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The lymphatic vasculature constitutes a highly specialized
part of the vascular system that is essential for the mainte-
nance of interstitial fluid balance, uptake of dietary fat,
and immune response. Recently, there has been an in-
creased awareness of the importance of lymphatic vessels
in many common pathological conditions, such as tumor
cell dissemination and chronic inflammation. Studies of
embryonic development and genetically engineered animal
models coupled with the discovery of mutations under-
lying human lymphedema syndromes have contributed to
our understanding of mechanisms regulating normal and
pathological lymphatic morphogenesis. It is now crucial to
use this knowledge for the development of novel therapies
for human diseases.

Introduction

The lymphatic vascular system serves key physiological func-
tions: it maintains fluid homeostasis by absorbing water and
macromolecules from the interstitium, enables uptake of dietary
lipids and vitamins in the intestine, and serves as a trafficking
route for immune cells. The lymphatic vasculature consists of a
highly branched network of capillaries and ducts that is present
in most organs with the exception of the central nervous system
and avascular tissues, such as cartilage. Unlike the blood vas-
culature, the lymphatic vasculature is blind ending (Fig. 1 A):
its small capillaries funnel first into precollecting and larger col-
lecting vessels and then into the thoracic duct or the right lym-
phatic trunk, which drains lymph into the subclavian veins.
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Malfunctioning of the lymphatic vasculature results in
lymphedema formation and compromises immune function.
In the past decade, tremendous progress has been achieved in
understanding the mechanisms regulating the morphogenesis
of lymphatic vasculature, mainly accomplished by genetically
modified mouse models and discovery of mutations respon-
sible for human lymphedema syndromes. In addition, models,
such as zebrafish and frog tadpoles, are emerging as powerful
tools for studying lymphatic vascular development. In this re-
view, we will summarize the main mechanisms underlying the
development of lymphatic vasculature and present an overview
of several human diseases that are associated with lymphatic
vessel abnormalities.

Mechanisms of lymph transport

The structure of the different lymphatic vascular compartments,
such as capillaries, precollecting, and collecting lymphatic ves-
sels, reflects its dual role in fluid absorption and lymph trans-
port. We will briefly present the main aspects of lymph transport,
which have been documented in more detail in recent reviews
(Dejana et al., 2009; Zawieja, 2009).

Fluid and cell uptake by lymphatic capillaries.
Lymphatic capillary endothelium has a unique junctional orga-
nization (Baluk et al., 2007; Dejana et al., 2009). Oak leaf—shaped
endothelial cells are connected by discontinuous buttonlike
junctions. Free overlapping cell edges anchored on each side by
these junctions form “flap valves” (Fig. 1, B and C) through
which fluid flows unidirectionally along pressure gradients from
the interstitium into the capillary lumen. Actively sprouting
lymphatic capillaries have continuous cell-cell junctions, sug-
gesting buttonlike junctions as characteristics of quiescent and
functional lymphatic capillary endothelium (Baluk et al., 2007).
Lymphatic capillaries lack mural cells and connect to the ECM
via anchoring filaments (Leak and Burke, 1968), which prevent
the collapse of capillaries upon the increase of interstitial pres-
sure (Fig. 1 B).

© 2011 Schulte-Merker et al. This article is distributed under the terms of an Attribution—
Noncommercial-Share Alike-No Mirror Sites license for the first six months after the pub-
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Figure 1. Organization of lymphatic vasculature. (A) The lymphatic vasculature resorbs fluid, macromolecules, and cells from the interstitium. (B) Mecha-
nism of lymph formation in capillaries. Inferstitial components penetrate lymphatic capillaries via openings between LECs. The specialized structure of such
openings prevents the return of lymph back fo the interstitium. Anchoring filaments attach LECs to the ECM and prevent vessel collapse under conditions of
increased interstitial pressure (black arrow). (C) Junctional organization of LECs in lymphatic capillaries and collecting vessels. Both “buttons” and “zippers”
share a repertoire of adherens and tight junction—associated proteins (e.g., VE-cadherin, zonula occludens-1, occludin, and claudin-5). The main difference
between them resides in their organization (Baluk et al., 2007). (D) Mechanism of lymph propulsion in collecting vessels. Coordinated opening and closure
of lymphatic valves is important for efficient lymph transport. SMCs covering each lymphangion possess intrinsic contractile activity. EC, endothelial cell.

