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The origin of mtDNA
The mitochondrial oxidative phosphorylation system is re-
markable in its dependence on both nuclear- and mitochondrial 
DNA (mtDNA)-encoded subunits (Falkenberg et al., 2007). 
The involvement of two distinct genomes creates a demand for 
elaborate regulatory processes to coordinate gene expression 
in response to cellular demands for ATP synthesis (Falkenberg  
et al., 2007). Mitochondria are related to -protobacteria, and 
the eukaryotic cell arose approximately two billion years ago 
by some type of fusion event between ancient cells related to 
-protobacteria and archaebacteria (Yang et al., 1985; Lang et al., 
1997; Andersson et al., 1998). Phylogenetic comparisons have 
shown that there is always cosegregation between the presence 
of mtDNA and a functional respiratory chain (Burger et al., 
2003; Wallace, 2007). There is ongoing traffic of mtDNA frag-
ments to the nucleus (Thorsness and Fox, 1990), and genes for 
many respiratory chain subunits have been transferred to the 
nucleus during evolution (Burger et al., 2003; Wallace, 2007). 
However, the genes for cytochrome b and cytochrome c oxi-
dase subunit I are always maintained in mtDNA of the many 
organisms that have been studied to date (Wallace, 2007). The 
reason for the localization of these genes to mtDNA could be 

the hydrophobicity of the gene products, which may prevent 
mitochondrial import if the gene is relocated to the nucleus. 
Approximately 25% of the yeast mitochondrial proteome of 
750–1,000 proteins is dedicated to maintenance and expres-
sion of mtDNA (Sickmann et al., 2003). This means 200–250 
nucleus-encoded proteins are needed to express a handful of 
mtDNA-encoded proteins, and it is unclear why this costly  
arrangement has been maintained throughout evolution if the 
only reason is the hydrophobicity of certain gene products. An 
interesting alternate hypothesis proposes that mtDNA has been 
kept for a regulatory purpose and that the biogenesis of the oxida-
tive phosphorylation system requires direct interactions between 
the respiratory chain subunits and mtDNA (Allen, 2003).

Transcription and replication of  
mammalian mtDNA
Mammalian mtDNA encodes 13 proteins that all are subunits of 
the oxidative phosphorylation system and 22 tRNAs and 2 ribo-
somal RNAs (rRNAs; Fig. 1). The transcription of mtDNA is poly-
cistronic and is initiated at one main promoter on each strand, the 
light strand promoter (LSP) and heavy strand promoter (HSP). The 
existence of a second HSP dedicated to the transcription of the 
rRNA genes has been reported (Montoya et al., 1983; Martin et al., 
2005); however, its existence has been questioned, as transcription 
from this putative promoter cannot be reconstituted in vitro with 
known components of the basal transcription machinery (Litonin  
et al., 2010). The steady-state levels of rRNAs are much higher 
than the levels of the downstream mRNAs, but this is, in principle, 
compatible with polycistronic transcription from a single HSP as 
the rRNAs are incorporated into ribosomes and therefore may be 
much more stable than the downstream mRNAs.

The basal machinery needed for transcription initiation of 
mtDNA has been fully reconstituted in vitro and consists of a 
set of three proteins: mitochondrial RNA polymerase (POLRMT), 
mitochondrial transcription factor B2 (TFB2M), and mitochon-
drial transcription factor A (TFAM; Falkenberg et al., 2002). 
Interestingly, POLRMT is most closely related to bacteriophage 
RNA polymerases (Shutt and Gray, 2006a) and in addition con-
tains a large N-terminal extension that may have a role in cou-
pling transcription to translation (Rodeheffer and Shadel, 2003). 

