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Introduction
Accurate chromosome segregation is a prerequisite for the main-
tenance of genome integrity. To achieve this, chromosomes are 
captured during prometaphase and transported to the spindle 
equator. Once all chromosomes are aligned and correctly attached, 
the sister chromatids lose their cohesin links and are pulled apart 
to the opposite poles of the spindle. Several S/T kinases, includ-
ing Cdk1, Polo-like kinase 1 (Plk1), Aurora A kinase (AurA), 
Aurora B kinase (AurB), and monopolar spindle 1 (Mps1), con-
trol mitotic progression (Hochegger et al., 2008; Takaki et al., 
2008; Taylor and Peters, 2008). Cdk1 activation is essential for 
mitotic entry, whereas its inhibition is fundamental for anaphase 
onset (Sullivan and Morgan, 2007). Plk1-inhibited cells arrest in 
prometaphase with defects in spindle assembly and chromosome 
alignment (Lénárt et al., 2007). AurB inhibition allows mitotic 
progression with missegregated chromosomes and a cytokinesis 
defect (Piekorz, 2010). AurA has been intensively studied (Barr 
and Gergely, 2007), but its functions in mitosis remain unclear. 
In fly embryos and Xenopus laevis egg extracts, the hallmark 

phenotypes of AurA mutants are monopolar spindles (Glover 
et al., 1995; Sardon et al., 2008). In contrast, in studies using so-
matic cells, AurA deficiency can elicit a range of apparently con-
tradictory phenotypes. Some studies showed a prolonged G2 
arrest (Marumoto et al., 2002; Hirota et al., 2003), whereas 
others describe a predominant defect in mitosis with chromo-
some misalignment, cytokinesis failure, centrosome fragmenta-
tion, and multipolar or monopolar spindles (Kunitoku et al., 
2003; Marumoto et al., 2003; De Luca et al., 2008; Cowley et al., 
2009; Sloane et al., 2010). Interestingly, the AurA inhibitor 
MLN8054 induces chromosome misalignment and delays, but 
does not block, mitotic progression (Hoar et al., 2007; Scutt et al., 
2009). The reported differences highlighted in these studies 
might be caused by incomplete AurA depletion or inhibition as 
well as differential effects of kinase inhibition versus protein re-
moval. Thus, AurA functions in mitosis remain elusive. In this 
study, we develop a chemical genetic strategy to analyze AurA 
requirements in mitosis and define its genetic interactions with 
other mitotic kinases, including Cdk1, Plk1, Mps1, and AurB.

We established a conditional deletion of Au­
rora A kinase (AurA) in Cdk1 analogue- 
sensitive DT40 cells to analyze AurA knockout 

phenotypes after Cdk1 activation. In the absence of AurA, 
cells form bipolar spindles but fail to properly align their 
chromosomes and exit mitosis with segregation errors. The 
resulting daughter cells exhibit a variety of phenotypes and 
are highly aneuploid. Aurora B kinase (AurB)–inhibited 
cells show a similar chromosome alignment problem and 

cytokinesis defects, resulting in binucleate daughter cells. 
Conversely, cells lacking AurA and AurB activity exit mi­
tosis without anaphase, forming polyploid daughter cells 
with a single nucleus. Strikingly, inhibition of both AurA 
and AurB results in a failure to depolymerize spindle  
microtubules (MTs) in anaphase after Cdk1 inactivation. 
These results suggest an essential combined function of 
AurA and AurB in chromosome segregation and ana­
phase MT dynamics.
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Figure 1.  AurA-depleted cells exhibit substantial chromosome alignment defects in early mitosis. (A) FACS profiles of AurA+/ and AurA/ cells incu-
bated with doxycyclin (Dox)/4-hydroxytamoxifen (OHT). (B) Mitotic index (n ≥ 237 cells for each condition, three independent experiments). (C) Cells 
from B classified into different mitotic stages (n ≥ 29 cells for each condition). (D) Representative pictures of mitotic cells counted in C. (E) Centrosome 
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(Fig. S2, A and D) and bipolar spindle formation (Fig. S2 B). In 
summary, we found that the activity of Plk1, AurA, and AurB was 
increased after Cdk1 activation but that these kinases appeared 
to act independently of each other in mitosis (Fig. S2, A–D). 
Moreover, simultaneous depletion of AurA and Plk1 inhibition 
showed similar phenotypes to Plk1 inhibition (Fig. 1, F and H), 
suggesting that the Plk1 phenotype is epistatic to AurA as previ-
ously suggested (Scutt et al., 2009).

