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Introduction
Meiosis produces haploid gametes from diploid cells through 
two consecutive nuclear divisions without an intervening DNA 
replication phase. The first division, meiosis I, which is termed 
reductional, separates the paternal and maternal chromosomes 
or homologues. Meiosis II, which is reminiscent of mitosis, is 
called equational because the identical sister chromatids are 
separated. Compared with mitosis, three changes to the chromo­
somes ensure sequential reductional and equational segrega­
tion in meiosis (Marston and Amon, 2004). First, uniquely in 
meiosis I, sister chromatids attach to microtubules emanating 
from the same spindle pole (monoorientation), rather than oppo­
site poles (biorientation) as in mitosis and meiosis II. In budding 
yeast, the monopolin complex, which associates with kineto­
chores during meiosis I, is thought to fuse sister kinetochores 
together to ensure monoorientation, though its function is not con­
served (Tóth et al., 2000; Hauf and Watanabe, 2004; Yokobayashi 
and Watanabe, 2005; Petronczki et al., 2006; Gregan et al., 
2007; Monje-Casas et al., 2007; Sakuno and Watanabe, 2009;   
Corbett et al., 2010). Second, homologues are linked during 
meiosis I, most commonly by chiasmata, the products of meiotic 
recombination, to allow the generation of tension upon the attach­
ment of homologues to opposite poles. Third, sister chromatid 

cohesion is lost in two steps during meiosis. During meiosis I, 
separase-dependent cleavage of the meiosis-specific Rec8 sub­
unit of cohesin on chromosome arms resolves chiasmata and 
triggers the reductional segregation of homologues, but centro­
meric cohesin is protected until separase is reactivated during 
meiosis II. Centromeric cohesin is protected because Shugoshin 
(Sgo1) recruits protein phosphatase 2A (PP2A), a trimeric en­
zyme consisting of a scaffold (A), regulatory (B), and catalytic 
(C) subunit to centromeres, and this antagonizes Rec8 phos­
phorylation, which is a prerequisite for its cleavage (Clift and 
Marston, 2011). Although alternative PP2A A, B, and C sub­
units allow for the assembly of several distinct holoenzymes 
(Virshup and Shenolikar, 2009), only PP2A containing the B regu­
latory subunit (Rts1 in budding yeast) protects centromeric Rec8 
(Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006).

Furthermore, modified cell cycle controls ensure that two 
rounds of nuclear division occur without an intervening S phase 
during meiosis. One essential feature of meiosis is the sequen­
tial assembly of meiosis I and meiosis II spindles within the 
same cell, but how this is orchestrated is unknown. During mi­
tosis, spindle elongation is followed by cell cycle exit, which is 
characterized by inactivation of Cdks, spindle disassembly, and 

During meiosis, two consecutive nuclear divisions 
follow a single round of deoxyribonucleic acid 
replication. In meiosis I, homologues are segre-

gated, whereas in meiosis II, sister chromatids are segre-
gated. This requires that the sequential assembly and 
dissolution of specialized chromosomal factors are coordi-
nated with two rounds of spindle assembly and disassem-
bly. How these events are coupled is unknown. In this 
paper, we show, in budding yeast, that the protein phos-
phatase 2A regulatory subunit Cdc55 couples the loss of 

linkages between chromosomes with nuclear division by 
restraining two other phosphatases, Cdc14 and PP2ARts1. 
Cdc55 maintains Cdc14 sequestration in the nucleolus 
during early meiosis, and this is essential for the assembly 
of the meiosis I spindle but not for chromosomes to separate. 
Cdc55 also limits the formation of PP2A holocomplexes 
containing the alternative regulatory subunit Rts1, which  
is crucial for the timely dissolution of sister chromatid  
cohesion. Therefore, Cdc55 orders passage through the 
meiotic divisions by ensuring a balance of phosphatases.

Cdc55 coordinates spindle assembly and 
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segregation (Fig. 1 D). To examine homologue segregation in 
cdc55mn cells, we used strains with CEN5-GFP on both copies 
of chromosome V (homozygous CEN5-GFP). Although GFP 
label was found in both nuclei in 100% of wild-type binucleate 
cells, homologue segregation in cdc55mn cells was essentially 
random, as 50% of Cdc55-depleted binucleate cells lacked 
any GFP label in one of the nuclei (Fig. 1 E).

Impaired nuclear division in Cdc55-depleted cells is  
not caused by unresolved linkages between chromosomes be­
cause ablating linkages genetically did not restore nuclear  
division. SPO11, which is required for chiasmata formation 
(Keeney et al., 1997), MAM1, encoding a monopolin subunit 
(Tóth et al., 2000), and REC8, encoding a meiosis-specific 
cohesin subunit (Klein et al., 1999), were deleted in cdc55mn 
cells alone and in combination. However, none of these dele­
tions improved nuclear division in cdc55mn cells nor did they 
radically alter the frequency (30%) of binucleate cells with 
heterozygous CEN5-GFP in both nuclei or homozygous 
CEN5-GFP in one nucleus (50%; Fig. S1). Only deletion of 
REC8 slightly increased the percentage of spo11 cdc55mn 
binucleate cells with either heterozygous or homozygous 
CEN5-GFP foci in both nuclei (Fig. S1). This indicates that 
only cohesin-dependent linkages contribute to the segregation 
pattern of cdc55mn cells.

Cdc55 controls the nucleolar localization 
of Cdc14 phosphatase during meiosis
During mitosis, Cdc55 promotes the nucleolar sequestration of 
Cdc14 (Queralt et al., 2006). We monitored Cdc14 localization 
during meiosis using a pachytene block–release protocol to ob­
tain synchronized cultures (Fig. 1, F and G; Carlile and Amon, 
2008). In wild-type cells, Cdc14 was released from the nucleo­
lus in two waves, coinciding with the appearance of anaphase I 
and anaphase II spindles (Fig. 1 F; Buonomo et al., 2003; Marston 
et al., 2003). In cdc55mn cultures, however, Cdc14 release oc­
curred prematurely, before spindle assembly (Fig. 1 G). Indeed, 
meiosis I spindle assembly was extremely delayed in cdc55mn 
cells, and meiosis II spindles were rarely observed (Fig. 1 G).