Shear stress generated by transcapillary fluid flow regu-
lates the expression of junctional proteins, up-regulates leuko-
cyte adhesion molecules ICAM-1 and E-selectin, and promotes
secretion of chemokine CCL21, mediating dendritic cell migra-
tion (Miteva et al., 2010). Thus, mechanical stimulation may
be important for immune surveillance function of lymphatic
vasculature. Dendritic cells first squeeze through pores that
punctuate the sparse basement membrane of lymphatic capillar-
ies and, subsequently, reach the lumen through interendothelial
flap valves (Fig. 1 B; Pflicke and Sixt, 2009). They are then
transported toward the draining lymph nodes where they induce
immune responses.

JCB « VOLUME 183 « NUMBER 4 « 2011

Transport of lvymph by collecting vessels. Lymph
from lymphatic capillaries is first drained into the precollecting lym-
phatic vessels that have both lymphatic capillary (oak leaf—shaped
lymphatic endothelial cells [LECs]) and collecting lymphatic vessel
characteristics (valves). Collecting lymphatic vessels consist of a
series of functional units, called lymphangions, separated by intra-
luminal valves, which ensure unidirectional lymph flow (Fig. 1 D).
Collecting vessels are covered with a continuous basement mem-
brane and smooth muscle cells (SMCs). Endothelial cells in collect-
ing vessels are elongated and connected by continuous zipperlike
junctions (Fig. 1 C). Continuous junctions and basement membrane
prevent leakage of lymph during its transport.
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Figure 2.  Main steps of mammalian lymphatic vascular development. (A) LECs are specified in embryonic veins, from where they sprout toward Vegf-c—
producing mesodermal cells and aggregate to form lymph sacs. Further sprouting produces the lymphatic primary plexus composed of capillary-like vessels.
Myeloid cells produce cytokines and regulate lymphatic vascular morphogenesis. Primary plexus is further remodeled to form collecting, precollect-
ing, and capillary compartments. Precollecting and collecting lymphatic vessels have intraluminal valves and basement membrane coverage. Collecting
lymphatic vessels are surrounded by SMCs (red). (box) Genes important for collecting lymphatic vessel development. (B) LYVE-1 is the earliest known LEC
marker. The transcription factor Prox1 is essential for the establishment of LEC identity, and its expression is controlled by Sox18. (C) Signaling via Vegf-c
and Vegfr-3 regulates LEC sprouting and proliferation. The role of Vegfr-2-Vegfr-3 heterodimers and participation of Nrp2 in the Vegfr-2-Vegfr-3 complex
are not fully understood. (D) Separation of lymphatic and blood vasculature requires platelet aggregation (also see Table I). Interaction of podoplanin on
LECs and CLEC-2 on platelets triggers the Syk-, Slp76-, and PLC-y2-dependent signaling cascade leading to platelet aggregation. O-glycosylation by

T-synthase is important for podoplanin function.

Lymphatic valves contain two semilunar leaflets, which
are covered on both sides by a specialized endothelium an-
chored to the ECM core (Lauweryns and Boussauw, 1973).
High lymph pressure upstream of a valve opens the valve and
enables lymph flow, whereas reverse flow pushes the leaflets
against each other and closes the valve (Fig. 1 D). Therefore,
opening and closing of the valve depend on periodic changes in
fluid pressure within collecting vessels. The number of valves
per vessel segment varies depending on tissue type, being gen-
erally highest in organs with high hydrostatic pressure, e.g., legs
in humans (Foldi et al., 2006).

Cyclical compression and expansion of lymphatic ves-
sels by surrounding tissues and intrinsic pump forces gener-
ated by the spontaneous phasic contraction of SMCs regulate
lymph propulsion (Zawieja, 2009). The origin of lymphatic
SMC:s is unknown, but they contain both smooth and striated
muscle contractile proteins and, thus, differ from arteriole
SMCs (Muthuchamy et al., 2003). Nitric oxide, hormones, and
prostanoids control SMC contractions (Zawieja, 2009). In am-
phibians and reptiles, specialized pulsatile muscular organs or

lymph hearts located at the junctions of the lymphatic and venous
systems control lymph flow (Kampmeier, 1969).