The small mammalian mitochondrial DNA (mtDNA) is 
very gene dense and encodes factors critical for oxidative 
phosphorylation. Mutations of mtDNA cause a variety of 
human mitochondrial diseases and are also heavily impli-
cated in age-associated disease and aging. There has 
been considerable progress in our understanding of the 
role for mtDNA mutations in human pathology during the 
last two decades, but important mechanisms in mitochon-
drial genetics remain to be explained at the molecular 
level. In addition, mounting evidence suggests that most 
mtDNA mutations may be generated by replication errors 
and not by accumulated damage.
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immunofluorescence experiments show a perfect colocalization 
between TFAM and mtDNA (Garrido et al., 2003), thus argu-
ing that TFAM fully coats mtDNA in vivo. Genetic experiments 
in the mouse show that mtDNA levels in vivo are regulated 
according to levels of TFAM (Ekstrand et al., 2004). There are 
thousands of mtDNA copies in a mammalian somatic cell, and 
these genomes are packaged into mtDNA protein aggregates 
called nucleoids (Satoh and Kuroiwa, 1991; Kaufman et al., 
2007; Bogenhagen et al., 2008). In budding yeast, a large num-
ber of proteins have been defined as components of the nucleoid 
based on a combination of biochemical experiments, showing 
that the studied protein can be cross-linked to and/or copuri-
fied with mtDNA, and genetic experiments, showing that the 
gene encoding the studied protein is essential for maintenance 
of mtDNA (Chen et al., 2005). This concept is not straightfor-
ward, as a protein may interact with mtDNA and be necessary 
for maintenance of mtDNA without having a role in packaging 
and organizing mtDNA. We propose that the definition of the 
nucleoid should focus on the role of the protein components in 
packaging and organizing mtDNA and that structural nucleoid 
proteins should comply with the following criteria: (a) the protein 
should interact with mtDNA (copurification or cross-linking); 
(b) the protein should have intrinsic biophysical properties 
consistent with packaging DNA; (c) the protein should be suffi
ciently abundant to coat mtDNA; (d) the protein should co-
localize with mtDNA on high-resolution microscopy; and (e) the 
protein should be essential for maintenance of mtDNA in vivo. 
TFAM is currently the only mammalian protein that has been 
shown to fulfill all of these criteria. Definition of the structure 
of the nucleoid is a very fundamental question in mitochondrial 
genetics, and future studies are clearly warranted. Confocal 
microscopy experiments (Legros et al., 2004) have suggested 
that each nucleoid contains two to eight mtDNA molecules. 
This raises the interesting question of whether each nucleoid 
contains only one mtDNA genotype or whether there may be 
a mixture of mutant and wild-type mtDNA in a single nucle-
oid. Understanding this issue will provide novel insights into 
principles for mitotic segregation and maternal transmission of 
mtDNA, as discussed in the “Principles for maternal inheritance of 
mtDNA” section. The estimated size of the nucleoid in mammalian 
cells is 250 nm, which is at the resolution limit of confocal 
microscopy. It is important to apply novel high-resolution optic 
microscopy techniques to determine whether 250 nm is the true 
size of the nucleoids and how uniform the size is. It is currently 
unknown whether the nucleoids in mammalian cells are free in 
the mitochondrial matrix or whether they are attached to the 
inner mitochondrial membrane. Another fundamental question 
is whether all nucleoids have an equal protein composition and 
how a particular nucleoid is selected for transcription and/or 
replication of mtDNA. Future studies of the nucleoid are there-
fore likely to give very fundamental insights into mammalian 
mitochondrial biology.

Our understanding of the regulation of the basal transcrip-
tion initiation machinery is rather limited despite the fact that 
there is a long list of nuclear transcription regulators that are 
proposed to have intramitochondrial isoforms, e.g., nuclear 
hormone receptors, orphan receptors, and other transcription 

The paralogues TFB1M and TFB2M in mammalian cells are 
related to a highly conserved family of dimethyl adenosine 
methyltransferases (Falkenberg et al., 2002) that are present in 
bacteria, archaebacteria, and eukaryotes (mitochondria and the 
nucleus), where they dimethylate two highly conserved ade-
nines at a stem-loop structure at the 3 end of the small subunit 
rRNA (Shutt and Gray, 2006b). TFB1M was initially reported 
to have a role in mitochondrial transcription (Falkenberg et al., 
2002; McCulloch and Shadel, 2003), but a conditional mouse 
knockout model has shown that it instead is an essential rRNA 
methyltransferase necessary for the integrity of the small sub-
unit of the mitochondrial ribosome (Metodiev et al., 2009). 
TFB1M conditional knockout mice have severely impaired 
translation and are able to activate mitochondrial transcription, 
showing that there seems to be no functional redundancy between 
TFB1M and TFB2M (Metodiev et al., 2009). Biochemical 
studies further support the conclusion that TFB2M is essential 
for transcription, as it is a component of the catalytic site of 
POLRMT necessary for transcription initiation (Sologub et al., 
2009; Litonin et al., 2010).