AurAKO cells exit mitosis and are proficient 
in spindle checkpoint signaling
Despite the spindle and chromosome alignment defects, AurAKO 
cells were not arrested but only delayed in exiting mitosis 
(Fig. 2 A). Live-cell imaging of histone H2B-GFP–expressing 
AurAKO cells showed that these cells managed to initiate ana-
phase and chromosome segregation (Fig. 2, B and C). However, 
we observed a threefold increase in lagging chromosomes in 
AurAKO cells, suggestive of merotelic kinetochore attachments 
(Fig. 2 D; Cimini et al., 2001). AurAKO cells could exit from 
mitosis as a result of problems in spindle assembly checkpoint 
(SAC) maintenance or might satisfy the SAC because of suffi-
cient kinetochore attachments to MTs. We analyzed SAC profi-
ciency in AurAKO cells by releasing them into mitosis in the 
presence of increasing doses of taxol. Surprisingly, AurAKO 
cells were not only SAC proficient but were also highly sensi-
tive to low doses of taxol when compared with controls (Fig. 2, 
E–G). This taxol sensitivity was strictly SAC dependent and 
abrogated after codepletion of the SAC regulator Mad2 (Fig. 2 F). 
SAC effectors, such as the AurB–INCENP complex and BubR1, 
were localized at the kinetochores in AurAKO cells (Fig. S2 E), 
and effective SAC execution in these cells was partially depen-
dent on AurB activity (Fig. 2, E, G, and H). These data suggest 
that AurAKO cells exit mitosis as a result of recovery from the 
SAC rather than mitotic slippage.

AurAKO cells exhibit defects in  
chromosome biorientation and display  
high levels of aneuploidy
After mitotic exit, AurAKO cells passed through S phase and ac-
cumulated with a 4N DNA content at 8 h (Fig. 3 A). During the 
following 16 h, we noted an increase in the sub-G1 population 
(30% of the total cells). Most cells (50%) were blocked in 
either G2 or M phase (Fig. 3 B). When tracked by live-cell imag-
ing (Fig. 3 C), AurAKO cells showed a variety of phenotypes 
after exiting the first mitosis. Some cells died in interphase, and 
some underwent one more cell division, arrested, or died in the 
next mitosis but never completed more than one additional cell 
division. AurAKO karyotype analysis after the first division (10 h 
after release) showed that 80% of the AurAKO cells displayed 

Results and discussion
Characterization of AurA conditional 
knockout cells
We established a conditional AurA deletion in DT40 cdk1as 
cells (Hochegger et al., 2007) by simultaneous transcriptional 
down-regulation and gene deletion (for a detailed description of 
the knockout strategy see Fig. S1, A and B). Upon AurA deple-
tion, the cells stopped proliferating within 24 h (Fig. S1, C and D), 
accumulated with 4N DNA content, and initiated endoreplica-
tion (Fig. 1 A). However, we only detected a two- to threefold 
increase in mitotic index in the AurA-depleted cells (Fig. 1 B). 
These mitotic cells displayed a variety of phenotypes, including 
monopolar and multipolar spindles (Fig. 1, C and D). Precise 
dynamics of Cdk1 activation and mitotic entry and exit cannot 
be determined in these experiments because cells enter mitosis 
with variable levels of total AurA and remain arrested in mitosis 
for various periods of time. To circumvent this problem, we used 
reversible inhibition of analogue-sensitive Cdk1 (cdk1as) by 
1NMPP1 to block cells in late G2 phase, with or without AurA, 
and then release them into mitosis (Fig. S1, E–G). Similar to pre-
vious results using Plk1 inhibitors (Smith et al., 2011), we found 
that centrosome separation could be triggered by Cdk1 indepen-
dently of AurA and even after double inactivation of AurA and 
Plk1 (Fig. 1 E). After 1NMPP1 release, most control cells had 
reached metaphase within 30 min (Fig. 1 F). Both control and 
AurAKO cells showed a comparable subpopulation of multipolar 
spindles as a result of centrosome amplification in the 1NMPP1 
arrest (Hochegger et al., 2007). However, most AurAKO cells dis-
played bipolar spindles but failed to align the chromosomes at the 
metaphase plate (Fig. 1 H, right). Recruitment of -tubulin to the 
centrosome and pole to pole distances were comparable between 
controls and AurAKO cells (Fig. 1, G and H), but spindle volume 
and width were significantly smaller (Fig. 1 G), suggesting dif-
ferences in mitotic microtubule (MT) dynamics in the AurAKO 
cells. In these cells, the balance between MT depolymerization  
and polymerization may be altered compared with the con-
trol. AurA has been reported to positively control the MT-
stabilizing protein complex TACC3–chTOG, protecting MTs 
from mitotic centromere-associated kinesin (MCAK)–induced 
MT destabilization (Barros et al., 2005). Moreover, AurA has 
been shown to inhibit another MT depolymerase, Kif2A, at the 
poles and to suppress MCAK activity in combination with AurB 
(Jang et al., 2009; Tanenbaum et al., 2011). We next analyzed 
the interdependence between Cdk1, AurA, AurB, and Plk1. We 
found that AurA is required for Plk1 activation in G2 (Fig. S2 A), 
consistent with previous studies (Macůrek et al., 2008; Seki 
et al., 2008), but not in M phase. Indeed, even double inactivation 
of AurA and AurB did not interfere with mitotic Plk1 activation 