We analyzed Cdc14 localization (Cdc14-GFP) and spindle 
morphology (GFP-Tub1) in live cells undergoing meiosis (Matos 
et al., 2008). To restrict our analysis to cells with a known history, 
we examined cells with GFP-Tub1 localization typical of pro­
phase I at the start of filming and in which Cdc14 was released 
from the nucleolus at least once during the observation period. In 
the wild-type example in Fig. 1 H (arrows indicate sequestered 
Cdc14-GFP; also see Video 1), a metaphase I spindle forms, and 
nucleolar Cdc14-GFP signal disappears immediately preceding 
anaphase I spindle elongation. Cdc14-GFP nucleolar foci reap­
pear in the daughter nuclei and, subsequently, dissipate just before 
anaphase II (Fig. 1 H). In contrast, cdc55mn cells in which Cdc14-
GFP release occurred after prophase I exhibited several kinds of 
behaviors (Fig. 1, I–K). In the majority of cells (330/563; Fig. 1 I 
and Video 2), Cdc14-GFP was released from its bright nucleolar 
spot and remained released until the end of filming, though nei­
ther spindle assembly nor nuclear division occurred. The remain­
der of cells attempted to make a spindle, resequestered Cdc14-GFP, 
or divided their nuclei (Fig. 1 K). Interestingly, 80/90 cdc55mn 

cytokinesis (Sullivan and Morgan, 2007). It is thought that at the 
meiosis I to meiosis II transition, only a partial down-regulation of 
Cdks occurs to allow spindle disassembly but not complete cell 
cycle exit, but the mechanism may differ between organisms 
(Marston and Amon, 2004).

A key regulator of the meiosis I to meiosis II transition in 
budding yeast is the Cdc14 phosphatase (Buonomo et al., 2003; 
Marston et al., 2003). Cdc14 function is best understood in mi­
tosis, in which it plays an essential role in mitotic exit through 
dephosphorylation of key substrates to promote Cdk inactiva­
tion and coordinate late mitotic events (Stegmeier and Amon, 
2004). Before anaphase, Cdc14 is bound to its inhibitor Cfi1/
Net1 in the nucleolus, an interaction promoted by the dephos­
phorylation of Cfi1 by PP2A containing the Cdc55 B regulatory 
subunit (Queralt et al., 2006). At anaphase onset, separase acti­
vation, as part of the nonessential Cdc14 early anaphase release 
network (Rock and Amon, 2009), down-regulates PP2ACdc55 
(Queralt et al., 2006; Queralt and Uhlmann, 2008), allowing 
Cdks to phosphorylate Cfi1. This disrupts the Cfi1–Cdc14 inter­
action, triggering Cdc14 release from the nucleolus (Azzam et al., 
2004). Sustained Cdc14 release and Cdk inactivation require 
the activity of a second essential network called the mitotic exit 
network (Shou et al., 1999; Visintin et al., 1999). Because sepa­
rase both triggers cohesin loss and down-regulates PP2ACdc55, 
Cdc14 early anaphase release–dependent Cdc14 release couples 
chromosome segregation to mitotic exit (Queralt et al., 2006).

We have explored the roles of PP2ACdc55 in meiosis. We find 
that Cdc55-depleted cells undergo a very delayed and inefficient 
single meiotic division, in which chromosome segregation is 
near random. The misregulation of two other phosphatases, 
Cdc14 and PP2ARts1, accounts for this phenotype. Cdc55 is re­
quired to prevent ectopic Cdc14 release early in meiosis to  
allow spindle assembly. Cdc55 additionally limits the cellular 
levels of PP2A containing the alternative B regulatory subunit 
Rts1, thereby ensuring the timely cleavage of Rec8 by separase. 
Our findings show that, by maintaining a balance of phospha­
tases, Cdc55 is a key coordinator of the meiotic program.

Results
Cells lacking Cdc55 undergo a single mixed 
meiotic division
We analyzed a strain in which CDC55 is under control of the 
meiotically repressed CLB2 promoter (cdc55mn for cdc55 mei-
otic null), resulting in Cdc55 depletion during meiosis (Clift et al., 
2009). Although wild-type cells completed both meiotic divi­
sions efficiently (90% tetranucleate cells; Fig. 1 A), a single 
nuclear division occurred in only 20% of cdc55mn cells, and 
tetranucleate cells were not observed (Fig. 1 B). A cdc55 
strain behaved similarly (Fig. 1 C). We used strains that produce 
tetracycline repressor–GFP and in which tetO arrays are inte­
grated close to the centromere of one copy of chromosome V  
(heterozygous CEN5-GFP) to examine the segregation of sister 
chromatids. Heterozygous CEN5-GFP foci were found in the 
same nucleus of virtually all wild-type binucleate cells, whereas 
35% of binucleate cdc55mn or cdc55 cells had CEN5-GFP 
foci in both nuclei, indicating equational (meiosis II–like) 
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Cdc14 resequestration, suggesting that nuclear division may  
occur at the usual time of meiosis II.

Cohesin loss from chromosomes in the 
absence of spindle assembly in  
cdc55mn cells
We asked whether failed spindle assembly in cdc55mn cells pre­
vents the loss of linkages between chromosomes. During meiosis, 

cells that divided their nuclei resequestered Cdc14 before this di­
vision (Fig. 1 J and Video 3). In these 80 cdc55mn cells that under­
went two rounds of Cdc14-GFP release, both the first (Fig. 1 L) 
and second (Fig. 1 M) round of release, though not the period of 
resequestration (Fig. 1 N), were on average extended compared 
with wild type. These observations confirmed that Cdc55 is essen­
tial to prevent Cdc14 release until after spindle formation. When 
spindles form in cdc55mn cells, this is commonly preceded by 

Figure 1.  Impaired nuclear division, random chromosome segregation, and ectopic Cdc14 release in cdc55mn cells. (A–D) Meiosis was induced in strains 
carrying heterozygous CEN5-GFP, PDS1-18MYC, and otherwise wild type (AM4796), cdc55mn (AM4891), or cdc55 (AM5338). The percentages 
of binucleate and tetranucleate cells (n = 200; A–C) or the pattern of GFP foci in binucleate cells (n > 800; D) is shown for a representative experiment.  
(E) Wild-type (AM6040) and cdc55mn (AM5936) strains carrying homozygous CEN5-GFP were analyzed as described in D. (F and G) Wild-type (AM6633) 
and cdc55mn (AM6626) cells carrying 3HA-CDC14, GAL-NDT80, and pGPD1-GAL4(848).ER were induced to sporulate and released from a pachytene 
block at 6 h. The percentages of cells with the indicated spindle morphology and with Cdc14 released from the nucleolus are shown for a representative  
experiment. (H–K) Wild-type (AM6935) and cdc55mn (AM6942) cells carrying CDC14-GFP, GFP-TUB1, and homozygous tetR-tdTomato were filmed.  
(H–J) Still images from Videos 1 (wild-type; H), 2 (cdc55mn; I), and 3 (cdc55mn; J). Arrows indicate Cdc14 sequestered in the nucleolus. Bars, 1 µm. (K) Behavior 
of cdc55mn cells that were in prophase I (as judged by spindle morphology) at the start of filming and released Cdc14 from the nucleolus (563/1,203 
prophase I cells). Examples of extruding microtubules are shown in fixed cells in Fig. S2. Times are given in minutes. (L–N) The time elapsed between the 
first Cdc14 release to Cdc14 resequestration (L), the second Cdc14 release to nuclear division (M), or Cdc14 resequestration and rerelease (N) are shown 
for cells that were in prophase I at the start of filming and in which two rounds of Cdc14 release were observed (wild type, n = 95; cdc55mn, n = 80). 
Box boundaries represent the bottom quartile and top quartile. The red line indicates the median, diamonds indicate the mean, and error bars represent 
the minimum and maximum values observed except for in the case of N in which two outliers (triangles) were excluded from the analysis. Because images 
were captured at 10-min intervals, the time elapsed between two observed events is subject to an error of 20 min.
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Figure 2.  Impaired spindle assembly in cdc55mn cells is caused by ectopic Cdc14 activation. (A–F) Wild-type (AM6142; A), cdc55mn (AM6131; B), 
cdc14-1 (AM7549; C), cdc14-1 cdc55mn (AM7550; D), mad2 (AM7547; E), and mad2 cdc55mn (AM7548; F) strains carrying REC8-3HA, PDS1-
18MYC, GAL-NDT80, and pGPD1-GAL4(848).ER were cultured as described in Fig 1 (F and G). The percentages of binucleate and tetranucleate cells, 
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whether or not Cdc55 was present (7 h; Fig. 2, E and F). For 
reasons that are unclear, the percentage of Pds1-positive cells in 
the pachytene arrest (6 h) were higher in cdc55mn cultures,  
independent of MAD2 or CDC14. Nevertheless, these findings 
indicate that ectopic Cdc14 activation in cdc55mn cells prevents 
spindle assembly, which leads to activation of the SAC.