Lymphatic vascular morphogenesis
Lymphatic vascular development requires transdifferentiation
of venous endothelial cells toward the lymphatic endothelial
phenotype, separation of blood and lymphatic vasculature, sprout-
ing of lymphatic vessels, and lymphatic vascular maturation
(Fig. 2 A). Over 20 genes orchestrate these processes in mice
(Table I), and recently, lymphangiogenesis has also been exam-
ined in lower vertebrates, such as fish and frogs.
Establishment of LEC identity and lymphatic
sprouting. Lymphatic vessels stem from preexisting blood
vessels. Elegant lineage tracing by Srinivasan et al. (2007) dem-
onstrated the venous origin of the mammalian lymphatic vascu-
lature as previously proposed (Sabin, 1902; Kaipainen et al.,
1995). The venous origin of LECs has been confirmed in
Xenopus laevis and zebrafish as shown by real-time imaging
in the latter and, therefore, appears to be evolutionary conserved
(Ny et al., 2005; Yaniv et al., 2006; Hogan et al., 2009a).

Mechanisms of lymphatic vascular development ¢ Schulte-Merker et al.
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Table I Knockout or mutant mouse models and their phenotypes according to stages of lymphatic vascular morphogenesis

Gene symbol Function Lymphatic vascular phenotype Expression pattern

LEC differentiation

Prox1 Transcription factor No LECs (—/~), chylous ascites (+/—); LECs, hepatocytes, lens fiber
loss of LEC identity, chylous ascites, obesity cells, pancreatic, lung,
(Prox 1%, Tie2-Cre; Wigle et al., 1999; and intestinal endocrine
Harvey et al., 2005; Johnson et al., 2008) cells, skeletal muscle,

cardiomyocytes
Sox18 Transcription factor No LECs(—/~—, on C57BL/é) background); Endothelial cells

Coup-TFIl (NR2F2)

Lymphangiogenesis
Vegf-c-Vegfr-3 pathway
Vegfr3

Vegfc

Nrp2
Racl

Clp24

Tbx1
Pipn 14 (gene trap)
Adrenomedullin signaling
Adm
(adrenomedullin)
Ramp2
Calerl (calcitonin recep-
tor-like)

Other
Vezf

Tiel

Transcription factor

Receptor tyrosine kinase

Growth factor,
ligand for Vegfr-3

Coreceptor of Vegfr-3
and semaphorins
Rho GTPase

Transmembrane protein

Transcription factor

Protein tyrosine phosphatase

Peptide vasodilator,
ligand for Calerl

Coreceptor of Calerl

G protein—coupled receptor
of adrenomedullin

Transcription factor

Receptor tyrosine kinase

Separation of blood and lymphatic vessels

Platelet development
Meis]

Platelet aggregation
Slp76

Transcription factor

Adaptor protein

abnormal patterning (+/—); edema and chylous
ascites (heterozygous ragged mutants;
Pennisi et al., 2000; Francois et al., 2008)

No LECs (—/—, deletion at or before E9.5);
edema, loss of LEC identity, and sprouting
(=/—, deletion at later stages; Lin et al., 2010;
Srinivasan et al., 2010)

Hypoplasia, chylous ascites (+/Chy, ENU-induced
mutation, loss of tyrosine kinase activity;
Karkkainen et al., 2001); lymph sacs formed
and defective sprouting (homozygous deletion of
ligand-binding domain; Zhang et al., 2010)

No sprouting of LECs from veins (—/—);
hypoplasia, chylous ascites (+/—; Karkkainen

etal., 2003)

Transient capillary hypoplasia, defective sprouting
(—=/—; Yuan et al., 2002; Xu et al., 2010)
Abnormal migration of LECs from veins (Rac1”%;
Tie1-Cre; D’Amico et al., 2009)
Lymphangiectasia, ectopic mural cells
(Clp2477=; Clp247/~; Vegfr3/* and Clp247/~;
Vegfr2'e#/+; Saharinen et al., 2010)
Hypoplasia and chylous ascites (Tbx17%
Tie2-Cre; Chen et al., 2010)
Hyperplasia of dermal lymphatic vessels in
14% of mutants, paw or periorbital edema
(Au et al., 2010)

Hypoplasia of jugular lymph sacs, decreased LEC
proliferation, edema (—/—, Calcrl**/~Tie2-Cre;
Fritz-Six et al., 2008)

Hypoplasia of jugular lymph sacs, decreased LEC
proliferation, edema (—/—, Calcrl*/~Tie2-Cre;
Fritz-Six et al., 2008)

Hypoplasia of jugular lymph sacs, decreased LEC
proliferation, edema (—/—, Calcrl**/~Tie2-Cre;

Fritz-Six et al., 2008)