separation analysis. Cells were synchronized in G2 with or without AurA according to the procedure described in Fig. S1 E, with or without the Plk1 
inhibitor BI2536. Cells with separated centrosomes were scored in G2 and 10 min after 1NMPP1 washout. Representative pictures and quantifications 
are shown (n = 100 cells for each condition, three independent experiments). (F) Images of cells immunostained 30 min after 1NMPP1 release. The boxes 
in the larger images are further magnified below. (G) Spindle analysis. Pictures from F were processed by 3D rendering to determine the spindle pole 
distance, width, and volume (n ≥ 75 cells for each condition, three independent experiments). (H) Quantitative data of results in F. The mitotic index (left), 
-tubulin intensity measurements (middle), and quantification of mitotic phenotypes (right) are shown (n ≥ 75 cells for each condition, three independent 
experiments). -Tubulin (red), -tubulin (green), and DNA (blue) are shown. Bars: (D) 5 µm; (E and F) 10 µm. Error bars indicate means ± SD. Ctrl, control; 
PE-A, phycoerythrin area.
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cells displayed a fivefold increase of syntelic and/or monotelic 
kinetochores as judged by undissociated CenpA. This was only 
partly corrected in the following 30 min (Fig. 3 G). We also 
found an increase from 10 to 25% in lagging kinetochores in 
AurAKO anaphase cells (Fig. 3 F, bottom, arrows).

These findings demonstrate that AurA is not required to 
build a bipolar spindle in chicken DT40 cells, and its deletion 
delays but does not halt mitotic progression. Cells lacking AurA 
exhibit reduced spindle volume and misaligned, maloriented 

aberrant numbers of chromosomes 1–4 (Fig. 3 D and Table S1), 
suggesting high levels of aneuploidy. These changes in chromo-
some number are a likely cause for the observed spectrum of 
phenotypes in the next cell cycle. Consistently, we found a vari-
ety of defects in mitotic cells 10 h after release (Fig. 3 E). To gain 
mechanistic insight in the causes of aneuploidy, we investigated 
centromere biorientation in mitosis by monitoring CenpA on MT 
kinetochore fibers (Fig. 3 F). In control cells 30 min after 1NMPP1 
release, most centromeres were biorientated. In contrast, AurAKO 