Although inactivation of Cdc14 or Mad2 alleviated the 
delay to the first wave of Pds1 destruction and Rec8 cleavage in 
cdc55mn cells, full-length Rec8 was present at later time points 
in cultures in which Cdc55 was depleted (Fig. 2, C–F). This 
suggested that Cdc55 might also have Cdc14-independent roles 
in ensuring timely cleavage of cohesin during meiosis II.

Inactivation of Cdc14 in cdc55mn cells 
rescues homologue, but not  
sister, segregation
We took advantage of the cdc14-1 background to ask whether 
defective spindle assembly alone accounted for the missegrega­
tion of chromosomes in cdc55mn cells. Examination of homo­
zygous CEN5-GFP dots showed that homologue segregation in 
the cdc55mn strain was rescued by inactivation of Cdc14 be­
cause the GFP label was found in both nuclei of virtually all 
cdc14-1 cdc55mn binucleate cells (Fig. 3 A). Analysis of hetero­
zygous CEN5-GFP foci revealed that, surprisingly, inactivation 
of Cdc14 did not reduce the frequency of equational segre­
gation in cdc55mn cells (Fig. 3 B). We found previously that the 
cdc14-1 mutant undergoes a normal reductional meiosis I  
but that, subsequently, a fraction (10–15%) of sister chromatids 
segregate equationally on the same axis during meiosis II  
(Marston et al., 2003). We asked whether a similar increase in 
equational segregation occurs over time in cdc14-1 cdc55mn 
cells. As expected, virtually all wild-type binucleate cells from 
all time points analyzed had a heterozygous CEN5-GFP label in 
just one nucleus (Fig. 3 C), whereas 30% of binucleate cdc55mn 
cells had a GFP label in both nuclei (Fig. 3 D). Consistent with 
previous results (Marston et al., 2003), the first binucleate cells 
to appear in cdc14-1 cultures had a GFP label in one nucleus 
and only later were up to 10% of cells observed with a GFP 
label in both nuclei (Fig. 3 E). In cdc14-1 cdc55mn cells, segre­
gation of CEN5-GFP to the same nucleus was also observed 
first; however, the frequency of subsequent segregation to op­
posite nuclei was greatly increased, up to 50% (Fig. 3 F). 
These results indicate that Cdc55 has effects on chromosome 
segregation that are independent of its role in controlling Cdc14.

The spindle assembly defect in cdc55mn 
cells is not caused by premature  
Clb1 degradation
We investigated how ectopically activated Cdc14 prevents spin­
dle assembly in cdc55mn cells. During exit from mitosis, Cdc14 
triggers the inactivation of Cdks, largely by promoting cyclin 

the separase inhibitor securin (Pds1) is destroyed in two 
waves during anaphase I and anaphase II, liberating separase 
to cleave the chromosomal arm and centromeric cohesin (Rec8), 
respectively. We compared the timing of Pds1 degradation and 
Rec8 cleavage with spindle assembly in cdc55mn cells. In wild-
type cells, as expected, the first round of Pds1 degradation 
coincided with a reduction in full-length Rec8, appearance of 
a shorter cleavage product, and the accumulation of anaphase I 
spindles and binucleate cells (Fig. 2 A). In cdc55mn cells, bulk 
Pds1 degradation was delayed, and although Rec8 cleavage oc­
curred soon afterward, neither anaphase I spindles nor nuclear 
division formed at this time (Fig. 2 B), although extruding and 
fragmented microtubules were observed (Fig. S2). Nuclear di­
vision was instead coupled to the second round of Pds1 degra­
dation in cdc55mn cells (Fig. 2 B). Consistent with the two 
waves of Pds1 degradation, Rec8 was lost from chromosome 
arms first and then centromeres later in cdc55mn cells (Fig. S2). 
These results indicate that the stepwise loss of cohesin is pre­
served in cdc55mn cells but uncoupled from spindle formation, 
which occurs only at the time expected for meiosis II. Because 
linkages between chromosomes are already lost at the time of 
nuclear division, this explains the near-random segregation of 
cdc55mn cells.

Premature Cdc14 activation prevents 
spindle assembly in cdc55mn cells
To determine whether ectopic Cdc14 release is the reason for 
delayed and inefficient spindle formation in cdc55mn cells, we 
introduced the temperature-sensitive cdc14-1 allele into cdc55mn 
cells. At the restrictive temperature (30°C), cdc14-1 mutants as­
semble robust meiosis I spindles and undergo nuclear division 
to produce binucleate cells, though tetranucleate cells are not 
produced because of a failure to properly exit meiosis I (Marston 
et al., 2003). Nevertheless, Pds1 undergoes two cycles of accu­
mulation and destruction, and Rec8 cleavage is stepwise in 
cdc14-1 cells, with nuclear division and the appearance of ana­
phase I spindles being coupled to the first round of Pds1 degra­
dation (Fig. 2 C; Marston et al., 2003). Remarkably, metaphase I 
spindles assembled with normal timing in cdc14-1 cdc55mn 
cells, and the first round of Pds1 destruction and Rec8 cleavage 
were coupled to the appearance of anaphase I spindles (Fig. 2 D). 
Therefore, spindle assembly fails in cdc55mn cells as a result of 
the ectopic activation of Cdc14.