TFAM is not only a transcription factor but also functions 
as an mtDNA packaging protein (Larsson et al., 1998; Ekstrand 
et al., 2004). It belongs to the high mobility group domain pro-
teins (Parisi and Clayton, 1991) and can wrap, bend, and com-
pact DNA (Fisher et al., 1992; Kaufman et al., 2007). There 
is approximately one TFAM molecule/10–20 bp mtDNA in 
mouse tissues (Ekstrand et al., 2004; Pellegrini et al., 2009), and 

Figure 1.  Schematic representation of mammalian mtDNA. The double-
stranded circular mammalian mtDNA molecule of 16.5 kb contains a 
single longer noncoding region, the displacement loop (D loop) region, 
harboring the promoters for transcription of both mtDNA strands (HSP and 
LSP) and the origin of leading strand replication (OH). The origin of lagging 
strand replication (OL) is embedded in a cluster of tRNA genes. The genes 
for the two rRNAs (12S and 16S rRNA), 13 mRNAs (ND1–6, ND4L, Cyt b,  
COI–III, ATP6, and ATP8), and 22 tRNAs (F, V, L1, I, M, W, D, K, G, R, H, 
S1, L2, T, P, E, S2, Y, C, N, A, and Q) are indicated by boxes. Illustration 
by Annika Röhl.
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A large number of pathogenic mtDNA mutations are known, 
and the reader is referred to specialized reviews on the associ-
ated clinical phenotypes (Larsson and Clayton, 1995; Munnich 
and Rustin, 2001; Zeviani and Di Donato, 2004).

Patients harboring pathogenic mtDNA mutations often 
have a mixture of wild-type and mutated molecules, a condition 
called heteroplasmy. The mutation load can vary widely between 
members of the same family and in different cells of particular 
tissues. This uneven distribution of mutated mtDNA leads to a 
mosaic respiratory chain deficiency in affected tissues. This 
mosaicism is likely an important determinant in disease patho-
physiology, but few relevant animal models are available (Table I), 
and the mechanisms are therefore poorly understood. In an ex-
perimental study, mouse chimeras with mosaic respiratory chain 
deficiency in pyramidal neurons of the cerebral cortex were 
generated (Dufour et al., 2008). These mice developed clinical 
symptoms if they had a proportion of >20% respiratory chain–
deficient neurons, and the defect caused mortality if there were 
>60–80% defective neurons (Dufour et al., 2008). Interestingly, 
a transneuronal degeneration phenomenon, whereby respiratory 
chain–deficient neurons induce death of neighboring neurons 
with normal respiratory chain function, was also observed 
(Dufour et al., 2008).

Segregation of mutated mtDNA in  
somatic tissues
The mitotic segregation of heteroplasmic mtDNA mutations 
in somatic tissues and the principles for maternal transmission  
of mtDNA (the bottleneck phenomenon and the purifying 
selection) are cornerstones in mammalian mitochondrial genetics. 
Unfortunately, these phenomena are poorly understood at the  
cell biological level despite their fundamental importance.  
Increased molecular understanding of these processes would 
lead to new understanding of disease pathophysiology and 
would also improve genetic counseling in families with mito-
chondrial disease.

Replication of mtDNA is not linked to the cell cycle, and 
a particular mtDNA molecule may be replicated many times 
or not at all as a cell divides (Bogenhagen and Clayton, 1977). 
This mode of replication makes it possible for a single muta-
tional event to expand clonally or be lost as the cell divides 
(Fig. 2). The turnover of mtDNA in differentiated tissues has 
not been extensively studied, and half-lives of 14 d have been 
reported in the rat brain and other tissues (Menzies and Gold, 
1971). Thus, there is likely continuous replication of mtDNA 
in all tissues, which makes segregation of mtDNA mutations 
possible also in postmitotic cells. Heteroplasmic mtDNA mu-
tations will only cause respiratory chain dysfunction if present 
above a certain threshold (Fig. 2), which varies depending on 
the type of mutation and the type of affected tissue. It is gen-
erally assumed that mitotic segregation of pathogenic mtDNA 
mutations is a largely random process and that high mutation 
levels may be selected against in rapidly dividing cells. How-
ever, there are also reports that seemingly neutral polymor-
phisms in mtDNA may undergo directional selection in certain 
tissues (Jenuth et al., 1997; Battersby and Shoubridge, 2001; 
Jokinen et al., 2010).

