked centrioles. The beating of motile cilia and flagella
enables cells to swim and epithelia to displace fluids. In
contrast, most primary cilia do not beat but instead detect
environmental or infercellular stimuli. Inborn defects in
both kinds of cilia cause human ciliopathies, diseases with
diverse manifestations such as heterotaxia and kidney
cysts. These diseases are caused by defects in ciliogenesis
or ciliary function. The signaling functions of cilia require
regulation of ciliary composition, which depends on the
control of protein traffic into and out of cilia.

Introduction
Ciliated organisms are found in each of the existing eukary-
otic clades, including Excavata, such as euglenids, Rhizaria,
such as ameboflagellates, Chromalveolata, such as dinoflagel-
lates, Amoebozoa, such as pelobionts, Plantae, such as green
algae, and Opisthokonta, such as the fungus Batrachochytrium
dendrobatidis and animals. Thus, the eukaryotic cenancestor
must have had a cilium, which performed both motor and
sensory functions (Satir et al., 2008; Cavalier-Smith, 2010). In
multicellular organisms, many cilia have become specialized
cellular antennae, known as primary cilia, which regulate pro-
cesses such as embryogenesis, tumorigenesis, feeding behavior,
kidney function, vision, and smell (Davenport et al., 2007;
McEwen et al., 2008; Han et al., 2009; Wong et al., 2009; Goetz
and Anderson, 2010; Hildebrandt et al., 2011). Unlike primary
cilia, motile cilia and flagella are restricted to a handful of
human tissues, in which they propel sperm, regulate embry-
onic left-right patterning, clear airway mucus, and partici-
pate in cerebrospinal fluid movement (Bloodgood, 2010).
Cilia are not fully encompassed by the membrane (Fig. 1);
yet, their composition is distinct from that of the surrounding
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cytosol and plasma membrane. Other specialized subcellular do-
mains, such as neuronal axons, generate their unique composition
through multiple mechanisms (Winckler and Mellman, 2010).
Some proteins are delivered directly to axons by means of spe-
cific targeting signals and pathways (selective targeting). Other
proteins accumulate in axons by being endocytosed from so-
matodendritic, but not axonal, membranes (selective removal).
Yet, other proteins concentrate inside axons by specifically in-
teracting with axonal components (selective retention), whereas
still others cannot enter axons because they are anchored to
cytoskeletal or extracellular matrix elements elsewhere in the
cell (selective exclusion). These mechanisms act in concert with
diffusion barriers at the base of the axon, which restrict entrance
and exit of both membrane and soluble proteins (Winckler and
Mellman, 2010). Emerging evidence suggests that, similar to
axons, selective targeting, exclusion, retention, and diffusion bar-
riers also control ciliary composition (Mazelova et al., 2009a;
Dishinger et al., 2010; Hu et al., 2010; Francis et al., 2011).

Building the cilium: Where the centriole
meets the membrane
The ciliary axoneme is nucleated from the mother centriole, the
older of the two centrioles in the centrosome (Bornens, 2012).
Because mother centrioles are part of spindle poles during cell
division, cilia must disassemble before mitosis and form again
only upon entry into G1 (Kobayashi and Dynlacht, 2011).
Ciliogenesis begins with the attachment of the distal end of
the mother centriole to a vesicle (Fig. 1; Sorokin, 1962, 1968).
This attachment is mediated by the centriolar distal appendages,
also called transition fibers when they are associated with a
cilium (Anderson, 1972; Deane et al., 2001). After docking, a
bud emerges from the mother centriole, bending the membrane
(Sorokin, 1962). This bud elongates from its tip to form the
axoneme, but the base remains structurally distinct and will
become the transition zone (Rosenbaum and Child, 1967;
Boisvieux-Ulrich et al., 1989). The transition zone starts
where the nine microtubule triplets in the basal body become
doublets and is characterized by Y links, champagne glass-
shaped structures that connect each doublet to the overlying
membrane (Gilula and Satir, 1972). This overlying membrane
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Figure 1. Ciliogenesis. Cilium formation starts
when a mother centriole contacts a ciliary ves-
icle. Axonemes elongate at their tips and so
are constructed from proximal to distal, with
the most proximal region giving rise to the tran-
sition zone. The ciliary vesicle grows with the
axoneme and gives rise fo the ciliary sheath,
whose fusion with the plasma membrane ex-
ternalizes the cilium and transforms the outer
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contains the ciliary necklace, a circumferential set of intra-
membranous particles (Fig. 2, A-C; Gilula and Satir, 1972;
Sattler and Staehelin, 1974; Menco, 1980; Hufnagel, 1983;
Fisch and Dupuis-Williams, 2011).