Figure 2.  Mitotic progression in AurAKO cells. (A) Mitotic exit. Cells were released from 1NMPP1 and stained with DAPI at the indicated time points. The 
cells with decondensed chromosomes were scored as interphase cells (n ≥ 52 cells for each condition, three independent experiments). (B) Time-lapse 
sequences of H2B-GFP–expressing cells after 1NMPP1 release (n = 28 cells for each condition). Times are given in minutes. (C) Quantitative analysis of B. 
The time spent in the indicated phases was determined from live-cell images. (D) Anaphase defects. -Tubulin (red) and DNA (blue; n = 50 cells for each 
condition, three independent experiments) are shown. (E–H) SAC proficiency. Taxol was added after 1NMPP1 release at the indicated concentrations (E)  
or at 10 nM (F and G) or 100 nM (H). Cells were collected, and mitotic index was determined at 3 h (E and F), 6 h (H), or at the indicated time points (G). 
In F, cells were transfected with either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA or Mad2 siRNA 24 h before the experiment  
(n = 100 cells for each condition, three independent experiments). Bars: (B) 10 µm; (D) 5 µm. Error bars indicate means ± SD. Ctrl, control; NEBD, nuclear 
envelope breakdown.
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Figure 3.  Phenotypes of AurAKO cells after mitotic exit. (A) Cell cycle profiles. Cells were synchronized as in Fig. S1 E and, after release in mitosis, were 
harvested at the indicated time points and colabeled with BrdU and PI. (B) Mitotic index. Mitotic cells were scored from cells in A (n ≥ 100 cells for each condi-
tion, three independent experiments). Results were combined to G2/M fraction determined from A (three independent experiments). (C) Phase succession. 
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Time-lapse microscopy was performed for 24 h after 1NMPP1 release. Interphase and mitosis time lengths were scored (n = 20 cells for each condition). 
(D) Metaphase spreads 10 h after 1NMPP1 release. Chromosomes 1, 2, 3, 4, and Z are shown with extra chromosomes in red and missing chromosomes 
in green. Chart indicates quantification of aneuploidy (n ≥ 20 cells for each condition, three independent experiments). (E) Representative images of AurAKO 
cells at 10 h after 1NMPP1 release. -Tubulin (red), -tubulin (green), and DNA (blue) are shown. (F) Kinetochore/MT attachment in mitotic AurAKO cells. 
HA-SNAP-CenpA–expressing cells were collected in mitosis at indicated time points after 1NMPP1 removal and cold treated before fixation. The right  
images show a close-up of kinetochore/MT attachment in AurAKO. HA-SNAP-CenpA (red) and -tubulin (green) are shown. Arrows indicate missegregated 
centromeres in anaphase. (G) Quantitative analysis of undissociated CenpA observed in F (n = 20 cells for each condition). Bars: (E) 10 µm; (F, left) 5 µm; 
(F, right) 0.5 µm. Error bars indicate means ± SD. Ctrl, control.

 

These synergistic effects between AurA inactivation and Mps1 
inhibitors or low dose taxol treatments could represent therapeutic 
opportunities for a combinatorial treatment of cancer cells.

AurA and AurB control MT 
depolymerization at anaphase onset
To investigate the combined functions of AurA and B in ana-
phase, we tested the dynamics of cyclin B destruction (Fig. 5,  
A and B). AurAKO/AurB-inhibited cells triggered cyclin B prote-
olysis with the same kinetics as AurAKO cells. However, we 
noted the persistence of long and apparently stable MT fibers in 
cells lacking both AurA and AurB, whereas all control cells 
showed the typical anaphase spindle contraction (Fig. 5, A and C). 
One of the current models of anaphase force generation implies 
that chromosome motion is induced by MT destabilization 
(Maiato and Lince-Faria, 2010; Rath and Sharp, 2011). A likely 
trigger for this is the anaphase-promoting complex/cyclosome-
mediated inactivation of Cdk1, but the precise control mecha-
nism of this process is not understood. To further investigate these 
anaphase spindle dynamics, we took advantage of the cdk1as 
mutation to mimic mitotic exit by 1NMPP1-mediated inactiva-
tion of Cdk1 in metaphase cells. This was sufficient to trigger 
rapid dephosphorylation of Cdk1 substrates in control and 
Aurora kinase single and double inactivated cells (Fig. S2 F). We 
also observed a rapid spindle MT depolymerization after Cdk1 
inactivation in control cells and AurB-inhibited cells (Fig. 5 D). 
Astral MTs appeared to be partially stable in AurAKO cells 
(Fig. 5 D, arrows), but the entire spindle was significantly stabi-
lized in AurAKO/AurB-inhibited cells (Fig. 5, D and E). We also 
found a strong spindle stabilization effect in AurAKO/AurB-
inhibited cells using 4D live-cell imaging after Cdk1 inhibition 
compared with controls (Fig. 5, F and G; and Videos 7, 8, 9, and 10). 
Collectively, these results strongly suggest a role of AurA and 
AurB in controlling spindle disassembly after Cdk1 inactivation 
at anaphase onset.