Transient jugular lymphatic hypervascularization
(+/—; Kuhnert et al., 2005)
Abnormal lymphatic patterning, dilated and

disorganized lymphatic vessels (hypomorphic mice

on outbred background; D'Amico et al., 2010)
Blood-filled lymphatic vessels (—/—; Carramolino
etal., 2010)

Bloodilled lymphatic vessels, chylous ascites

(=/—; Abtahian et al., 2003)

Endothelial cells and SMCs

LECs, fenestrated blood
vascular endothelial cells,
blood vascular endothelial
cells in tumors and during
early embryogenesis

Macrophages, SMCs,
and subpopulation of
mesenchymal cells during
development

Venous and lymphatic
endothelial cells
Broad

Endothelial cells

Vascular, including LECs

Broad, including LECs

Adrenal medulla, vascular
SMCs and endothelial cells,
cardiomyocytes

Broad, including LECs

Broad, including LECs

Broad

Endothelial and hematopoietic
cells

Broad, including developing
hematopoietic cells

Hematopoietic cells

JCB « VOLUME 193 « NUMBER 4 « 2011
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Table | (continued).

Knockout or mutant mouse models and their phenotypes according to stages of lymphatic vascular morphogenesis

Gene symbol Function

Lymphatic vascular phenotype

Expression pattern

Pleg2 Phospholipase C, hydrolysis of
phospholipids

Pdpn (podoplanin) Transmembrane glycoprotein

Clgaltl (encodes Tsyn-  Glycosyltransferase, biosynthesis

thetase) of core-1-derived O-glycans
Clec-2 C-ype lectin receptor
Syk Nonreceptor tyrosine kinase
Other
Spred1/Spred2 Cytoplasmic adaptor proteins

Remodeling, maturation, and valve morphogenesis
Tie/PI3-kinase signaling

Aktl Ser/Thr kinase

Angpt2 Growth factor, ligand of Tie

receptor tyrosine kinases

Pi3kca (mutation blocking Catalytic p110a wsoform of
interaction with Ras) PI3-kinase

Pik3r1 Regulatory subunits of class 1A

PI3-kinases

ECM assembly and interactions
Itga? Adhesion

Fn1 (removal of EDA ECM component, ligand of ltg-«9

domain)
Emilin1 Elastic microfibril-associated
protein
Other
Asppl Cytoplasmic adaptor protein

Efnb2 (mutation of PDZ  Ligand of EphB receptor tyrosine

binding site) kinases
Foxc2 Transcription factor
Elk3 (Net) Transcription factor
PU.1 Transcription factor
Csfrl receptor for M-CSF1

Bloodilled lymphatic vessels, chylous ascites
(=/—; Ichise et al., 2009)

Llymphangiectasia, abnormal lymph transport,
lymphedema, blood-illed lymphatic vessels
(=/—; Schacht et al., 2003; Bertozzi et al., 2010;
Uhrin et al., 2010)

Blood-filled lymphatic vessels, decreased levels of
podoplanin (—/—; Fu et al., 2008)

BloodHilled lymphatic vessels (—/—; Bertozzi et al.,
2010; Suzuki-Inove et al., 2010)

Bloodilled lymphatic vessels, chylous ascites,
accumulation of myeloid cells in the dermis
(—/—, Syk”"vav-cre; Abtahian et al., 2003;
Bertozzi et al., 2010; Bshmer et al., 2010)

Blood-filled lymphatic vessels
(Spred1~"~, Spred2~'~; Taniguchi et al., 2007)

Capillary hypoplasia, valve agenesis, dilation,
and decreased SMC coverage of small collecting
lymphatic vessels (—/—; Zhou et al., 2010)

Hypoplasia, chylous ascites, defective remodeling,
and valve agenesis (—/—; Gale et al., 2002;
Dellinger et al., 2008)

Chylous ascites, hypoplasia, impaired sprouting,
and branching of lymphatic capillaries
(=/—; Gupta et al., 2007)

Chylous ascites, intestinal lymphangiectasia,
impaired sprouting, lymphatic, valve agenesis

(=/—; Mouta-Bellum et al., 2009)

Chylothorax, lymphatic valve agenesis
(—/—; Itga9"”f Tie2-Cre and ltga9”* Cdh5 (PAC)-
CreERT2; Bazigou et al., 2009)

Failure of lymphatic valve leaflet elongation
(=/—; Bazigou et al., 2009)