Inactivation of Cdc14 not only rescued the spindle assem­
bly defect of cdc55mn cells but also partially alleviated the delay 
in Pds1 destruction. Pds1 stabilization in cdc55mn cells might 
occur because the absence of a spindle would inevitably result 
in unattached kinetochores that could engage the spindle assem­
bly checkpoint (SAC). Indeed, in cells lacking MAD2, which is 
required for a functional SAC (Shonn et al., 2000), Pds1 degra­
dation and Rec8 cleavage were initiated with similar timing 

Pds1-positive cells, and cells with the indicated spindle morphology were determined. Anti-HA and anti-Myc immunoblots showing the positions of full-length  
Rec8-3HA, cleaved Rec8-3HA, and Pds1-18Myc (arrowheads) are shown with protein molecular mass markers in black (anti-HA) or gray (anti-Myc).  
Arrows indicate a reduction in Pds1-positive cells in the first and second meiotic division. Blots are representative (A and B) or were performed once (C–F). 
Numbers at the top of the blots indicate time in hours.
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in the cdc14-1 cdc55mn mutant, loss of Clb1 nuclear enrichment 
and conversion to the faster migrating form occurred with simi­
lar kinetics to wild type (Fig. 4 D). Therefore, the critical role of 
Cdc14 in meiosis I exit appears not to be the nuclear export of 
Clb1. Moreover, the spindle assembly defect of cdc55mn cells is 
not caused by a failure to concentrate Clb1 in the nucleus.

Spindle midzone proteins do not prevent 
spindle assembly in cdc55mn cells
We considered whether three proteins, Ase1, Fin1, and Sli15 
(INCENP), which are known to be dephosphorylated by 
Cdc14 during anaphase and affect spindle stability, prevent 
spindle assembly in cdc55mn cells. Dephosphorylation by 
Cdc14 during anaphase causes Ase1 to focus to the spindle 
midzone, Fin1 to associate with microtubules, and Sli15 to be 
recruited to the spindle midzone (Pereira and Schiebel, 2003; 
Woodbury and Morgan, 2006; Khmelinskii et al., 2007). We 
reasoned that ectopic Cdc14 in cdc55mn cells could result in 

destruction, and this is a prerequisite for spindle disassembly 
(Sullivan and Morgan, 2007). During meiosis, metaphase I spin­
dle assembly correlates with the appearance of Cdk activity  
associated with the cyclins Clb1 and Clb4 (Carlile and Amon, 
2008), and Clb1 is retained in the nucleus of cdc14-1 cells dur­
ing meiosis (Marston et al., 2003). We tested whether ectopically 
released Cdc14 in cdc55mn cells prevents Clb1 nuclear accumu­
lation. In wild-type cells, the presence of a meiosis I–specific 
slower migrating Clb1 form, thought to represent the active  
kinase-associated form (Carlile and Amon, 2008), correlated 
with Clb1 nuclear localization (Fig. 4 A). In cdc14-1 cells, Clb1  
export from the nucleus was delayed, though it lost its nuclear 
enrichment and converted to the faster migrating form as cells 
entered anaphase I, indicating that Cdc14, surprisingly, is not re­
quired for these changes (Fig. 4 B). In cdc55mn cells, Clb1 ex­
port from the nucleus and conversion to the faster migrating 
form was abolished (Fig. 4 C), arguing against the idea that ec­
topically active Cdc14 inactivates Clb1 in cdc55mn cells. Indeed, 

Figure 3.  The cdc14-1 mutation rescues homologue seg-
regation in cdc55mn cells but does not prevent equational 
segregation on the same axis. (A) Segregation of homozy-
gous CEN5-GFP foci in ≥1,000 binucleate cells of wild-type 
(AM6040), cdc55mn (AM5936), cdc14-1 (AM6902), and 
cdc14-1 cdc55mn (AM6908) strains were determined as de-
scribed in Fig. 1 D. (B–F) Segregation of heterozygous CEN5-
GFP in wild-type (AM4796), cdc55mn (AM4891), cdc14-1 
(AM6910), and cdc14-1 cdc55mn (AM6934) cells. (B) Seg-
regation in binucleate cells was determined as described in A. 
(C–F) The total percentage of binucleate and tetranucleate 
cells and the percentage of binucleate cells that have GFP 
foci in one, both, or between the two nuclei are shown for a 
representative experiment.
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binucleate cells (Fig. 5, G and H), arguing that the majority of 
sister kinetochores monoorient in cdc55mn cells. Furthermore, 
binucleate cells with partially divided nuclei and GFP foci 
trapped in the middle were prevalent in the cdc14-1 mam1 
cdc55mn but not in the cdc14-1 mam1 culture (Fig. 5, G and H). 
These observations indicate that Cdc55 is not required for  
kinetochore monoorientation but rather suggest that Cdc55 pro­
motes the timely resolution of sister chromatids at meiosis II.

Two rounds of spindle assembly in cdc14-1 
cells depleted for Cdc55
The finding that Cdc55 is required for the timely separation of 
sister chromatids at meiosis II suggested that persistent link­
ages between sister chromatids might be the cause of the in­
creased equational segregation caused by depletion of Cdc55 
in cdc14-1 cells. To gain a clearer picture of the timing of 
equational segregation, we examined heterozygous GFP dot 
segregation in cdc14-1 and cdc14-1 cdc55mn cells in synchro­
nized cells. In cdc14-1 cells, anaphase I spindles appeared  
after 7.25 h; however, binucleate cells with CEN5-GFP in both 
nuclei did not accumulate until 8.5 h (Fig. 6 A). In cdc14-1  
cdc55mn cells, surprisingly, after the anaphase I peak declined, it 
gave way to a second metaphase I peak followed by a second 
anaphase I peak, which correlated with the equational segrega­
tion of CEN5-GFP (Fig. 6 B). The unexpected two rounds of 
spindle assembly and disassembly in cdc14-1 cdc55mn cells 
were also observed in other synchronized experiments and 
were reflected as a transient decline in the numbers of binucle­
ate cells at the time expected for meiosis I exit (e.g., Figs. 2 D 
and 4 D). Interestingly, two similar, but less pronounced, peaks 
were observed in synchronized cultures of the cdc14-1 single 
mutant, although anaphase I spindles tended to disassemble 
into spindles with metaphase II–like morphology, which prob­
ably represent two half-spindles (Fig. 6 A; also see Figs. 2 C 
and 4 B). These findings infer that, contradicting the interpre­
tation of experiments with poorly synchronized cultures in 
which meiosis I and meiosis II cannot be resolved (Buonomo 
et al., 2003; Marston et al., 2003), spindle disassembly does 
occur after meiosis I in the absence of Cdc14 function, only to 
reassemble along the same axis.