Recent studies suggest that anaphase A requires both MT 
destabilization at the spindle poles (the Flux model) and at the 

chromosomes, resulting in massive aneuploidy. It is surprising 
that a kinase located at the centrosome has such a strong impact 
on subsequent chromosome alignment. One possible explana-
tion for this phenotype in AurAKO cells could be a dysfunctional 
centrosomal regulation of CenpE by AurA (Kim et al., 2010). 
The strong centromere biorientation defect could also explain 
the increased taxol sensitivity of AurAKO cells. The correction 
of syntelic and monotelic centromeres is likely to involve local-
ized MT rearrangements that are suppressed by taxol, resulting 
in increased unattached kinetochores. Collectively, our results 
present a concise genetic analysis of AurA and its interactions 
with other mitotic kinases that are summarized in Table 1.

AurA and AurB cooperate to coordinate 
chromosome segregation
We undertook a detailed time-lapse microscopy analysis using 
histone H2B-GFP–expressing AurAKO cells to investigate the 
effects of double inhibition of AurA, AurB, and the SAC kinase 
Mps1 (Fig. 4). It took on average 82 min to complete mitosis in 
the absence of AurA compared with 22 min in control cells (Fig. 4, 
A–C; and Videos 1 and 2). Inhibition of AurB caused a shorter 
delay (mean length of mitosis was 40 min) and a distinct cyto
kinesis failure (Video 3). Strikingly, absence of AurB activity in 
AurAKO cells caused complete inhibition of chromosome segre-
gation (Fig. 4, A and B; and Video 4). In these cells, mitosis was 
shortened (68 min), and chromosomes decondensed without 
segregation. This failure to undergo anaphase could be a result 
of the SAC function of AurB. However, inhibition of another 
SAC kinase, Mps1 (Fig. 4, B and C; and Video 5), or codeple-
tion of Mad2 in AurAKO cells (not depicted) did not interfere with 
anaphase onset but strongly reduced the time to complete mito-
sis and increased the number of lagging chromosomes. Like-
wise, checkpoint inactivation by codepletion of Mad2 shortened 
M-phase duration in AurAKO/AurB-inhibited cells without altering 
the chromosome segregation defect (Fig. 4, B and C; and Video 6). 
We found that inactivation of both Mps1 and AurA was the 
most effective way to kill cells after mitotic exit (Fig. 4 D). 

Table 1.  Summary of kinases used in this study

Kinases Required for activation of Main mitotic functions Effects of deficiency

Cdk1 AurA, Plk1, and AurB G2/M transition G2 arrest
Plk1 N/A Spindle formation Prophase/prometaphase arrest
AurA Plk1 in G2 Spindle MT stability and chromosome alignment Mitotic delay and aneuploidy
AurB N/A Chromosome alignment, SAC, and cytokinesis Cytokinesis failure and binucleate cells
AurA/AurB N/A Spindle MT stability, chromosome segregation, 

and anaphase spindle disassembly
No chromosome disjunction and polyploidy

N/A, not available.
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Figure 4.  Chromosome segregation failure in AurAKO/AurB-inhibited cells. (A) Time-lapse microscopy of H2B-GFP–expressing cells after 1NMPP1 release. 
Shown are still images of cells with the indicated treatments. AurB was inhibited with 60 nM AZD1152-HQPA and Mps1 with 500 nM reversine. Times are 
given in minutes. Bars, 10 µm. (B) Quantitative analysis of mitotic defects observed in A (n ≥ 57 cells for each condition). In addition, AurAKO and AurB-
inhibited cells were transfected with Mad2 siRNA (siMad2) 24 h before the experiment. (C) Duration of mitosis (n ≥ 48 cells for each condition). (D) Cell 
survival analysis of cells released from 1NMPP1 and treated as indicated. Cell survival was followed for 24 h by long-term live-cell imaging and analyzed 
every 6 h (n ≥ 20 cells for each video, three different videos). The horizontal lines represent the mean values for each data series. Error bars indicate means ± SD. 
Ctrl, control; NEBD, nuclear envelope breakdown.
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Figure 5.  MT depolymerization defect in AurAKO and AurB-inhibited cells. (A) Mitotic exit. Representative images of mitotic cells before and after cyclin B 
degradation. Cyclin B (red), -tubulin (green), and DNA (blue) are shown. (B and C) Quantitative analysis of cyclin B–negative cells (B) and stable spindles 
in cyclin B–negative cells (C; n ≥ 100 cells for each condition, three independent experiments). (D and E) Analysis of MT depolymerization. 30 min after 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/195/7/1103/1895176/jcb_201105058.pdf by guest on 09 February 2026



1111Aurora kinases A/B control anaphase onset • Hégarat et al.