factors (Shutt and Shadel, 2010). The mitochondrial transcrip-
tion termination factors (MTERFs) are exclusively localized to 
mitochondria, and the first described member of this family is 
MTERF1, which has for >20 yr been implicated in transcrip-
tion termination to enhance the production of rRNAs (Kruse 
et al., 1989; Yakubovskaya et al., 2010) and in transcription 
initiation (Martin et al., 2005). The paralogues MTERF2 and 
MTERF3 have roles in transcription initiation regulation (Park 
et al., 2007; Wenz et al., 2009a). Atomic structures of MTERF1 
(Yakubovskaya et al., 2010) and MTERF3 (Spåhr et al., 2010) 
have unexpectedly shown that these proteins are very similar 
and contain repeated modules of a novel nucleic acid–binding 
fold, the MTERF motif.

Replication of mtDNA is dependent on POLRMT that 
forms the short RNA primers needed for initiation of mtDNA 
replication at the heavy and light strand replication origins (OH 
and OL; Clayton, 1991; Fusté et al., 2010). The minimal repli-
some needed for replication of mtDNA consists of the mtDNA 
polymerase (Pol-; Falkenberg and Larsson, 2009; Lee et al., 
2009), the twinkle DNA helicase (Spelbrink et al., 2001), and the 
mitochondrial single-stranded DNA–binding protein (Falkenberg 
et al., 2007). The atomic structure for the Pol- was recently 
solved and showed that the complex is heterotrimeric and consists 
of one Pol- A subunit and two Pol- B subunits (Carrodeguas  
et al., 2001; Lee et al., 2009). The mode of mtDNA replication 
is controversial, as two competing models have been advocated: 
the strand-asymmetric (Clayton, 1982; Brown et al., 2005) 
and the strand-coupled replication modes (Holt et al., 2000;  
Yasukawa et al., 2006). According to the strand-asymmetric model, 
the leading strand replication is two thirds complete before lag-
ging strand replication is initiated (Clayton, 1982; Brown et al., 
2005). In contrast, the strand-coupled model argues that the rep-
lication of the leading and lagging strands is synchronous (Holt 
et al., 2000; Yasukawa et al., 2006). We have previously pre-
sented a more detailed discussion of these models (Falkenberg 
et al., 2007; Larsson, 2010), and only a few comments will be 
made here. There are many reported patients with high levels of 
mtDNA molecules with a single large deletion. The location of 
the deletion often varies between patients, but the deleted 
mtDNA molecule always retains OH, OL, and LSP, thus argu-
ing that these sequences are essential for mtDNA replication 
(Moraes et al., 1991). Any valid model for mtDNA replication 
must therefore explain the role of these regulatory sequence ele-
ments in mtDNA replication. Recent data show that POLRMT 
specifically recognizes the stem-loop structure at OL and pro-
vides a primer for initiation of lagging strand mtDNA synthesis 
at this site (Fusté et al., 2010). A combination of biochemical 
and genetic approaches will be necessary to further clarify the 
mode of mtDNA replication in mammalian mitochondria.

Pathogenic mutations of mtDNA are  
often heteroplasmic
Pathogenic mtDNA mutations were first reported in human pa-
tients >20 yr ago (Holt et al., 1988; Wallace et al., 1988; Zeviani 
et al., 1988). These discoveries were important breakthroughs 
that led to a genetic basis for the classification of mitochondrial 
disease and revealed novel insights into mitochondrial genetics. 
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(Sandoval et al., 2008). Studies of mammalian cell lines have 
shown that Parkin, an E3-ubiquitin ligase mutated in juvenile-
onset Parkinson’s disease, translocates to dysfunctional mito-
chondria to promote degradation by autophagocytosis (Narendra 
et al., 2008, 2009, 2010; Suen et al., 2010). The evidence for the 
existence of this mitochondrial quality control mechanism in 
mammals is at present based on forced expression of Parkin in 
transformed cell lines in combination with the use of rather 
drastic mitochondrial toxins (Narendra et al., 2008, 2009, 2010; 
Suen et al., 2010). Human patients with mitochondrial disease 