The transition zone houses a network of ciliopathy pro-
teins that play important roles in Y link and axoneme formation
(Fig. 2, D-G; van Reeuwijk et al., 2011). One of these com-
plexes spans the membrane and contains many of the proteins
implicated in Meckel syndrome (MKS) and Joubert syndrome
(JBTS), two ciliopathies characterized by brain, kidney, and
limb defects (Dowdle et al., 2011; Garcia-Gonzalo et al.,
2011; Sang et al., 2011; Chih et al., 2012). Another transition
zone complex contains Nphpl, 4, and 8, three proteins encoded
by genes mutated in nephronophthisis (NPHP), a cystic kidney
ciliopathy (Winkelbauer et al., 2005; Fliegauf et al., 2006;
Vierkotten et al., 2007; Jiang et al., 2008, 2009; Sang et al., 2011;
Won et al., 2011). In Caenorhabditis elegans, homologues of
the MKS-JBTS and NPHP complexes have overlapping func-
tions in forming both Y links and transition fibers (Williams
et al., 2008, 2010, 2011; Huang et al., 2011; Warburton-Pitt
et al., 2012). Nphp8, mutations in which can also cause MKS
or JBTS, functionally interacts with members of both C. elegans
modules and is required for the transition zone localization of
MKS-JBTS proteins (Huang et al., 2011; Williams et al., 2011).
Thus, Nphp8 connects both modules, functionally if not struc-
turally. In other organisms, a similar role may be played by
Cep290, a protein that is absent from C. elegans but is involved
in human NPHP, MKS, and JBTS and is part of the MKS-JBTS
complex (Garcia-Gonzalo et al., 2011; Sang et al., 2011). In the
green alga Chlamydomonas reinhardtii, Cep290 is essential for
Y link formation, indicating that, despite their evolutionary
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conservation, Y link assembly has species-specific requirements
(Craige et al., 2010).

From the transition zone, the axoneme elongates until it
reaches a stable length (Ishikawa and Marshall, 2011). As no
protein synthesis occurs within the cilium, intraflagellar trans-
port (IFT) must deliver axoneme components to the ciliary tip
for assembly (Rosenbaum and Child, 1967). IFT is a bidirec-
tional axoneme trafficking system driven by microtubule mo-
tors (Kinesin-2 and cytoplasmic Dynein propel the anterograde
and retrograde directions, respectively) that are associated with
two subcomplexes, IFT-A and -B (Pedersen and Rosenbaum,
2008). Although Kinesin-2 and IFT-B subunits are essential
for axoneme formation, cytoplasmic Dynein and many IFT-A
subunits are not, but disruptions in either cause cilia to be-
come short and bulbous (Marszalek et al., 1999; Huangfu
et al., 2003; Huangfu and Anderson, 2005; May et al., 2005;
Pedersen and Rosenbaum, 2008; Tran et al., 2008; Ocbina
etal., 2011; Qinetal., 2011). These data suggest that the IFT-B
complex is required for anterograde IFT, which traffics tubulin
subunits and other building blocks to the ciliary tip and is thus
required for ciliogenesis, and that IFT-A complexes participate
in retrograde IFT. These results do not exclude roles for IFT-B
in retrograde trafficking or for IFT-A in the anterograde traffick-
ing of some cargo.

Transition fibers may promote ciliogenesis by recruiting
IFT components to the ciliary base (Deane et al., 2001; Ishikawa
et al., 2005; Graser et al., 2007; Singla et al., 2010). Transition
zone proteins are also required for ciliogenesis in some cell
types of both C. elegans and mice (Garcia-Gonzalo et al., 2011;
Williams et al., 2011). Because some transition zone proteins
interact with IFT components, they might also help recruit them
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Figure 2. The transition zone. (A) Freeze-etch electron micrograph of tracheal epithelial cilia. The ciliary necklaces are at the ciliary base.
(B) Electron micrograph of a cross section through a transition zone of a mollusk gill cilium, showing the microtubule doublets connected to the
ciliary membrane by nine Y links. (C) Diagram of the transition zone, showing the Y links connecting the microtubules to the ciliary necklace. The
A indicates the convex freeze-fracture face of the membrane. A-C are obtained from Gilula and Satir (1972). (D) Domain structure of transition
zone components. The Tectonic proteins (TCTN1-3) share a signal peptide (pink bars) and a cysteine-rich Tectonic domain. Transition zone trans-
membrane proteins (TMEMs) include TCTN2, TCTN3, TMEM17, TMEM67, TMEM231, and TMEM237 (predicted transmembrane helices are
shown as yellow bars). MKS1, B9D1, and B9D2 share B? domains related to lipid-binding C2 domains. Several transition zone proteins contain
C2 domains, coiled-coil (CC) domains, or both. Inversin (INVS) and NPHP5 have calmodulin-binding IQ motifs. NPHP4 contains two major sperm
protein (MSP) domains, NPHP3 is an ATPase with tetratricopeptide repeat (TPR) domains, NEK8 is a serine/threonine kinase, and ATXN10 contains
Armadillo repeats. (E) The transition zone protein interaction network. Genetic experiments in C. elegans reveal two main functional modules in
this network. The first module is mostly comprised of genes, the human homologues of which are implicated in NPHP, whereas the second contains
genes associated with MKS and JBTS. These functional modules closely match the results of biochemical experiments in mammalian cells. According
to these, proteins in the MKS—JBTS module (green) mostly interact with other proteins within the same module and only rarely with those in the NPHP
module (each line designates a reported protein-protein interaction). The NPHP module consists of several interconnected complexes, shown in
different colors (Sang et al., 2011; van Reeuwijk et al., 2011). (F) Most known transition zone proteins are encoded by genes mutated in at least
one of three related ciliopathies, NPHP, JBTS, and MKS. (G) Schematic of a Y link with a model of its composition. Nphp1 and Nphp4 bind
microtubules, so they may connect Y links to microtubule doublets (Mollet et al., 2005). Cep290 and other coiled-coil proteins may form the central portion
Y links. C2 and B9 domain-containing proteins are predicted to bind lipids, so they may be membrane proximal. Tein1 also interacts with fransmembrane
proteins but is predicted to be on the extracellular face of the ciliary necklace, as it contains a signal peptide.
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to the ciliary base (Zhao and Malicki, 2011). However, cell
types that grow axonemes in the absence of specific transition
zone components display normal levels of IFT proteins and
normal IFT rates, indicating that this may not be the case
(Garcia-Gonzalo et al., 2011; Williams et al., 2011).