Hyperplasia and abnormal patterning of lymphatic
vessels, reduction of anchoring filaments;
impaired lymph drainage, increased lymph
leakage (—/—; Danussi et al., 2008)

Impaired assembly of lymphatic vessels and
collecting lymphatic vessel patterning, accumulation
of « lymphatic islands » (—/—; Hirashima et al., 2008)
Impaired sprouting of capillaries, agenesis of
lymphatic valves, ectopic mural cells, chylothorax,
retrograde lymph flow (—/—; Mékinen et al., 2005)
Impaired patterning of capillaries, no collecting
lymphatic vessels, agenesis of lymphatic valves,
ectopic mural cells, retrograde lymph flow
(—/—; Dagenais et al., 2004; Petrova et al., 2004;
Norrmén et al., 2009)
lymphangiectasia, chylothorax
(=/—; Ayadi et al., 2001)
Hyperplasia and abnormal patterning of dermal
lymphatic vessels (—/—; Gordon et al., 2010)

Broad

LECs, keratinocytes, alveolar
type Il cells, podocytes

Endothelial and hematopoietic

cells

Platelets, peripheral blood
neutrophils

Broad, including LECs

Broad

(Lymph) angiogenenic
endothelial cells,
hematopoietic cells

Broad

Broad

BECs and LECs (highest in
valves), vascular SMCs

Broad, including lymphatic
valves
Broad, including LECs

Endothelial cells

Arterial endothelial cells
and SMCs, LECs (highest
in the valves)

Arterial endothelial cells
and SMCs, LECs (highest

in the valves)

Endothelial cells

Hematopoietic cells (stage
dependent)

ENU, N-ethyl-N-itrosourea; PAC, P1-derived artificial chromosome.

Mechanisms of lymphatic vascular development ¢« Schulte-Merker et al.
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In mice, LECs are first specified in the anterior cardinal vein
around embryonic day 9.5 (E9.5) when a subset of venous endo-
thelial cells expresses the transcription factor Prox1 and the lym-
phatic vessel hyaluronan receptor-1 (LYVE-1) in a polar manner
(Fig. 2 B). Prox1 ™"~ mice do not develop any lymphatic structures
because of failed budding and sprouting of LECs (Wigle and
Oliver, 1999). The transcription factor Sox18 induces Prox1 ex-
pression, and Sox/8~'~ mice develop edema caused by blockage
of LEC development in the vein in certain genetic backgrounds
(Francois et al., 2008). In vitro studies demonstrate SOX18 bind-
ing to the ProxI promoter and show that PROX1 can confer lym-
phatic identity to blood endothelial cells (BECs; Hong et al., 2002;
Petrova et al., 2002; Francois et al., 2008). Thus, Sox18 and Prox1
constitute an essential signaling axis for LEC specification. The
nuclear receptor Coup-TFII (Lin et al., 2010; Srinivasan et al.,
2010) has an earlier developmental role as a venous identity factor,
but it also directly interacts with Prox1 (Lee et al., 2009; Yamazaki
et al., 2009) and regulates the expression of LEC-specific genes,
such as neuropilin-2 (Nrp2; Lin et al., 2010).