Mitochondria form a dynamic network undergoing con-
tinuous fusion and fission (Detmer and Chan, 2007; Hoppins  
et al., 2007). These processes ensure mixing of the gene product 
content of the mitochondrial network in a cell and are necessary 
for maintaining function, as exemplified by the finding that 
blocked fusion leads to loss of mtDNA (Chen and Chan, 2010). 
Respiratory chain deficiency leads to a fragmentation of the mito-
chondrial network in cell lines and mouse tissues (Duvezin-Caubet 
et al., 2006). Autophagocytosis has an important role in vivo to 
remove mitochondria during normal erythrocyte differentiation 

Table I.  Mouse models for mtDNA mutation

Model Experimental manipulation Phenotype References

mtDNA point mutation
Mutator mouse  

(POLGA D257A)
Knockin modification of DNA polymerase  

 exonuclease domain
Impaired respiratory chain function, 

premature aging phenotypes
Trifunovic et al., 2004; 

Kujoth et al., 2005
Trans-mitochondrial mice (CAPR) Cytoplasmic transfer of chloramphenicol- 

resistant mtDNAs to ES cells
Growth retardation, myopathy,  

cardiomyopathy
Marchington et al., 1999; 

Sligh et al., 2000
Trans-mitochondrial mouse 

(T6589C)
Cytoplasmic transfer of mtDNA with T6589C  

missense mutation to ES cells
Impaired respiratory chain function, 

growth retardation
Kasahara et al., 2006

Trans-mitochondrial mouse  
(T6589C + 13885insCdelT)

Cytoplasmic transfer of mtDNA with T6589C, 
13885insC, and 13885insCdelT mutation  
to ES cells

Decreased complex IV activity,  
myopathy, cardiomyophathy

Fan et al., 2008

mtDNA deletion
Trans-mitochondrial mouse  

(mtDNA4696)
Cytoplasmic transfer of deleted mtDNA  

(7,759–12,454) to pronuclear stage embryo
Impaired respiratory chain function, 

renal failure, early mortality
Inoue et al., 2000

Deletor mouse  
(Twinkle dup353–365)

Transgenic expression of mutant mtDNA  
helicase twinkle

Progressive decrease of respiratory 
chain function

Tyynismaa et al., 2005

Mito-PstI mouse Skeletal muscle–specific expression of mitocho
ndrially targeted PstI restriction endonuclease

Impaired respiratory chain function  
in skeletal muscle, myopathy

Srivastava and Moraes, 
2005

mtDNA depletion
TFAM/ Knockout of TFAM in whole body Respiratory chain deficiency,  

embryonic lethality
Larsson et al., 1998

TFAM/ heart Knockout of TFAM in cardiomyocyte Dilated cardiomyopathy Wang et al., 1999
TFAM/ forebrain neuron Knockout of TFAM in forebrain Neurodegenerative symptoms Sörensen et al., 2001
TFAM/ dopaminergic neuron Knockout of TFAM in dopaminergic neuron Parkinson’s disease symptoms Ekstrand et al., 2007
TFAM/ pancreatic  cell Knockout of TFAM in pancreatic  cell Mitochondrial diabetes Silva et al., 2000
POLGA/ Knockout of POLGA Respiratory chain deficiency,  

embryonic lethality
Hance et al., 2005

MFN1/ + MFN2/ skeletal 
muscle

Skeletal muscle–specific knockout of MFN1  
and MFN2, GTPases essential for  
mitochondrial fusion

Respiratory chain deficiency in  
skeletal muscle, muscle atrophy, 
early mortality

Chen and Chan, 2010

TK2/ Knockout of thymidine kinase 2 (TK2) Growth retardation, early mortality Zhou et al., 2008
TK2 H126N Knockin modification of TK2 found in human  

mtDNA depletion syndrome patients  
(TK2 H126N)

Impaired respiratory chain function  
in brain, growth retardation,  
early mortality

Akman et al., 2008

RRM2B/ Knockout of RRM2B gene, encoding p53- 
controlled ribonucleotide reductase (p53R2)

Growth retardation, renal failure, 
muscle atrophy, early mortality

Bourdon et al., 2007; 
Kimura et al., 2003

RNASEH1/ Knockout of mitochondrial ribonuclease H1 
(RNaseH1)

Embryonic lethality, respiratory  
chain deficiency

Cerritelli et al., 2003

mtDNA increase
PAC-hTFAM Transgenic expression of P1 artificial  

chromosome containing human TFAM
No apparent pathophysiology Ekstrand et al., 2004