To visualize the relationship between spindle behavior 
and equational segregation in real time, we filmed live cdc14-1 
and cdc14-1 cdc55mn cells carrying GFP-Tub1 and hetero­
zygous URA3–tandem dimer Tomato (tdTomato; 35 kb from 
CEN5; Fig. 6, C–E). In the majority (64%) of cdc14-1 cells in 
which nuclear division was observed after prophase I, only a 
single division occurred, after which two short spindles appeared, 
as shown in the example in Fig. 6 C and Video 4. However, 
cdc14-1 cdc55mn cells performed two nuclear divisions on the 
same axis with a high frequency (82%; Fig. 6 D and Video 5). 
Remarkably, as inferred from the fixed samples (Fig. 6 B), spin­
dles underwent elongation followed by disassembly, reassem­
bly, and reelongation that correlated with nuclear division, 
refusion, and then redivision, respectively (Fig. 6 D and Video 5). 
This behavior was also observed in cdc14-1 cells with a 
lower frequency (36%). Although we cannot rule out the possi­
bility that cdc14-1 cells retain residual Cdc14 activity that is 

the premature conversion of Ase1, Fin1, or Sli15 to the un­
phosphorylated form with the potential to interfere with spin­
dle assembly. If this were true, inactivation of ASE1, FIN1, or 
SLI15 would be expected to rescue the spindle assembly de­
fect of cdc55mn cells, provided that these mutations did not by 
themselves preclude spindle assembly during meiosis. How­
ever, deletion of ASE1 or FIN1 did not rescue spindle forma­
tion or nuclear division in cdc55mn cells, whereas both ase1 
and fin1 cells built metaphase I spindles efficiently (Fig. S3). 
Because Sli15 targets the Aurora B kinase (Ipl1 in budding 
yeast) to the spindle, we examined a strain depleted for Ipl1 in 
meiosis (ipl1mn). Although spindle assembly was impaired in 
Ipl1-depleted cells as seen in other systems (Sampath et al., 
2004; Colombié et al., 2008), codepletion of Cdc55 resulted in 
a more severe spindle assembly defect (Fig. S3). Therefore, 
mistargeting one of the Cdc14 substrates, Ase1, Fin1, or the 
Sli15-associated kinase Ipl1, does not prevent spindle assem­
bly in cdc55mn cells.

Kinetochores are monooriented in 
cdc55mn cells, but sister  
segregation is delayed
Next, we asked why depletion of Cdc55 increases equational 
segregation in the cdc14-1 background. One explanation could 
be that during meiosis I, sister kinetochores fail to attach to 
microtubules from the same spindle pole body (monoorienta­
tion) and attach to microtubules from opposite poles (biorienta­
tion) instead. This would lead to the equational segregation of 
sister chromatids only once centromeric cohesion is lost at mei­
osis II. Indeed, CDC55 was previously identified in a screen to 
uncover new components of the monopolin complex that speci­
fies monoorientation during meiosis I (Rabitsch et al., 2003). 
However, analysis of the monopolin subunit Mam1 on spread 
meiotic nuclei indicated that it was recruited to and disappeared 
from kinetochores with similar timing to that in wild type in  
cdc55mn cells (Fig. 5, A–D). We monitored the splitting of hetero­
zygous CEN5-GFP foci that occurs only when sister kinetochores 
are bioriented in metaphase I–arrested cells (by depletion of the 
anaphase-promoting complex activator Cdc20; Lee and Amon, 
2003). Because the absence of spindles in cdc55mn cells pre­
cludes CEN5-GFP separation even when sister kinetochores are 
bioriented (Fig. S4), we conducted this experiment in the cdc14-1 
background. In cdc20mn cdc14-1 control cells, little sister cen­
tromere separation was observed, as sister kinetochores are  
monooriented, whereas deletion of MAM1 resulted in CEN5-GFP 
separation in up to 50% of cells (Fig. S4). Similarly, a high fre­
quency of sister centromere separation was observed in cdc14-1 
mam1 cdc55mn cells (although not to the same level as a 
cdc14-1 mam1 for unknown reasons; Fig. S4). The frequency 
of centromere splitting was lower in cdc14-1 cdc55mn cells 
with intact MAM1, indicating that kinetochore monoorientation 
is at least partially functional in cdc55mn cells (Fig. S4). To fur­
ther address this issue, we assessed the contribution of monopo­
lin to the segregation pattern of cdc55mn cells with a spindle 
(Fig. S4 and Fig. 5, E–H). Deletion of MAM1 in either the 
cdc14-1 or cdc14-1 cdc55mn strain resulted in the equational 
segregation of heterozygous CEN5-GFP foci in the majority of 
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Figure 4.  Ectopic Cdc14 activation does not cause premature degradation of the meiotic cyclin Clb1. (A–D) Wild-type (AM6770; A), cdc14-1 (AM7815; B),  
cdc55mn (AM6961; C), and cdc14-1 cdc55mn (AM7816; D) cells carrying CLB1-9MYC, GAL-NDT80, and pGPD1-GAL4(848).ER were released  
from a pachytene arrest. The percentages of cells with the indicated spindle morphology (top) or Clb1-9Myc localization (middle) were determined at the 
indicated time points. The anti-Myc immunoblot (bottom) is shown with the anti-Pgk1 immunoblot as a loading control and the positions of molecular mass 
markers indicated. Western blots are representative (A and C) or were performed once (B and D). Numbers at the top of the blots indicate time in hours.
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nuclei to recoalesce, which increases the probability of equa­
tional segregation at the time of meiosis II.

What could be the nature of the persistent linkages be­
tween chromosomes that cause nuclei to refuse in cdc14-1  
cdc55mn cells? Removal of chiasmata by deletion of SPO11 
abolishes the second peak of anaphase I spindles and equational 
segregation in cdc14-1 cells, suggesting that residual linkages 
between homologues could be responsible (Fig. 6 G; Marston et 
al., 2003). However, we found that deletion of SPO11 did not 
abolish the second anaphase I peak and only partially decreased 
the incidence of equational segregation in cdc14-1 cdc55mn cells 
(Fig. 6 H). This suggests that both interhomologue and intersister 

sufficient for spindle breakdown, the ability of these cells to 
build robust meiosis I spindles in the cdc55mn background sug­
gests that this is unlikely. Importantly, in both cdc14-1 and 
cdc14-1 cdc55mn strains, in which a single division was ob­
served, it was usually reductional, whereas when a second divi­
sion occurred, it was most often equational and was preceded by 
a reductional division (Fig. 6 E). This confirms that reductional 
and equational segregations occur sequentially on the same axis 
in cdc14-1 cells. Interestingly, the time taken for the second di­
vision tended to be longer in cells depleted for Cdc55 (Fig. 6 F). 
This raises the possibility that difficulty in resolving linkages 
between chromosomes in cdc55mn cells causes partially divided 