Prox1/LY VE-1-positive cells bud and migrate dorsolater-
ally from the central veins. They subsequently form the first bona
fide lymphatic structures (jugular lymph sacs) in regions where
lymphangiogenic growth factor Vegf-c is provided by the lateral
mesoderm (Fig. 2 A; Karkkainen et al., 2003). This process occurs
at several positions along the anterior—posterior axis of the
early embryo and results in the formation of jugular, medial, and
axial lymph sacs, which further give rise to a primary capillary
plexus (Sabin, 1902). Vegf-c is critical in the process: Vegfc™~
mice lack all lymphatic vasculature, and even Vegfc*~ displays
lymphatic hypoplasia (Karkkainen et al., 2003). The sprouting
response of LECs to VEGF-C is mediated by the receptor tyro-
sine kinase VEGFR-3 and its nonsignaling transmembrane co-
receptor Nrp2 (Fig. 2 C). Nrp2 is highly expressed in lymphatic
capillaries and becomes internalized together with VEGFR-3
upon stimulation of LECs with VEGF-C and VEGF-D (Kirpénen
et al., 2006a). Intriguingly, Nrp2 is important for capillary sprout-
ing but dispensable for the formation of lymph sacs (Yuan et al.,
2002; Xu et al., 2010). Vegfr-3 is initially expressed also in BECs
but becomes mostly restricted to LECs after E10.5. Vegfr-3 sig-
naling depends on interaction with claudinlike protein Clp24 and
receptor internalization, a process requiring ephrin-B2 (Saharinen
et al., 2010; Wang et al., 2010). Interestingly, the combined dele-
tion of Vegfr-3 ligands Vegfc and Vegfd in mice does not pheno-
copy the inactivation of Vegfr3, pointing to a ligand-independent
Vegfr-3 function (Haiko et al., 2008). Budding of LECs from
veins requires Vegfr-3 kinase activity, whereas deletion of the
Vegfr3 ligand-binding domain does not alter lymph sac formation
(Fig. 2, A-C; Zhang et al., 2010). Proteolytically processed
VEGF-C also interacts with VEGFR-2, which is expressed by
lymphatic endothelium. However, activation of Vegfr-2 alone
promotes lymphatic vessel enlargement but not sprouting
(Wirzenius et al., 2007). VEGF-C induces formation of VEGFR-2/
VEGFR-3 heterodimers at angiogenic tip cells, suggesting that
heterodimerization of VEGFR-3 with VEGFR-2 may contribute
to lymphangiogenic sprouting (Nilsson et al., 2010). Endothelial-
specific loss of Rho GTPase Racl leads to an abnormally close
association of lymph sacs and cardinal veins, suggesting that it

JCB « VOLUME 193 « NUMBER 4 « 2011

also regulates LEC budding from veins (D’ Amico et al., 2009).
Interestingly, postnatal development of lymphatic vessels in or-
gans other than skin is Vegf-c/Vegfr-3 independent, and internal
lymphatic capillaries regrow in mice with mutated Vegfr3 or upon
Vegt-c depletion (Karkkainen et al., 2001; Mikinen et al., 2001;
Kirpénen et al., 2006b).

In zebrafish, the secreted protein Ccbel controls lymphatic
sprouting from veins, and its function is conserved, as CCBE1 mu-
tations cause human syndrome presenting with lymphatic dysplasia
(Alders et al., 2009; Hogan et al., 2009a; see Heredity lymphedema
syndromes). The venous origin of LECs and conserved function of
VEGF-C, VEGFR-3, and CCBEI (Karkkainen et al., 2000, 2003;
Ny et al., 2005; Kiichler et al., 2006; Yaniv et al., 2006; Alders
et al., 2009; Hogan et al., 2009a,b) clearly underpin the common
origin of the vertebrate lymphatic vasculature. Nevertheless, within
this common scheme, there seem to be differences between mam-
malian and zebrafish LEC behavior: in mice, lymphatic sprouting
occurs after veins have formed, whereas zebrafish venous sprouts
and lymphatic precursors emerge from the cardinal vein simul-
taneously (Bussmann et al., 2010). Half of those venous sprouts
connect with intersegmental vessels to form veins, whereas other
sprouts disconnect from the vein and migrate toward the horizon-
tal myoseptum region, constituting a pool of future LECs. These
cells, called parachordal lymphangioblasts, migrate along arteries
either dorsally to form intersegmental lymphatic vessels or ven-
trally to form the thoracic duct (Bussmann et al., 2010; Geudens
et al., 2010). At 5 d after fertilization, a functional lymphatic sys-
tem has been established in the zebrafish trunk capable of taking
up substances from the interstitium and of transporting lymph into
the venous system (Kiichler et al., 2006; Yaniv et al., 2006). Future
studies will have to show whether the requirement for arteries in
guiding LEC migration is a zebrafish-specific feature or whether
this represents a general scheme among vertebrates: the anatomical
proximity of mammalian arteries and lymphatic vessels has often
been noted but commonly attributed to high arterial pressure and
a need of absorbing extravasated water and proteins near arteries.
Using zebrafish, a role for Notch/Dll4 signaling has been demon-
strated in guiding LECs along arteries (Geudens et al., 2010), and
there might be earlier roles for Notch at the level of venous sprout-
ing (Liao et al., 2010). Interestingly, loss of the arterial regulator
synectin also compromises the development of zebrafish lymphat-
ics (Hermans et al., 2010).