The elongation of the axoneme requires a parallel expan-
sion of the ciliary membrane. This expansion takes place at
the plasma membrane in epithelial cells but occurs intracellu-
larly in mesenchymal cells (Sorokin, 1962, 1968). In the latter
case, the ciliary vesicle fuses with secondary vesicles, creating
a ciliary sheath with an inner and an outer membrane (Fig. 1).
In epithelial cells, ciliary membrane expansion may result from
both vesicle fusion at the ciliary base and the lateral diffusion
of lipids and proteins from the contiguous plasma membrane.
Consistent with the intimate involvement of vesicle trafficking
in ciliogenesis, several proteins involved in vesicle budding
(AP-1 and Clathrin), targeting (Rab8, Rab11, and TRAPP),
tethering (Exocyst), and fusion (SNARESs) participate in cilio-
genesis (Yoshimura et al., 2007; Mazelova et al., 2009b; Zuo
et al., 2009; Kaplan et al., 2010; Westlake et al., 2011).

Fusion of the ciliary sheath with the plasma membrane
exposes the cilium to the extracellular space (Fig. 1). Because this
process is topologically equivalent to other forms of exocytosis,
externalizing the cilium likely requires exocytic machinery. Upon
fusion, the outer membrane of the ciliary sheath becomes the
periciliary membrane, a domain that continues to act as the dock-
ing region for cilium-bound vesicles and thus plays an important
role in the homeostasis of mature cilia (Bouck, 1971; Peters et al.,
1983; Papermaster et al., 1985; Nachury et al., 2010).

How are ciliary membrane and axoneme extension co-
ordinated? One regulator of this coordination may be Broad
minded (Bromi; Ko et al., 2010). A Bromi mouse mutation
causes an expansion of the ciliary membrane, within which the
axoneme is curled, consistent with miscoordination of axoneme—
membrane attachment or growth. Bromi acts via cell cycle—
related kinase (CCRK), whose disruption recapitulates the
Bromi phenotype. Interestingly, mutations in the C. reinhardtii
CCRK orthologue lead to one flagellum being longer than the
other (Tam et al., 2007). Thus, CCRK may have a conserved role
in controlling the size of the ciliary axoneme and membrane.

Ciliary protein trafficking

Trafficking of receptors and signal transducers to primary cilia
is critical for ciliary function and is disrupted in ciliopathies
(Berbari et al., 2008a; Garcia-Gonzalo et al., 2011; Lancaster
et al., 2011). Furthermore, ciliary signaling often involves regu-
lated trafficking of select proteins into and out of cilia. A good
example is vertebrate Hedgehog signaling. Sonic hedgehog
binds to its receptor Patched, causing it to exit the cilium and
allowing Smoothened to enter, which in turn affects the cili-
ary accumulation and activity of Gli transcription factors
(Corbit et al., 2005; Haycraft et al., 2005; Rohatgi et al., 2007,
Kim et al., 2009). Similarly, regulated trafficking of signaling
proteins into or out of C. reinhardtii flagella is required for mating
and phototaxis (Pan et al., 2003; Wang et al., 2006; Huang et al.,
2007; Lechtreck et al., 2009). In addition, ciliary protein traf-
ficking can modulate signaling sensitivity. For example, retinal
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photoreceptors adapt to darker environments by increasing
Transducin and decreasing Arrestin in their outer segments,
which are specialized cilia (Calvert et al., 2006). Thus, under-
standing how proteins reach the ciliary base and how they enter
and accumulate in the cilium is essential to understanding cilium-
based intercellular communication.

Trafficking of soluble proteins to the ciliary
base. Cytosolic proteins should be able to reach the ciliary
base by diffusion. However, transport to Xenopus laevis cen-
trioles is at least threefold faster than diffusion, and several
centriolar components require microtubules and the Dynein—
Dynactin complex to reach centrioles (Young et al., 2000;
Dammermann and Merdes, 2002; Quintyne and Schroer, 2002;
Guo et al., 2006; Kodani et al., 2010). Furthermore, the ciliary
localization of Gli2 requires cytoplasmic microtubules, the
minus ends of which anchor to the subdistal appendages of the
basal body (Mogensen et al., 2000; Kim et al., 2009).

Interestingly, some of the proteins involved in this
microtubule-dependent pathway, including PCM-1 and Par6-c,
accumulate in centriolar satellites, electron-dense granules
that surround centrioles (Kubo et al., 1999; Dammermann and
Merdes, 2002; Kodani et al., 2010). These satellites are also
observed in the vicinity of ciliary basal bodies (Kubo et al.,
1999; Mogensen et al., 2000; Kunimoto et al., 2012). Several
ciliopathy proteins, including Ofd1, Cep290, and the BBSome
complex, localize to centriolar satellites as well as the cilium
(Nachury et al., 2007; Kim et al., 2008, 2009; Lopes et al., 2011).
Collectively, these data suggest a role for minus end—directed
microtubule traffic of soluble proteins toward the ciliary base
and the use of satellites as way stations for some (Fig. 3 A).