TFAM-EGFP Transgenic expression of TFAM-EGFP fusion  
protein

Improve mitochondrial disease  
phenotypes

Nishiyama et al., 2010

CAG-hTFAM Transgenic expression of mouse TFAM cDNA  
under CAG promoter

Improve cardiac failure after  
myocardial infarction, delay  
neuronal cell death

Ikeuchi et al., 2005;  
Hokari et al., 2010

TWINKLE Transgenic expression of mouse TWINKLE cDNA No apparent pathophysiology Tyynismaa et al., 2004
Twinkle + hTFAM Transgenic expression of mouse TWINKLE cDNA 

and human TFAM cDNA
Progressive respiratory chain  

dysfunction
Ylikallio et al., 2010

ES, embryonic stem.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/193/5/809/1567605/jcb_201010024.pdf by guest on 08 February 2026



813Mammalian mitochondrial genetics • Park and Larsson

Surprisingly, the spectrum of mutations present in offspring to 
the mtDNA mutator mouse has clear similarities to the natu-
rally occurring spectrum of mutations observed in human popu-
lations (Stewart et al., 2008a,b). These results suggest that the 
naturally occurring spectrum of mtDNA mutations in humans 
can be explained by mtDNA replication errors that have been 
subjected to purifying selection in the maternal germline. The 
molecular mechanism of purifying selection is not under-
stood. Formally, such a selection could occur at different levels 
(Fig. 3). A mechanism for selection at the level of the mtDNA 
is not easy to envision, as it involves blocking replication or 
destroying mutant mtDNA genomes without the need for test-
ing the function of the gene products encoded by the mutant 
genome. A more plausible mechanism is functional testing of 
mtDNA at the level of a single organelle (Shoubridge and Wai, 
2008). Such a mechanism could involve fragmentation of the 
mitochondrial network during some stage of oocyte develop-
ment to permit expression of individual mtDNA molecules and 
subsequent functional readout of respiratory chain function in 
single mitochondria (Stewart et al., 2008a). It is also possible 
that there is a competition between cells during germ cell de-
velopment and that cells with high levels of mutated mtDNA 
will be disfavored or undergo apoptosis. Mutations of tRNA or 
rRNA genes are more likely than amino acid substitutions to 
escape the purifying selection in the mouse maternal germline, 
which is consistent with the observation that the majority of 
pathogenic mutations of human mtDNA affects tRNA genes, 
although they only occupy 9% of the genome (Stewart et al., 
2008a). The bottleneck mechanism may be linked to the purify-
ing selection, but it could also represent an independent protec-
tive mechanism. It is, of course, possible that a down-regulation 
of mtDNA copy number and fragmentation of the mitochondrial 
network may facilitate purifying selection in the maternal germ-
line. However, the bottleneck mechanism could also prevent the 
spread of low levels of deleterious mtDNA mutations in mater-
nal lineages (Stewart et al., 2008a). Available data on the nature 
of the bottleneck are mainly correlative, and it will be important 
to experimentally investigate possible mechanisms, e.g., by in-
troducing pathogenic mtDNA mutations into mice concomitant 
with experimental manipulation of mtDNA copy number and 
mitochondrial dynamics in the female germline.

often have a deteriorating respiratory chain function and may 
accumulate mutated mtDNA with time (Larsson et al., 1990), 
thus questioning the efficiency of this proposed mitochondrial 
quality control mechanism. There is a clear need to verify that 
the mitochondrial quality control mechanism observed in cell 
lines is relevant for mammals in vivo.

Principles for maternal inheritance  
of mtDNA
Maternal transmission of mammalian mtDNA has been recog-
nized for >35 yr (Hutchison et al., 1974; Giles et al., 1980). It 
came as a true surprise when it was observed that the mtDNA 
genotype could shift completely in a few generations in cows 
(Olivo et al., 1983). A similar rapid segregation was soon  
observed in many human pedigrees transmitting heteroplasmic 
pathogenic mtDNA mutations (Larsson et al., 1992). Hetero-
plasmic mice containing mtDNA from two different mouse 
strains, created by experimental manipulation of embryos, exhib-
ited a similar rapid, apparently random, germline segregation 
of mtDNA (Jenuth et al., 1996). This segregation phenomenon 
is attributed to a bottleneck mechanism in the female germline, 
whereby only a small fraction of all mtDNA copies in the pri-
mordial germ cell is transmitted to the oocyte. Several studies 
have produced conflicting results proposing that the bottleneck 
for mtDNA transmission occurs at different stages in the ma-
ternal germline, and results are also conflicting about whether 
there is a concomitant mtDNA copy number reduction in pri-
mordial germ cells (Cao et al., 2007, 2009; Cree et al., 2008; 
Wai et al., 2008; Samuels et al., 2010).