Figure 5.  Kinetochores are monooriented during 
meiosis I in cdc55mn cells. (A–D) Wild-type (AM5900; 
A and C) and cdc55mn (AM5771; B and D) cells car-
rying MAM1-9MYC, NDC10-6HA, GAL-NDT80, and 
pGPD1-GAL4(848).ER were released from a pachytene 
block, and the localization of Mam1-9Myc was deter-
mined using Ndc10-6HA as a marker for kinetochores. 
(C and D) The percentages of binucleate and tetranu-
cleate cells determined at the indicated time points are 
shown for a representative experiment. (E–H) Strains 
carrying heterozygous CEN5-GFP dots and otherwise 
cdc14-1 (AM6910), cdc14-1 cdc55mn (AM6934),  
cdc14-1 mam1 (AM7355), and cdc14-1 mam1 cdc55mn  
(AM7328) were analyzed as described in Fig. 3 (C–F).
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suggesting that it is the unphosphorylated form that is resistant to 
separase-dependent cleavage. Cohesin is protected by the recruit­
ment of PP2A complexed with the alternative regulatory subunit 
Rts1 (PP2ARts1) to the pericentromere by Sgo1 (Clift and Marston, 
2011). Consistent with the persistence of Rec8 at centromeres 
(Fig. S2), we found that Sgo1 removal from centromeres was de­
layed in cdc55mn cells (Fig. 7, A–F). To ask whether overprotec­
tion of Rec8 by Sgo1 causes equational segregation in cdc14-1 
cdc55mn cells, we depleted Sgo1 in meiotic cells and analyzed 
the segregation of heterozygous CEN5-GFP in binucleate cells. 
Remarkably, CEN5-GFP segregation was reductional in virtually 

linkages play a part in nuclear refusion and in increasing the 
frequency of equational segregation in cdc14-1 cdc55mn cells.

Persistent centromeric cohesion increases 
equational segregation in cdc55mn cells
Two lines of evidence indicate that the overprotection of cohesin 
could provide the persistent linkages between sister chromatids 
in cdc55mn cells. First, Rec8 is slow to be removed from centro­
meres in cdc55mn cells (Fig. S2). Second, full-length, faster mi­
grating Rec8 persists after the second round of securin degradation 
in cdc14-1 cdc55mn and mad2 cdc55mn cells (Fig. 2, D and F), 

Figure 6.  Equational segregation occurs on a newly assembled spindle in cdc14-1 mutants and is elevated by Cdc55 depletion. (A and B) Strains carrying 
heterozygous CEN5-GFP, GAL-NDT80, pGPD1-GAL4(848).ER, and either cdc14-1 (AM8044; A) or cdc14-1 cdc55mn (AM8045; B) were released from 
a pachytene block, and the percentages of cells with the indicated spindle morphology (top graph) and pattern of CEN5-GFP localization in the binucleate 
cells (bottom graph) were determined. (C–F) cdc14-1 (AM7866) and cdc14-1 cdc55mn (AM7867) cells carrying URA3-tdTomato (red) and GFP-TUB1 
(green) were imaged at 10-min intervals for a total of 9 h and 46 min and 9 h and 56 min, respectively. (C) Example of a cdc14-1 cell that completes a 
single meiotic division. (D) Example of a cdc14-1 cdc55mn cell that completes two divisions on the same axis. Times at the top are given in minutes. Bars, 
1 µm. (E) Behavior of cdc14-1 and cdc14-1 cdc55mn cells that were initially in prophase I and which performed at least one division during the course of 
filming. red, reductional; equ, equational. (F) The frequency of cdc14-1 and cdc14-1 cdc55mn cells that performed the second division within the indicated 
time period. Also see Videos 4 and 5. (G and H) Strains carrying heterozygous CEN5-GFP dots GAL-NDT80, pGPD1-GAL4(848).ER, and either spo11 
cdc14-1 (AM8046; G) or spo11 cdc14-1 cdc55mn (AM8047; H) were treated as described in A and B.
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loss of linkages between chromosomes to spindle assembly. We 
postulate that, as in mitosis (Queralt et al., 2006), separase both 
cleaves cohesin and down-regulates Cdc55, thereby triggering 
Cdc14 release. The essential role of Cdc14 in meiosis I exit is 
generation of a new spindle axis for meiosis II. In this way, sepa­
rase activation couples meiosis I chromosome segregation to the 
formation of two separate spindles for meiosis II.

Regulation of Cdc14 function is essential 
for meiosis
These findings have established the importance of Cdc14 control 
during meiosis and demonstrated a crucial regulatory role of 
Cdc55. Cdc55 is essential for Cdc14 sequestration during early 
meiosis, in contrast to mitosis, in which inappropriate release of 
Cdc14 was observed only in metaphase-arrested cdc55 cells 
(Queralt et al., 2006). This difference could be because active 
Clb1–Cdk and Clb2–Cdk complexes, which can phosphorylate 
Cfi1/Net1 to promote Cdc14 release (Azzam et al., 2004), accu­
mulate late in mitosis (Grandin and Reed, 1993). Although Clb2 
is not present in meiosis, Clb1–Cdk activity accumulates soon 
after exit from pachytene (Carlile and Amon, 2008). Consistent 
with this interpretation, Cdc14 release (Fig. 1 G) in cdc55mn 
cells correlates with Clb1 accumulation in the nucleus (Fig. 4 C). 
Therefore, during early meiosis, the potential for Cdc14 release 
exists because of the presence of active Clb1–Cdk, and this places 
a critical requirement on PP2ACdc55 to restrain Cdc14 activity.

Premature release of Cdc14 in cdc55mn cells prohibits 
meiosis I spindle assembly; similarly, treatment of mouse oo­
cytes with okadaic acid, an inhibitor of PP2A, also prevented 
spindle assembly (Lu et al., 2002). Although Cdc14 homologues 
are not required for mitotic exit in mammals (Mocciaro and 
Schiebel, 2010), they are important for the meiosis I to meiosis II 
transition in mouse oocytes (Schindler and Schultz, 2009). There­
fore, PP2ACdc55-dependent regulation of Cdc14 might also ensure 
timely spindle assembly in mouse meiosis. The mechanism of 
spindle assembly is not well understood but is known to be driven 
by Cdk activity (Sullivan and Morgan, 2007). Accordingly, in 
budding yeast, Cdc14 is thought to promote spindle breakdown 
at mitotic exit both by the reversal of Cdk-dependent phosphory­
lation and by promoting Cdk inactivation (Sullivan and Morgan, 
2007; Woodruff et al., 2010). Although Clb1 regulation appears 
to be independent of Cdc14 during meiosis, further investigation 
is required to determine whether Cdc14 controls spindle dynam­
ics through Cdk regulation in meiosis too.

Although ectopically released Cdc14 prevents spindle as­
sembly, surprisingly, the SAC is only transiently activated, and 
securin is degraded after a delay. Unregulated Cdc14 in cdc55 
mitotic cells similarly allows cell cycle progression upon treat­
ment with microtubule-depolymerizing drugs (Yellman and 
Burke, 2006). This could be because Cdc14 is part of a mecha­
nism to silence the SAC during anaphase of mitosis (Mirchenko 
and Uhlmann, 2010). Therefore, ectopically released Cdc14 is 
potentially doubly dangerous during meiosis because it may 
both prevent spindle assembly and turn off the checkpoint de­
signed to halt the cell cycle in response to this failure.