Trafficking of soluble proteins into the cilium.
Two large complexes involved in flagellar motility, the outer
Dynein arms and the radial spoke complex, both require IFT to
enter flagella, suggesting that there is a size limit for entry into
the cilium that is overcome using IFT (Fig. 4, A and B; Qin et al.,
2004; Hou et al., 2007). However, the molecular mass barrier
to ciliary entry may be high; in rods, single (27 kD), tandem
(54 kD), and triple GFP (81 kD) all reach the outer segments,
and mathematical modeling suggests they diffuse freely through
the connecting cilia (Calvert et al., 2010; Najafi et al., 2012).

Alternatively, different cell types may have different re-
quirements for ciliary entry. Although photoreceptor connect-
ing cilia structurally resemble the transition zones of other cilia,
connecting cilia may be optimized for fast protein exchange to
adapt to changes in illumination (Calvert et al., 2006). Dextrans
of 40 kD and larger fail to enter cilia of nonphotoreceptor
cells, whereas dextrans 10 kD or smaller readily enter, sug-
gesting that the cilia of some cell types have low size exclu-
sion limits (Kee et al., 2012).

Given that the basal body lumen is filled with electron-
dense material, the only path available for soluble proteins to
access the cilium may be between adjacent transition fibers
(Fisch and Dupuis-Williams, 2011; Brito et al., 2012). These
spaces, ~60 nm at their widest, could theoretically fit large
protein complexes but not vesicles (Nachury et al., 2010).
However, the actual exclusion limit for these spaces may be
lower and remains unknown. A size exclusion barrier might

920z Ateniga4 8o uo 1senb Aq jpd oyl L L1 L0Z aol/860v.GL/L69/9/L61/4pd-aomue/qol/Bi0 ssaidnyy/:dny wol pspeojumoq



I Golgi M | |

\_

Trans Golgi Network

Gmap210

.

|l Cisimedial Golgi

Figure 3. Trafficking to the ciliary base. (A) Soluble proteins (red circles) may reach the ciliary base by diffusion (center) or travel as cargo on minus
end-directed microtubule motors, such as the Dynein-Dynactin complex (D/D; left). (right) Trafficking of soluble cargo may also involve centriolar satellites,
large protein aggregates that may serve as assembly points, and way stations for cilium-bound proteins. (B) Trafficking of some transmembrane proteins
(red) along the Golgi may be aided by IFT20, which may then hand them off to Arf4. Arf4 orchestrates the formation of cargo-containing cilium-bound
vesicles that contain active Rab11 (blue), whose effector Rabin8 recruits active Rab8 (green) to the vesicle surface. Rab8 in turn recruits effectors that medi-
ate the vesicle’s approach, tethering, and fusion with the periciliary membrane. (C) Transmembrane proteins (red) may reach the cilium laterally from the
plasma membrane or aboard vesicles that fuse with the periciliary membrane. Cilia-bound vesicles may derive from the Golgi or from recycling endosomes,

which themselves may receive input from the Golgi and plasma membrane.

also reside at the transition zone, where Y links may regulate
soluble protein entry (Menco, 1980). In addition to acting as
size exclusion filters, these physical barriers may also function
as “smart” filters, allowing passage of large proteins only if they
contain ciliary localization sequences (CLSs).

Recently, it has been suggested that ciliary and nuclear
entry share several characteristics (Fig. 4 B; Dishinger et al.,
2010; Kee et al., 2012). The nuclear pore excludes proteins
greater than ~30 kD but allows passage of larger proteins if
bound to importins or exportins (Cook et al., 2007). Importins
and exportins directly interact with and transiently displace
the phenylalanine-glycine repeat nucleoporins, whose natively

unfolded repeats form a meshwork that occludes the nuclear
pore lumen (Hoelz et al., 2011). In this way, importins and ex-
portins catalyze the nucleocytoplasmic transport of their cargos,
which they recognize via NLSs or nuclear export sequences
(NESs), respectively. Giving direction to the process is a con-
centration gradient of the GTP-bound form of the small GTPase
Ran, which accumulates inside the nucleus where it stimulates
cargo dissociation from importins and cargo association with
exportins. The Ran-GTP gradient is in turn generated by the
asymmetric distribution of RCC1, the chromatin-associated
exchange factor that generates Ran-GTP, and RanGAP, the
cytosolic enzyme that generates Ran-GDP (Cook et al., 2007).
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Figure 4. Access into and maintenance of distinct ciliary compartments. (A) Both soluble and transmembrane proteins may need to associate directly
or indirectly with plus end-directed microtubule motors (Kinesin-2 or Kif17) to enter the cilium. The entrance may be between adjacent transition fibers.
(B) Like the nuclear pore, the ciliary base can exclude proteins on the basis of their size. Thus, small proteins may diffuse into the cilium, but large proteins
may need to associate with transport machinery to enter the cilium. (C) Potential locations for diffusion barriers preventing entrance of membrane proteins
into cilia include the border between the plasma and periciliary membranes (blue), the bottom of the ciliary pocket where transition fibers anchor the basal
body to the membrane (red), and the ciliary necklace (green). (D) Septin rings (red) form membrane diffusion barriers that define specific membrane com-
partments (green), including those of cilia, flagella, the midbody, dendritic spines, and yeast buds. (E) Soluble and membrane proteins may be retained
inside cilia by directly or indirectly interacting with microtubules. (F) Selective exclusion and retention can account for differences in periciliary and plasma
membrane composition. The cortical actin cytoskeleton is excluded from the region under the periciliary membrane. As a result, membrane proteins that
directly or indirectly interact with actin filaments are excluded from the periciliary region. Conversely, certain proteins, such as Galectin-3, that accumulate
in the periciliary region may be retained by extracytosolic interactions with the ciliary membrane or by interactions with the basal body or its associated
microtubules (dashed arrows). ¢, cargo; GalNAc, N-acetyl-galactosamine.