The transmission of mtDNA mutations through the mouse 
maternal germline is not neutral, but there is rather a strong  
purifying selection against deleterious mtDNA mutations (Fan  
et al., 2008; Stewart et al., 2008b). The mtDNA mutator mouse 
expresses a catalytic subunit of Pol- with deficient proofread-
ing capacity (Table I), which leads to accumulation of high 
levels of acquired point mutations in mtDNA (Trifunovic et al., 
2004). Maternal transmission of this apparently random set of point 
mutations generated in the mtDNA mutator mouse (Trifunovic  
et al., 2004) shows a strong selection against amino acid  
replacement mutations, whereas mutations affecting tRNA or 
rRNA coding genes are better tolerated (Stewart et al., 2008a,b). 

Figure 2.  Mitotic segregation of mtDNA.  
A single mutational event creates heteroplasmy 
in a cell, but the level of mutated mtDNA (red 
dots) is very low in comparison with normal 
mtDNA (green dots). There is no synchroniza-
tion between cell division and mtDNA replica-
tion, and a particular mtDNA molecule may be 
replicated many times or not at all during a sin-
gle cell cycle. Repeated cell division will lead 
to mitotic segregation of normal and mutated 
mtDNA, and accumulation of mutated mtDNA 
above a certain threshold level will lead to im-
paired respiratory chain function.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/193/5/809/1567605/jcb_201010024.pdf by guest on 08 February 2026



JCB • VOLUME 193 • NUMBER 5 • 2011� 814

hypothesis is that most of the mutations are created as replica-
tion errors during embryogenesis and then undergo clonal ex-
pansion in adult life (Larsson, 2010). Mosaic respiratory chain 
deficiency caused by clonal expansion of mtDNA mutations is 
ubiquitously observed in human aging, but the extent to which 
this aberration impairs organ function is unknown. The mtDNA 
mutator mice (Table I) develop a premature aging syndrome, 
which is caused by the accumulation of point mutations and the 
presence of linear deleted mtDNA molecules, which likely repre-
sent a continuously formed replication intermediate (Trifunovic  
et al., 2004; Bailey et al., 2009; Edgar et al., 2009). There has been 
one study arguing that a third type of mutation, circular mtDNA  
molecules with deletions, drives the phenotype of mtDNA 
mutator mice (Vermulst et al., 2008). However, this study has 
been refuted in several independent studies, in which sensitive 
PCR assays (Edgar et al., 2009; Kraytsberg et al., 2009) or deep 
sequencing (Williams et al., 2010; Ameur et al., 2011) could 
not detect any significant levels of circular mtDNA molecules 
with deletions in various tissues of mtDNA mutator mice. In 
addition, the biochemical phenotype in mtDNA mutator mice 
is fully consistent with the idea that point mutations of mtDNA 
create amino acid substitutions of respiratory chain subunits, 
which explains the observed decline in the stability of the respi-
ratory chain complexes (Edgar et al., 2009).

Interestingly, the point mutation load is high already during 
embryogenesis in mtDNA mutator mice, but aging symptoms 
are not observed until early adult life, and there is no evidence 
for increased oxidative stress (Kujoth et al., 2005; Trifunovic 
et al., 2005). The results from the mtDNA mutator mouse thus 
lend some experimental support to the hypothesis that somatic 
mtDNA mutations created during embryogenesis may contrib-
ute to the creation of aging phenotypes in adult life.

Pathophysiological effects of  
mtDNA mutations
The studies of pathophysiological effects of altered mtDNA ex-
pression have to a large extent been dependent on the use of 
mouse models (Table I). It is important to emphasize that there 
is as yet no transfection system for mammalian mitochondria, 
and mouse models have therefore been developed by introduc-
ing naturally occurring mtDNA mutations into mouse embryos 
or by manipulating nuclear genes that control the maintenance 
and expression of mtDNA.