Cell culture, synchronization, and inhibitor treatments
Chicken DT40 mutant cells were cultured in RPMI 1640 medium (Invitrogen) 
containing 10% fetal bovine serum, 5% chicken serum, 2 mM l-glutamine, 
0.1% -mercaptoethanol, and antibiotics. These cells were incubated at 
39°C in a humidified cell culture chamber with 5% CO2. G2-synchronized 
AurAKO cells were treated as indicated in Fig. S1 E. In brief, cells were incu-
bated with 1 µg/ml doxycyclin and 0.5 µM 4-hydroxytamoxifen for 10–12 h 
followed by 6–8 h with the addition of 10 µM 1NMPP1 (Smith et al., 
2011). To inhibit Plk1, 100 nM BI2536 (Axon Medchem) was added to 
the media for 6 h. To inhibit AurB, 60 nM AZD1152-HQPA (Selleck Chem-
icals, LLC) was added in the last 2 h. Cells were synchronized in mitosis by 
washing out 1NMPP1. 500 nM reversine (Cambridge Bioscience) was 
added to the media to inhibit Mps1. To deplete Mad2, 8 × 105 cells were 
transfected with 300 pmol MAD2 siRNA (QIAGEN) with DNA sequence 
5-TACCACGATTCACAAAGTAAA-3 using the Neon system (Invitrogen). 
An siRNA-targeting glyceraldehyde 3-phosphate dehydrogenase was used 
as a negative control. 1,400-V, 10-ms, and 3-pulse electroporation condi-
tions were used.

Immunostaining
For mitotic index, cells (5 × 104 per 0.1 ml) were spun onto slides at 
1,000 rpm for 3 min then fixed with 3.7% formaldehyde (Sigma-Aldrich) in 
PBS for 10 min. After several PBS washes, cells were stained and mounted 
with DAPI solution (ProLong Gold; Invitrogen). Cells with condensed DNA 
were scored as mitotic.

For immunofluorescence, cells were spun onto slides at 1,000 rpm 
for 3 min and then fixed with 3.7% formaldehyde in PBS for 10 min. Cells 
were permeabilized in PBS–0.1% NP-40 for 10 min. Cells were then 
blocked in 1% BSA for 30 min and probed with primary antibodies for 45 min. 
Slides were rinsed in PBS and probed with Alexa Fluor secondary anti-
bodies (Invitrogen) for 45 min. Slides were then rinsed in PBS, and cover-
slips were mounted using ProLong Gold mounting solution containing DAPI. 
-Tubulin rabbit polyclonal and -tubulin mouse monoclonal antibodies were 
purchased from Abcam. Anti–chicken cyclin B2 rabbit polyclonal antibody 
(Gallant and Nigg, 1994) was a gift from E. Nigg (Biozentrum, University 
of Basel, Basel, Switzerland). Phosphorylated T232 AurB antibody was as 
previously described (Tyler et al., 2007), and BubR1 and INCENP rabbit 
polyclonal antibodies were gifts from W. Earnshaw (Wellcome Trust  
Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK).

Images were acquired on microscope (DeltaVision) equipped with 
a UPLS Apochromat NA 1.40, 100× oil immersion objective (Olympus), 
standard filter sets (excitation 360/40, 490/20, and 555/28; emission 
457/50, 528/38, and 617/40), and a camera (CoolSNAP HQ2; 
Photometrics). Z series of 0.3-µm stacks were acquired using softWoRx 
software (version 4.0.0; Applied Precision), and deconvolution was 
performed using Huygens Professional Deconvolution Software (version 3.5; 
Scientific Volume Imaging). Maximum intensity projections were ob-
tained in softWoRx software (version 3.7.1) and exported as Photoshop 
(Adobe) files.

For quantitative data on spindle morphology, DeltaVision files were 
imported into Imaris software (version 6.3.0; Bitplane) for 3D rendering 
measurements using the volume rendering algorithm for -tubulin signals. 
Measurements were then exported to Excel (Microsoft) and plotted. -Tubulin 
intensity on centrosomes was determined using ImageJ (version 1.44i;  
National Institutes of Health) with the plugin Time Series Analyzer (version 2.0; 
National Institutes of Health). DeltaVision files were imported into ImageJ. 
A rectangle (6 × 6 pixels) delimiting the centrosome was defined, and 
-tubulin intensities through all sections were summed. The same measure-
ment was performed outside the centrosome to determine the background. 
Measurements were then exported to Excel software. For each experimen-
tal condition, a mean was calculated from -tubulin intensity values ob-
tained after background subtraction. Relative intensities were determined 
as a ratio relative to intensities measured in control cells.