Surprisingly, importin binding is also required for some
proteins to accumulate inside cilia (Fan et al., 2007; Dishinger
et al., 2010; Hurd et al., 2011). One such protein is the kinesin
Kif17, whose ciliary localization depends on importin-f32 bind-
ing to an NLS-like CLS in Kif17 (Dishinger et al., 2010). Indeed,
replacing the CLS in Kif17 with a bona fide NLS supports its
ciliary entry, and Kif17 mutants containing the CLS, but lacking

JCB « VOLUME 187 « NUMBER B « 2012

the kinesin motor domain, accumulate in the nucleus instead of
the cilium (Dishinger et al., 2010). Furthermore, grafting the
Kif17 CLS onto a nonciliary kinesin causes the resulting fusion
protein to go to the cilium (Dishinger et al., 2010). Therefore,
ciliary localization of Kif17 requires both importin binding and
an additional activity present in its motor domain, possibly plus
end—directed microtubule motility. Kif17 is in turn required for
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the olfactory cyclic nucleotide—gated (CNG) channel to accu-
mulate in cilia, supporting the hypothesis that kinesin—importin
complexes transport other proteins into cilia (Jenkins et al., 2006).

Like importin-2, Ran is implicated in ciliary trafficking.
A GTP-locked form of Ran causes Kif17 to move from the cili-
ary tip to less distal ciliary positions until it disappears from the
cilium altogether (Dishinger et al., 2010). Interestingly, knock-
down of RanBP1, a RanGAP cofactor present in the cilium,
leads to an accumulation of ciliary Ran-GTP and also causes
Kif17 to leave the ciliary tip (Fan et al., 2011). These results can
potentially be explained by effects of Ran-GTP on the balance
between anterograde and retrograde trafficking of Kif17 along
ciliary microtubules or by changes in microtubule dynamics,
which Ran-GTP is known to regulate (Keryer et al., 2003;
Mishra et al., 2010; Fan et al., 2011; Halpin et al., 2011). To-
gether with the fact that a GDP-locked Ran mutant that disrupts
nucleocytoplasmic transport does not affect the ciliary localiza-
tion of Kif17, these data suggest that the ciliary functions of
Ran differ from those in nucleocytoplasmic transport (Dishinger
et al., 2010). Future experiments that address how Ran-GTP
levels in the cilium are controlled, the function of nucleoporins
at the ciliary base (Kee et al., 2012), and whether exportins reg-
ulate ciliary exit will clarify the extent to which trafficking
through the ciliary base and nuclear pores resemble each other.

Intraciliary retention of soluble proteins. The
steady-state accumulation of a protein within a cilium can be
achieved by either promoting its entry or blocking its exit.
Analogous to ciliary entry, a protein’s ciliary exit rate reflects
two parameters: (1) how frequently it reaches the ciliary base
from within the cilium, and (2) how efficiently it crosses the
ciliary base. Many ciliary components directly or indirectly
interact with microtubules, limiting their access to the ciliary
base and retarding their exit (Sloboda and Howard, 2007).
Also, a slow rate of exit across the ciliary base may cause
some proteins to be retained at the transition zone or in the
compartment above it where Inversin localizes (Shiba et al.,
2009; Sang et al., 2011).

Trafficking of membrane proteins to the cili-
ary base. Transmembrane proteins start their lives in the
endoplasmic reticulum, from which they travel to the Golgi
apparatus. After reaching the TGN, they are sorted into vesicles
bound to different subcellular destinations. The plasma mem-
brane acts as the default destination of TGN-derived vesicles,
but targeting sequences on the transmembrane cargo proteins
can drive vesicles to other compartments (Gu et al., 2001; Baker
et al., 2008). In particular, CLSs on transmembrane proteins
help recruit ciliary trafficking components that guide these
vesicles to the periciliary membrane. For example, a VxPx motif
in the cytosolic tail of Rhodopsin, a light-activated G protein—
coupled receptor (GPCR), recruits the small GTPase Arf4 to the
TGN, leading to the formation of a complex that mediates Rho-
dopsin incorporation into cilium-bound vesicles (Fig. 3 B). This
complex includes ASAPI, a protein that may couple cargo
recruitment and vesicle formation, Rab11, which participates in
ciliary vesicle trafficking, and Arfophilin-1/FIP3, which is a dual
Arf/Rabl1 interactor and may hence allow Rabl11 recruitment to
Arf4-containing vesicles (Mazelova et al., 2009a).