Paradoxically, we found that spindle breakdown at meiosis I 
exit does not require Cdc14; instead, it is essential for duplication 

all cdc14-1 sgo1mn cdc55mn binucleate cells (Fig. 7 G). Deple­
tion of Sgo1 prevents equational segregation caused by the abol­
ishment of cohesin protection rather than some other function of 
Sgo1 because replacement of Rec8 by the mitotic cohesin Scc1, 
which is refractory to Sgo1-PP2ARts1 protection (Tóth et al., 
2000), also abolished equational segregation in cdc14-1 cdc55mn 
cells (Fig. 7 H). Furthermore, the accumulation of metaphase I 
spindles in cdc14-1 cdc55mn cells was abolished by either Sgo1 
depletion or replacement of Rec8 by Scc1 (Fig. S5). We conclude 
that overprotection of cohesin precludes the timely resolution of 
linkages to allow equational segregation on the same axis during 
meiosis I in cdc14-1 cdc55mn mutants.

An imbalance of PP2A isoforms in 
cdc55mn cells
Why is the deprotection of cohesin delayed in Cdc55-depleted 
cells? Because Cdc55 and Rts1 are alternative regulatory (B) 
subunits for PP2A, we considered that the absence of Cdc55 
might lead to an excess of PP2A scaffold (A) and catalytic (C) 
subunits available to associate with Rts1. This, in turn, could re­
sult in the recruitment of high levels of PP2ARts1 to centromeres 
and the persistence of unphosphorylated, noncleavable cohesin. 
Indeed, more Rts1 coimmunoprecipitated with the PP2A A sub­
unit Tpd3 in extracts from cdc55mn cells than from wild-type 
cells undergoing meiosis (Fig. 7 I). We used chromatin immuno­
precipitation followed by quantitative PCR (qPCR) to measure 
the levels of Rts1 associated with four sites on chromosome IV 
in metaphase I–arrested cells (cdc20mn). Although we ob­
served a moderate enrichment of Rts1 at the centromere-proximal 
site in wild-type cells, levels did not significantly rise over back­
ground at other sites examined (Fig. 7 J). In cdc55mn cells, 
however, Rts1 was highly enriched at all sites tested (Fig. 7 J), 
including a site on the chromosome arm (95 kb to left) where 
cohesin would not normally be protected during meiosis I (Kiburz 
et al., 2005). Similar observations were made for Sgo1 (unpub­
lished data). We conclude that depletion of Cdc55 during meio­
sis causes an increase in the amount of PP2ARts1 at centromeres, 
which overprotects cohesion.

Discussion
Cdc55 coordinates meiosis by regulating 
two other phosphatases
Cdc55 is a member of a conserved family of regulatory (B) sub­
units for PP2A (Shi, 2009). We have shown that Cdc55 plays a 
critical role in the coordination of the meiotic divisions in bud­
ding yeast. In the absence of Cdc55, nuclear division is impaired, 
and chromosomes segregate randomly. This phenotype is ex­
plained by the misregulation of two other phosphatases, Cdc14 
and PP2A, in complex with the alternative regulatory subunit 
Rts1 (B). Cdc55 is required to prevent the unscheduled release 
of Cdc14 from the nucleolus, and this, in turn, prevents spindle 
assembly during meiosis I but not the events triggering loss of 
linkages between chromosomes. Also, in the absence of Cdc55, 
Rts1 is highly enriched at centromeres, and this dominantly in­
hibits the separation of sister chromatids at meiosis II. The model 
in Fig. 8 illustrates how these two activities of Cdc55 couple the 
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Figure 7.  Overprotection of cohesin in a cdc55mn cell during meiosis. (A–F) Wild-type (AM7228; A, C, and E) and cdc55mn (AM7229; B, D, and F) 
cells carrying GAL-NDT80 and pGPD1-GAL4(848).ER were released from the pachytene block, and Sgo1 localization at kinetochores (A and B) or the 
percentages of binucleate and tetranucleate cells (C and D) were determined in a single experiment. (E and F) Examples of Sgo1 localization are shown. 
Bars, 2 µm. (G and H) Depletion of Sgo1 (G) or replacement of Rec8 by Scc1 (H) abolishes equational segregation in cdc14-1 cdc55mn cells. Strains 
carrying heterozygous CEN5-GFP and with the indicated genotypes were treated as described in Fig. 1. n = 680–2,000. Strains used were wild type 
(AM4796), cdc55mn (AM4891), sgo1mn (AM4911), sgo1mn cdc55mn (AM7286), cdc14-1 (AM6910), cdc14-1 cdc55mn (AM6934), cdc14-1 sgo1mn 
(AM7360), cdc14-1 sgo1mn cdc55mn (AM7421), spo11 rec8 pREC8-SCC1 (AM5501), spo11 rec8 pREC8-SCC1 cdc55mn (AM5502), spo11 
rec8 pREC8-SCC1 cdc14-1 (AM7361), and spo11 rec8 pREC8-SCC1 cdc14-1 cdc55mn (AM7362). (I) Tpd3-6HA was immunoprecipitated using 
anti-HA antibodies from meiotic extracts of wild-type and cdc55mn cells carrying RTS1-3PK and either TPD3-6HA (AM8028 and AM8014) or no tag 
(AM8012 and AM8029). Anti-V5 (PK) and anti-HA immunoblots of input and immunoprecipitated samples from strains of the indicated genotypes are 
shown, with protein molecular mass markers shown in black or red, respectively. An Rts1-3PK degradation product is indicated by the gray arrowhead, 
and the asterisk indicates residual 3HA-Cdc55. (J) qPCR analysis of chromatin immunoprecipitated using anti-V5 (PK) antibodies from cdc20mn (AM3560), 
cdc20mn RTS1-3PK (AM7902), cdc20mn cdc55mn (AM7903), and cdc20mn cdc55mn RTS1-3PK (AM7904) strains. The mean of three experiments is 
shown with error bars indicating standard deviation.
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many human cancers, but the role of regulatory subunits has been 
difficult to dissect because both positive and negative effects 
have been previously described (Westermarck and Hahn, 2008; 
Eichhorn et al., 2009). Our study has highlighted the need to 
consider dominant effects caused by an imbalance of PP2A iso­
forms to understand the mechanism of tumorogenesis. Protein 
kinases and phosphatases form an extensive interaction network 
(Breitkreutz et al., 2010). The interplay between phosphatases 
that we find to coordinate meiosis likely represents a general par­
adigm in cellular regulation. Understanding the nature of their 
regulatory interactions is an important goal for the future.