kinetochores (the Pacman model; Rogers et al., 2004; Manning 
et al., 2007; Zhang et al., 2007). Given that AurA and AurB are 
localized to the centrosomes and the kinetochores, respectively, 
it is tempting to speculate that these kinases could regulate Flux 
and Pacman activities after Cdk1 inactivation. The precise 
mechanism of Pacman–Flux is unknown, but a combined action 
of MT-severing enzymes and MT depolymerases has been pro-
posed (Rath and Sharp, 2011). Kinesin-13 MT depolymerases, 
such as Kif2A, Kif2B, and MCAK, are logical targets of the 
Aurora kinases in this pathway. However, Aurora kinases have 
been shown to inhibit rather than activate these enzymes 
(Lan et al., 2004; Zhang et al., 2008; Jang et al., 2009; Knowlton  
et al., 2009; Tanenbaum et al., 2011). Aurora kinases may thus 
be responsible for both spindle stability in metaphase and spindle 
disassembly in anaphase. Another potential group of targets in 
this pathway are MT-severing enzymes of the class II AAA ATPase 
family, such as Katanin, Spastin, and Fidgetin (Roll-Mecak and 
McNally, 2010). These proteins are localized to both centro-
somes and kinetochores and have been implicated in the Pacman–
Flux pathway in Drosophila melanogaster cells (Zhang et al., 
2007). However, their regulation by mitotic kinases has not been 
closely evaluated. This anaphase role for Aurora kinases appears  
to be conserved because budding yeast Ipl1 has also been re-
ported to contribute to spindle disassembly during mitotic exit 
(Buvelot et al., 2003; Zimniak et al., 2009; Woodruff et al., 
2010). Based on these results, further work will be necessary to 
unravel the control of anaphase A spindle dynamics.

Materials and methods
Generation of conditional AurA knockout in DT40 cells
A conditional deletion of AurA was established in DT40 cdk1as cells  
(Hochegger et al., 2007). Using the gene-targeting construct shown in 
Fig. S1 A, we replaced exons 1–4 of the first allele with the puromycin resis-
tance gene floxed by loxP sites. The cdk1as DT40 cell line stably expressed 
tamoxifen-inducible Cre recombinase; therefore, the puromycin resistance 
gene was removed by 4-hydroxytamoxifen–induced Cre recombinase activity. 
We next introduced human Flag-AurA cDNA (a gift from T. Hirota, The Cancer 
Institute, Japanese Foundation for Cancer Research, Tokyo, Japan) cloned in 
a pTre2-loxP-ires-luciferase plasmid (Wakasugi et al., 2007) to express the 
cDNA from a tetracycline-repressible cytomegalovirus promoter. For repres-
sible expression of AurA in the obtained heterozygotes, the construct encod-
ing the tetracycline-controlled transactivator and the human Flag-AurA pTre2 
vector were cotransfected with a puromycin resistance gene expression con-
struct. A stably expressing cell line was isolated, and the second AurA allele 
was deleted. This targeting strategy was confirmed by Southern blotting  
using EcoRV digestion (Fig. S1 B). In the AurA+/ cell line, a specific probe rec
ognized a 7-kb band for the wild-type allele and a 6-kb band for the targeted 
allele after puromycin depletion. The second wild-type allele was targeted 
with the histidinol resistance gene, and a new 9.4-kb band was detected by 
Southern blotting in the AurAKO cell line. Note that in our construct, human 
Flag-AurA cDNA was flanked by loxP sites; therefore, the depletion of the 
gene can be controlled by both 4-hydroxytamoxifen and doxycyclin.