Like Rhodopsin, ciliary targeting of Polycystin-1 and -2,
two transmembrane proteins involved in polycystic kidney dis-
ease, is dependent on Arf4-binding CLSs that contain VxPx
motifs and, at least for Polycystin-1, also depends on ASAP1
and Rab11 (Geng et al., 2006; Ward et al., 2011). Similarly, the
CNGB /b subunit of the olfactory CNG channel contains a VxPx
CLS (Jenkins et al., 2006). Therefore, Rhodopsin, Polycystins,
and the CNG channel appear to use a common ciliary targeting
mechanism. Formation of these cilia-bound vesicles may also
involve clathrin coats and AP-1 adaptors, as these are required
to move ODR-10, another GPCR, to C. elegans sensory cilia
(Dwyer et al., 2001; Kaplan et al., 2010). As clathrin and AP-1 are
essential for budding of endosome-bound vesicles from the TGN,
endosome- and cilium-bound vesicles may form by similar mecha-
nisms, or some ciliary proteins may travel to cilia via endosomes
(Fig. 3 C; Bonifacino and Traub, 2003; Kaplan et al., 2010).

Like Clathrin and AP-1, other proteins may have spe-
cialized roles in ciliary trafficking. For example, IFT20, a
component of the IFT-B complex involved in ciliogenesis,
also localizes to Golgi cisternae, post-Golgi vesicles, and basal
bodies (Follit et al., 2006, 2008; Sedmak and Wolfrum, 2010).
This localization suggests that IFT20 may have roles in mov-
ing proteins from the Golgi to the basal body, and indeed,
moderate knockdown of IFT20 inhibits the ciliary localization of
Polycystin-2 (Follit et al., 2006). GMAP210, a protein required
for the Golgi but not basal body localization of IFT20, also
promotes the ciliary localization of Polycystin-2, consistent
with a trafficking role for IFT20 in the Golgi (Follit et al.,
2008). Similarly, IFT20 is required in rod cells for the efficient
transport of Rhodopsin out of the Golgi (Keady et al., 2011).
IFT20 interacts with the cytosolic tail of Rhodopsin but not
through the VxPx motif (Keady et al., 2011). It will be interesting
to see whether IFT20 binds to other ciliary membrane proteins,
such as Polycystin-1 and -2, to target them to cilia.

Intriguingly, IFT20 localizes predominantly to the cis-
and medial-Golgi cisternae and not the TGN, where most
transmembrane proteins are sorted for delivery to post-Golgi
compartments (Follit et al., 2006). One possibility is that
IFT20 accompanies its cargo as it moves through the cis- and
medial-Golgi and hands it off to Arf4 at the TGN (Fig. 3 B).
Alternatively, IFT20 might facilitate transport from the cis-
Golgi to the cilium, bypassing the TGN, as has been proposed
for Polycystin-2 (Hoffmeister et al., 2011).

Post-Golgi trafficking of cilium-bound vesicles involves
Rabl11, whose active form recruits and activates the Rab8—guanine
nucleotide exchange factor Rabin8, which in turn recruits Rab8
and TRAPPII, a vesicle-trafficking complex (Knodler et al., 2010;
Westlake et al., 2011). Active Rab8 then recruits effectors, includ-
ing the Exocyst complex and possibly MyosinV, that tether the
vesicle to the periciliary membrane (Fig. 3 B; Deretic et al.,
2004; Ishikawa et al., 2005; Roland et al., 2007; Omori et al.,
2008; Mazelova et al., 2009b; Jin et al., 2011). The Exocyst com-
plex facilitates the pairing of cognate SNARE proteins, leading to
vesicle fusion with the periciliary membrane (Mazelova et al.,
2009b). In addition to delivering membrane proteins to the cili-
ary base, this same pathway drives ciliary membrane expansion
during ciliogenesis, indicating that both processes rely on the
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same machinery (He and Guo, 2009; Mazelova et al., 2009b; Zuo
et al., 2009; Follit et al., 2010; Kaplan et al., 2010; Hoffmeister
et al., 2011; Ward et al., 2011; Westlake et al., 2011).

Vesicles containing cilium-bound membrane proteins
may not always travel directly from the Golgi to the pericili-
ary membrane (Fig. 3 C). A possible way station is recycling
endosomes, which contain Rab8, Rabl11, and other cilia reg-
ulators (Finetti et al., 2009; Kaplan et al., 2010; Kim et al.,
2010a). In other instances the cilium is reached via the
plasma membrane, as is the case of Smoothened (Milenkovic
et al., 2009; Wang et al., 2009).

Trafficking of membrane proteins into the
cilium. One way for peripheral membrane proteins to enter
the cilium is by associating with proteins that mask their hydro-
phobic moieties, thereby allowing them to behave like their
cytosolic counterparts. For example, two N-myristoylated pro-
teins, Nphp3 and Cystin, rely on Unc119b, a soluble myristoyl-
binding protein, for transport to the cilium (Wright et al.,
2011). Interestingly, Unc119b cannot enter the cilium unless
bound to its cargo (Wright et al., 2011; Zhang et al., 2011;
Nakata et al., 2012). Upon ciliary entry, Arl3 dissociates the
Uncl19b—cargo complex, allowing the myristoylated cargo
to associate with the ciliary membrane (Wright et al., 2011).
Similarly, Pde6d, an Uncl19b-related Arl3 effector, binds
and helps bring prenylated proteins into photoreceptor outer
segments (Zhang et al., 2004, 2007). Therefore, recognition
and masking of lipid modifications may be a general mecha-
nism for transporting peripheral membrane proteins to cilia
(Cevik et al., 2010; Emmer et al., 2010; Evans et al., 2010;
Follit et al., 2010; Maric et al., 2011).