Expression of mtDNA is essential for oxidative phos-
phorylation (Larsson et al., 1998), and the most straightforward 
prediction is therefore that mtDNA mutations should have no 
other primary effects besides impairing cellular energy pro-
duction. There are indeed a large number of different types of 
mtDNA mutations that have effects on respiratory chain function 
and ATP synthesis (Larsson and Clayton, 1995; Munnich and 
Rustin, 2001; Zeviani and Di Donato, 2004). Mutations of 
mtDNA have several downstream effects that are a consequence 
of deficient oxidative phosphorylation, and those will be further 
discussed in the next paragraphs.

It is important to remember that there are possibilities 
that mtDNA mutations could have effects unrelated to oxidative 
phosphorylation. Amino acid replacements of mtDNA-encoded 

Aging and somatic mtDNA mutations
Patients with mitochondrial syndromes have a monoclonal ex-
pansion of mutated mtDNA leading to high levels of a single type 
of mutation, whereas aging is associated with polyclonal expan-
sions leading to low levels of many different types of mtDNA 
mutations. It is important to emphasize that one should not expect 
fundamental differences in the pathophysiology of mtDNA mu-
tations regardless of whether they occur in genetic syndromes 
or in aging. Important principles in mitochondrial genetics, 
e.g., mitotic segregation of heteroplasmic mtDNA mutations, 
are also applicable to aging. Furthermore, the consequence of 
an mtDNA mutation at the cellular level will not depend on 
whether the mtDNA mutation is spontaneous or acquired but 
will rather depend on the type of mtDNA mutation and how 
it impairs respiratory chain function and the consequences this 
impairment, in turn, has on specialized functions of the affected 
cell. The role of somatic mtDNA mutations in mammalian aging 
has recently been extensively reviewed (Krishnan et al., 2007; 
Larsson, 2010), and only some issues will be discussed here. 
It is well established that somatic mtDNA mutations in human 
aging undergo clonal expansion and cause a mosaic respira-
tory chain dysfunction in different tissues (Krishnan et al., 2007;  
Larsson, 2010). It has generally been assumed that age-associated 
somatic mtDNA mutations are caused by accumulated damage 
during the aging process (Wallace, 2001). However, an alternative 

Figure 3.  Different levels at which purifying selection can occur in the 
maternal germline. (top) Genomes with mutations could be blocked from 
replication or selectively destroyed without the need for gene expression. 
(middle) A fragmented mitochondrial network would allow functional test-
ing of individual mtDNA molecules. The presence of a mutated mtDNA 
molecule would result in a mitochondrion with deficient respiratory 
chain function, which, in turn, would lead to selection against and/or 
destruction of this mitochondrion. (bottom) Cells with high levels of mu-
tated mtDNA may fail to compete with respiratory chain–competent cells 
and may be selected against or undergo apoptosis. The colors indicate  
mutant (red) and wild-type (blue) mtDNA (top); respiratory chain–deficient 
(red) and normal (blue) mitochondria (middle); and respiratory chain– 
deficient (red) and normal (blue) cells (bottom).
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damage are not increased in different tissues of mice with deple-
tion (Wang et al., 2001) or point mutations of mtDNA (Kujoth  
et al., 2005; Trifunovic et al., 2005). An impairment of respira-
tory chain function leads to a variety of metabolic consequences, 
e.g., deficient ATP production, increased NADH/NAD+ ratios, 
and alterations in Ca2+ homeostasis (Tavi et al., 2005; Aydin  
et al., 2009), which all may be more relevant for disease patho-
physiology than ROS.

Future perspectives
During the last 25 yr, we have seen a remarkable increase in our 
understanding of mitochondrial genetics in mammals. We know 
today that maternal transmission of mtDNA is associated with a 
bottleneck phenomenon, which allows rapid shifts of genotypes 
between generations, and a purifying selection, which weeds 
out the most deleterious mutations. However, we still have no 
molecular understanding of these two processes despite their 
fundamental importance for mtDNA transmission. The dif-
ferent types of pathologies that are caused by mtDNA muta-
tions are remarkable, and in many cases there is a reasonably 
good correlation between genotype and phenotype. However, 
the underlying pathophysiology is not understood in any depth. 
Important challenges for the future involve understanding the 
downstream effects of mitochondrial dysfunction on cell physiol
ogy in disease and aging.
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