Materials and methods
Yeast strains
The strains used in this study are listed in Table S1 and are all derivatives 
of SK1. pCLB2-3HA-CDC55 (cdc55mn) and cdc55 were previously de-
scribed in Clift et al. (2009). CEN5-GFP dots, pREC8-SCC1-3HA, NDC10-
6HA, MAM1-9MYC, and PDS1-18MYC were previously described in Tóth 
et al. (2000). CLB1-9MYC was previously described in Buonomo et al. 
(2003). cdc20mn and ubr1 were previously described in Lee and Amon 
(2003). pCLB2-3HA-SGO1 (sgo1mn) and mam1 were previously de-
scribed in Lee et al. (2004). spo11, rec8, and REC8-3HA were previ-
ously described in Klein et al. (1999). 3HA-CDC14, cdc14-1, REC8-13MYC, 
and SGO1-9MYC were previously described in Marston et al. (2003). GAL-
NDT80 and pGPD1-GAL4(848).ER were previously described in Benjamin 
et al. (2003). tetR-tdTomato, tetO-URA3, GFP-TUB1, and CDC14-GFP were 

of the spindle axis. The critical function of Cdc14 is unknown, 
though it appears to be independent of spindle pole body dupli­
cation (unpublished data). Remarkably, the failure to build a 
new spindle axis allows segregated DNA masses to refuse when 
division is aborted as a result of unresolved linkages between 
chromosomes, only to undergo a second round of segregation 
on a new spindle built on the same axis.

Regulation of PP2A isoforms
An intriguing finding of our work is the importance of phospha­
tase regulatory subunits in maintaining the cellular homeostasis 
of PP2A isoforms. Alternate regulatory subunits confer a high 
degree of substrate specificity to PP2A enzymes (Virshup and 
Shenolikar, 2009), and our findings indicate that they also control 
the balance of the different isoforms. The interdependence of 
PP2A regulatory subunits described here for meiosis is probably 
widespread in other systems. Overexpression of PP2A regulatory 
subunits in Xenopus laevis and Drosophila melanogaster induces 
effects that could be attributed to competition with other subunits 
(Yang et al., 2003; Bajpai et al., 2004). Furthermore, mutations in 
the gene encoding the Drosophila B/PR55 subunit result in lag­
ging chromosomes during anaphase (Mayer-Jaekel et al., 1993), 
which is similar to our observations upon depletion of its bud­
ding yeast homologue, Cdc55, during meiosis. PP2A is altered in 

Figure 8.  Model for coordination of the meiotic program by Cdc55. (A) In wild-type cells during metaphase I, PP2ACdc55 both maintains Cdc14 sequestra-
tion in the nucleolus by dephosphorylating Cfi1 and restricts the amount of PP2A scaffold (A) and catalytic (C) subunits available to form a complex with 
Rts1 (B). The level of PP2ARts1 defines the domain of cohesion that will be protected during meiosis I. Once chromosomes are correctly aligned, separase 
activation leads to both the cleavage of unprotected arm cohesin and, through PP2ACdc55 down-regulation, Cdc14 release. Cdc14 release during anaphase 
I ensures that a second spindle axis will assemble in meiosis II after its resequestration. (B) In cdc55mn cells, ectopic Cdc14 release interferes with spindle 
assembly, and excess PP2ARts1 extends the domain of protected cohesin. This prevents nuclear division except in a low number of cells in which Cdc14 is 
relocalized to the nucleolus through an unknown mechanism (?). P indicates Cdk-dependent phosphorylation of Cfi1/Net1.
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antibody was used. qPCR was performed using the SYBR green reagent 
(EXPRESS; Invitrogen) on the LightCycler (Roche). Primers for the sites  
“95 kb to left” are AM782, 5-AGATGAAACTCAGGCTACCA-3, and 
AM783, 5-TGCAACATCGTTAGTTCTTG-3; “9 kb to left” are AM1319, 
5-ATGATTCAATGGATTTAGCC-3, and AM1320, 5-GTCAGTCTTATGCT-
GTTCCC-3; “6 kb to left” are AM1325, 5-AATCCTGTATGAAAGCCCTA-3, 
and AM1326, 5-AAATAGGAAGGACTTAGGGAA-3; and “150 bp 
right” are AM794, 5-CCGAGGCTTTCATAGCTTA-3, and AM795, 
5-ACCGGAAGGAAGAATAAGAA-3.

Preparation of yeast lysates and protein immunoprecipitation
To prepare yeast lysates for immunoprecipitation, cells were induced to 
sporulate and harvested after 4 h. Pellets were washed once in cold double-
distilled H2O supplemented with 2 mM PMSF and then resuspended in 
20% cell pellet volume of water supplemented with a protease inhibitor 
cocktail (5 µg/ml pepstatin A, antipain, chymostatin, leupeptin, E-64, 
aprotinin, 2 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride,  
1 mM benzamidine, and 1 mM PMSF). Cells were drop frozen in liquid ni-
trogen, ground to powder in a mortar and pestle, resuspended in cold yeast 
lysis buffer (50 mM Tris-Cl, pH 7.6, 150 mM NaCl, 1% wt/vol Triton X-100, 
1 mM EDTA [Hombauer et al., 2007]) supplemented with the aforemen-
tioned protease inhibitor cocktail, and then centrifuged and filtered through 
a 1.6-µm filter.

To pull down Tpd3-6HA, lysate containing 3 mg total protein was in-
cubated with 7.5 µl anti-HA (12CA5) antibody with rotation for 30 min at 
4°C, and 15 µl protein G Dynabeads were added for a further 1 h of incu-
bation. The beads were then washed three times in cold yeast lysis buffer 
plus inhibitors and boiled in sample buffer for SDS-PAGE and Western blot-
ting. Tpd3-6HA is fully functional (spore viability of strain AM8013 was 
39/40); however, for unknown reasons, its presence increases the slower 
migrating forms of Rts1-3PK, and these preferentially coimmunoprecipitate 
with Tpd3-6HA (Fig. 7 I)

Online supplemental material
Fig. S1 shows that abolishing interchromosomal linkages does not rescue 
nuclear division or prevent equational segregation in cdc55mn cells. Fig. S2 
shows that Rec8 loss is stepwise in cdc55mn cells and provides examples 
of microtubule structures in cdc55mn cells. Fig. S3 shows that deletion 
of ASE1 or FIN1 or depletion of Ipl1 does not restore spindle assembly to 
cdc55mn cells. Fig. S4 shows that kinetochores are monooriented during 
meiosis I in cdc55mn cells. Fig. S5 shows that depletion of Sgo1 or replace-
ment of REC8 with SCC1 rescues the accumulation of short spindles in 
cdc14-1 cdc55mn cells. Video 1 shows an example of Cdc14 release in 
wild-type cells undergoing meiosis. Video 2 shows an example of a  
cdc55mn cell in which Cdc14 released by nuclear division does not occur. 
Video 3 shows an example of a cdc55mn cell in which Cdc14 is released 
and transiently resequestered before nuclear division occurs. Video 4 shows 
an example of a cdc14-1 cell that performs a single reductional chromo-
some segregation. Video 5 shows an example of a cdc14-1 cdc55mn cell 
that performs sequential reductional and equational segregation along the 
same spindle axis. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201103076/DC1.
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