Unlike peripheral membrane proteins, transmembrane
proteins must enter cilia by moving laterally from the pericili-
ary membrane, as membrane extraction or vesicle entry into
cilia seems unlikely. Membrane diffusion barriers separate the
ciliary and periciliary membranes in at least some cell types, in-
dicating that lateral transport between these two membranes
must be facilitated by machinery that engages CLSs in the cargo
(Hu et al., 2010; Chih et al., 2012). For example, ciliary GPCRs,
including Mchrl, Sstr3, and Htr6, rely on a CLS in their third
intracellular loop to enter cilia (Berbari et al., 2008a). Ciliary
entry of these GPCRs requires direct binding of this CLS to the
BBSome, a complex including most Bardet-Biedl syndrome—
associated proteins (Nachury et al., 2007; Berbari et al., 2008b;
Jin et al., 2010; Seo et al., 2011). The BBSome also interacts
with the IFT machinery, whose microtubule motors may pro-
vide the driving force needed for GPCRs to enter cilia (Ou et al.,
2007; Lechtreck et al., 2009).

More generally, direct or indirect association with mi-
crotubule motors may be the sine qua non for transmembrane
proteins to cross the ciliary base. If so, different combina-
tions of motors, adaptors, and CLSs may control ciliary entry
and exit (Fig. 4 A). As motors, Kinesin II and Kif17 mediate
ciliary entry, whereas cytoplasmic Dynein 2 functions during
exit (Jenkins et al., 2006; Ishikawa and Marshall, 2011).
Adaptors for these motors may include IFT proteins, the
BBSome, and Tulp3 (Ou et al., 2007; Lechtreck et al., 2009;
Mukhopadhyay et al., 2010). Tulp3 interacts with IFT-A
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components and, like the BBSome, is required for the ciliary
accumulation of Sstr3 and Mchrl (Berbari et al., 2008b;
Mukhopadhyay et al., 2010). However, Tulp3 is not known
to interact with the CLSs of these receptors, and its role in
repressing Hedgehog signaling indicates that it has addi-
tional functions (Cameron et al., 2009; Norman et al., 2009;
Patterson et al., 2009).

The main adaptor for Kif17 may be importin-32, which
binds to and is required for the ciliary targeting of several
membrane proteins (Fan et al., 2007; Hurd et al., 2011). An-
other Kif17 adaptor may be Ankyrin G, which interacts with
a CLS on CNGB/1b, the ciliary targeting of which is blocked
by dominant-negative Kifl17 (Jenkins et al., 2006; Kizhatil
etal., 2009). The presence of two separate CLSs in CNGB1b,
the VxPx-containing motif and the Ankyrin-binding sequence,
raises the possibility that packaging into cilium-bound vesicles
and entry from the periciliary membrane represent separate deci-
sions. Thus, cilium-bound cargo proteins and vesicle-trafficking
components may be separated at the periciliary membrane,
with the nonciliary vesicular components being retrieved from
the periciliary membrane by endocytosis. Accordingly, the
periciliary membrane, which when invaginated is called the
ciliary pocket, is an active site of clathrin-dependent endocy-
tosis (Gadelha et al., 2009; Molla-Herman et al., 2010).

What is the nature of the membrane diffusion barrier at
the ciliary base? Two recent studies have identified a Septin
ring and members of the MKS-JBTS transition zone com-
plex as components of this barrier (Hu et al., 2010; Chih
etal., 2012).

Septins are small GTPases that interact with membranes
and can polymerize into filaments and rings (Weirich et al.,
2008). These rings form barriers to membrane diffusion in many
contexts, from the yeast bud neck to dendritic spines (Fig. 4,
C and D; Caudron and Barral, 2009). In sperm, the Septin4-based
annulus forms a barrier that controls flagellar composition (Ihara
et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). Similarly,
Septins 2 and 7 are part of a ring and restrict membrane protein
diffusion at the base of primary cilia (Hu et al., 2010; Kim et al.,
2010b). Interestingly, the sperm annulus assembles from the
flagellar pocket (Molla-Herman et al., 2010; Shang et al., 2010).
Hence, the ciliary pocket, or more generally the periciliary mem-
brane, may play an analogous role in the formation of the ciliary
Septin ring. Consistent with this hypothesis, the ciliary pocket is
a docking site for actin filaments, which interact with Septins
and modulate Septin ring formation (Weirich et al., 2008; Molla-
Herman et al., 2010; Kim et al., 2011).