1NMPP1 release, MT depolymerization was induced by adding back 1NMPP1. Cells were treated as indicated and collected before 1NMPP1 addition 
(0) and 15 min later (15). Representative pictures are shown in D. -Tubulin (red), -tubulin (green or gray), and DNA (blue) are shown. Intensity scale 
of the FITC channel was kept the same between 0 and 15 min for all images. Arrows indicate stable MT populations. In E, quantitative data from D are 
shown. We measured the volume of polar MTs by 3D rendering. Quantifications of absolute volume at 15 min after 1NMPP1 treatment and relative volume 
referenced to spindles before 1NMPP1 addition are shown (n = 10 cells for each condition, three independent experiments). (F) Time-lapse microscopy 
of mCherry–-tubulin–expressing cells after adding 1NMPP1 back. Shown are still images of cells with the indicated treatments. Intensity scales were kept 
constant in all images for each time course. (G) Quantitative data from F. The spindle volume was measured over time by 3D rendering. The volume at  
0 min was used as a reference, and relative volumes were scored over time. Each curve represents a single cell (n = 5 cells for each condition). Bars:  
(A, top) 10 µm; (A [bottom], D, and F) 5 µm. Error bars indicate means ± SD. Ctrl, control.
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images were acquired on a microscope (DeltaVision), deconvolved, and 
analyzed using Imaris software. An undissociated CenpA and a biorientated 
CenpA were scored in each cell through z stacks using ImageJ software.

Immunoblotting
Western blotting was performed as previously described (Smith et al., 
2011). Primary antibodies were purchased from Abcam and were used at 
the manufacturer’s recommended concentrations. T288 AurA rabbit mono-
clonal and panphospho-(Ser) Cdk substrate rabbit polyclonal antibody 
were bought from Cell Signaling Technology, and S10 histone H3 was ob-
tained from Millipore. HRP-conjugated and polyclonal goat anti–rabbit  
or –mouse antibodies were purchased from Dako.

Kinase assays
AurAKO cells were transfected with Myc-Plk1 expressed in pcDNA5/Flip 
recombination target vector using the Nucleofector kit (Lonza). 24 h later, 
cells were treated with 10 µM 1NMPP1 with or without 60 nM AZD1152-
HQPA. Cells were released from 1NMPP1 by washout and collected 30 min 
later. For immunoprecipitation (IP), 106 cells were lysed in 500 µl IP lysis 
buffer (20 mM Tris, pH 7.5, 137 mM NaCl, 10% glycerol, 1% Triton X-100, 
2 mM EDTA, 0.05% -mercaptoethanol, and protease and phosphatase 
inhibitors [Roche]). Cells were sonicated; cell debris was then cleared by 
centrifugation at 13,000 rpm for 10 min at 4°C, and the supernatants 
were transferred to fresh tubes. Protein concentrations were determined by 
the Bradford method, and lysates were equalized for protein concentration 
using IP buffer. Lysates were incubated with 3–5 µg Myc antibody at 4°C 
for 1 h with end over end rotation, and 20 µl protein G Dynabeads (Invit-
rogen) was added to precipitated proteins. Samples were incubated at 
4°C for a further 2 h. Beads were then rinsed with 3× 1 ml IP lysis buffer. 
Beads were then resuspended in SDS-PAGE sample buffer (12.5 mM Tris-
HCl, pH 6.8, 1.4% [wt/vol] SDS, 4% [wt/vol] sucrose, 0.002% [wt/vol] 
bromophenol blue, and 0.4 mM -mercaptoethanol) or prepared for kinase 
assays. For Plk1 kinase assays, immunoprecipitates were washed once in 
1 ml kinase assay buffer (50 mM MOPS, pH 7.5, 5 mM MgCl2, 0.4 mM 
EGTA, 2 mM EDTA, and protease/phosphatase inhibitors). Beads were 
then resuspended in 20 µl kinase assay buffer. To each reaction, 2 µg ca-
sein protein (Sigma-Aldrich) was added, and to start reactions, 10 µl of 
100-µM ATP including 0.1 MBq -[32P]ATP (made up in kinase assay buf-
fer) was added. Reactions were incubated at 37°C for 20 min and were 
terminated with the addition of 15 µl 5× SDS-PAGE sample buffer and 
boiling at 95°C for 5 min.

Online supplemental material
Fig. S1 shows the strategy and the efficiency of AurA depletion in DT40 
cells. Fig. S2 shows kinase activation in G2 and M phases, the recruitment of 
SAC proteins, and the efficiency of Cdk1 inhibition in mitotic cells. Table S1  
shows chromosome counting from metaphase spreads performed in 
control and AurAKO cells. Videos 1–6 show control and AurAKO cells pro-
gressing in mitosis in the absence (Videos 1 and 2) or in the presence 
of an AurB inhibitor (Videos 3 and 4) or a Mps1 inhibitor (Videos 5  
and 6). Videos 7–10 show MT depolymerization in control and AurAKO 
in absence (Videos 7 and 8) or in presence of AurB inhibitor (Videos 9  
and 10). Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201105058/DC1.
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