Similar to Septins, components of the MKS-JBTS tran-
sition zone complex also restrict diffusion of membrane pro-
teins across the ciliary base, thus allowing ciliary membrane
proteins to accumulate in cilia while keeping plasma membrane
proteins out (Dowdle et al., 2011; Garcia-Gonzalo et al., 2011;
Chih et al., 2012). In C. elegans, defects in ciliary composition
have only been detected upon disruption of both MKS-JBTS
and NPHP complex members (Williams et al., 2011). However,
whether these complexes collaborate to form a membrane dif-
fusion barrier at the transition zones of other organisms is not
yet clear.
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The Septin barrier and the transition zone barrier may be
interdependent or even one and the same, as Septin2 is required
for the transition zone localization of several MKS—-JBTS
complex proteins, including B9d1, Cc2d2a, and Tmem?231
(Chih et al., 2012). Because Tectonicl, a core MKS-JBTS com-
plex component, is not required for Septin2 to form a ring at the
ciliary base, the membrane diffusion barrier may assemble se-
quentially, with the Septin ring forming first (Garcia-Gonzalo
et al., 2011). Where exactly this barrier lies is not yet clear, but
it is likely to be in the region of the transition fibers and the
Y links. Consistent with this hypothesis, C. elegans cilia lacking
Y links and transition fibers fail to exclude plasma membrane
proteins from cilia, and C. reinhardtii flagella of Cep290 mutants
lack Y links and fail to accumulate flagellar membrane proteins
(Craige et al., 2010; Williams et al., 2011). In addition, Cep290
mutant flagella possess increased levels of IFT and BBSome
components, suggesting a role for Y links in controlling the cili-
ary localization of soluble proteins as well (Craige et al., 2010).

Intraciliary and extraciliary retention of mem-
brane proteins. As with soluble proteins, intraciliary reten-
tion is one means by which membrane-associated proteins can
accumulate in cilia (Fig. 4 E). For instance, the ciliary levels of
CEACAMI, a transmembrane protein, increase when the pro-
tein is conjugated to a microtubule-binding domain (Francis
et al., 2011). However, the extent to which similar mechanisms
operate in vivo is not yet clear.

Analogously, extraciliary retention may explain how some
membrane proteins are excluded from cilia. This may be espe-
cially important in photoreceptors, where the outer segment acts
as the default destination for transmembrane proteins, perhaps
reflecting the massive amount of transport through connecting
cilia, each of which traffics ~1,000 Rhodopsin molecules per
second (Besharse et al., 1977; Baker et al., 2008; Gospe et al.,
2010). For example, nonciliary transmembrane proteins, such as
Glutl or Syntaxin3, use targeting sequences to be kept outside of
the outer segment (Baker et al., 2008; Gospe et al., 2010). These
results raise the question of why Rhodopsin requires its CLS. Per-
haps this CLS increases the efficiency of Rhodopsin transport to
the cilium, rather than being strictly required for it.

Another example of ciliary exclusion is the transmem-
brane protein Podocalyxin, which is restricted from reaching
the ciliary base of MDCK cells by its association with the
cortical actin cytoskeleton (Francis et al., 2011). When its
ties to the actin cytoskeleton are severed, Podocalyxin readily
enters the periciliary and ciliary membranes, bringing into
question the existence of diffusion barriers at the ciliary base
(Francis et al., 2011). One possible explanation is that, in these
experiments, Podocalyxin reached the nascent ciliary mem-
brane before diffusion barrier formation, as Podocalyxin was
expressed before cilia formed (Breslow and Nachury, 2011).
Alternatively, it is possible that Podocalyxin contains a CLS that
allows it to enter cilia when detached from actin. Regardless,
these data raise the possibility that ciliary barriers depend on the
cellular differentiation state or the cell type.

Similar retention mechanisms may also account for why
some proteins, such as Galectin-3, localize to the periciliary mem-
brane but are excluded from the ciliary and plasma membranes

(Vieira et al., 2006). Because Galectin-3 is secreted from cells
and cross-links glycosylated proteins on the cell surface, its
retention to the periciliary region may depend on interactions
with unidentified periciliary transmembrane proteins, whose
localization may in turn depend on associations with structures
at the ciliary base (Fig. 4 F; Partridge et al., 2004; Ohtsubo
et al., 2005; Huang 2010). Therefore, the distinct periciliary
membrane identity could arise from a combination of retention
and exclusion mechanisms even in the absence of a diffusion
barrier separating it from the plasma membrane (Fig. 4 C).
Additional mechanisms, such as selective removal, may also aid
in the generation of a distinct periciliary membrane. For instance,
Galectin-3—mediated cross-linking can prevent endocytosis of
cell surface proteins, which might facilitate their accumulation
in the periciliary membrane (Partridge et al., 2004; Winckler
and Mellman, 2010).

How to reconcile the evidence for selective exclusion,
retention, and diffusion barriers, all of which can control cili-
ary protein localization? Each of these mechanisms may apply
to some, but not all, ciliary proteins, and some of these pro-
teins may be subject to multiple mechanisms of ciliary local-
ization control. This diversity of mechanisms may allow the
cilium to maintain a unique composition despite not being
bounded by the membrane.

Conclusion
The cilium is a specialized organelle whose function critically
depends on its composition. To control which proteins enter
and exit cilia, cells regulate protein entrance across its base,
the only region not surrounded by a membrane. The ciliary
base acts as a selective filter, allowing passage of proteins with
specific biophysical properties or that associate with trans-
porters. Cells also control ciliary composition by controlling
which proteins reach the ciliary base. Although soluble pro-
teins do so by diffusion or by traveling along microtubules,
transmembrane proteins must incorporate into cilium-bound
vesicles leaving the Golgi or enter indirectly via the plasma
membrane or recycling endosomes. In addition to these selec-
tive targeting mechanisms, selective exclusion and retention
also control the composition of cilia and may allow the pericili-
ary membrane to maintain its unique identity. Thus, the com-
plex architecture of the cilium allows for multiple independent
regulatory mechanisms that control its composition and allow
its function to emerge from its form.
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