Hematopoietic cells and lymphatic vascular
development. In mammals, lymphatic and blood vascula-
tures are connected only in a few defined locations where lymph
is returned back to blood circulation. Platelets are important for
keeping both vascular systems apart (Table I): platelet deple-
tion or defective platelet aggregation leads to abnormal lympho-
venous connections and blood-filled lymphatic vessels (Ichise
etal., 2009; Bertozzi et al., 2010; Carramolino et al., 2010; Suzuki-
Inoue et al., 2010; Uhrin et al., 2010). According to the current
model, platelets aggregate at sites of communication between
the cardinal vein and lymph sacs and ““seal off”” lymphatic vessels
from the vein (Fig. 2, A and D). Platelet aggregation is initiated by
binding of the O-glycosylated mucoprotein podoplanin expressed
on LECs to the Clec-2 receptor on platelets (Bertozzi et al., 2010;
Uhrin et al., 2010). Clec-2 further induces intracellular signaling
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cascades mediated by spleen tyrosine kinase (Syk), Slp76, and
PLC-vy2, which then lead to formation of the blood clot that seals
off the vein from the lymph sac (Ichise et al., 2009; Bertozzi
et al., 2010; Suzuki-Inoue et al., 2010).

In addition to platelets, myeloid cells regulate lymphatic vas-
cular morphogenesis. Macrophage-deficient PU.1 ™~ and Csfrrl ™~
mice exhibit hyperplastic dermal lymphatic capillaries, suggesting
that macrophages restrict proliferation of LECs (Gordon et al.,
2010). Conversely, abnormal accumulation of myeloid cells, pro-
ducing high levels of cytokines and VEGF-D, induces the forma-
tion of dermal lymphaticovenous shunts in Syk’~ mice (Béhmer
et al., 2010). Similar mechanisms are likely at play in Angptl4 ™"~
mice, in which excessive macrophage activation by chylomicrons
may be responsible for fusion of intestinal blood and lymphatic
vessels (Béackhed et al., 2007; Lichtenstein et al., 2010).

Lymphatic vascular remodeling and maturation.
Starting from E15.5, the lymphatic vasculature is reorganized into
lymphatic capillaries, precollectors, and collecting lymphatic ves-
sels (Fig. 2 A). In mice, transient up-regulation of the forkhead
transcription factor Foxc?2 is the first sign of formation of collecting
lymphatic vessels (Norrmén et al., 2009). Lymphatic valves con-
tinue to express high levels of Foxc2 and Prox1 throughout devel-
opment and in adults. LECs in any given lymphangion decrease the
expression of Prox1, Vegfr-3, LYVE-1, and Ccl21, secrete base-
ment membrane components, and acquire SMC coverage (Mékinen
et al., 2005; Norrmén et al., 2009). In the absence of Foxc2, transi-
tion from capillary to collecting lymphatic vessel phenotype and
formation of lymphatic valves are arrested (Petrova et al., 2004;
Norrmén et al., 2009). FOXC2-bound enhancers in LECs are sur-
rounded by nuclear factor of activated T cells (NFAT) binding
sites, and pharmacological inhibition of NFAT activation results in
lymphatic patterning defects reminiscent of Foxc2™~ phenotypes
(Norrmén et al., 2009). This suggests that Foxc2 and NFAT path-
ways cooperate in establishing collecting lymphatic vessels.

Ephrin—Eph signaling is essential for embryonic angio-
genesis, and targeted inactivation in mice of ephrin-B2 or its re-
ceptor EphB4 leads to aberrant embryonic blood vessel formation
(Adams and Eichmann, 2010). Reverse signaling via PDZ inter-
action sites of ephrin-B2 is also required for the maturation of
collecting lymphatic vessels (Mikinen et al., 2005). In mice, the
presence of a mutation in this PDZ interaction site of ephrin-B2
prevents the formation of valves and leads to persistent LY VE-1
expression in presumptive collecting vessels. These mutant mice
also display defective sprouting of lymphatic capillaries, which
acquire ectopic SMC coverage (Mikinen et al., 2005).

Integrin o9 and its ligand fibronectin (FN) containing the
EIITA domain (FN-EIITA) control later steps of lymphatic valve
formation (Bazigou et al., 2009). The integrin a9-31 complex
binds to FN-EIIIA, tenascin, and osteopontin in vitro and regu-
lates the organization of FN-EIIIA microfibrils. Loss of integrin o9
prevents the elongation of valve leaflets, resulting in the forma-
tion of ringlike constrictions, which are unable to prevent lymph
backflow (Bazigou et al., 2009). Fn-EIIIA~~ mice have a similar
phenotype, demonstrating that FN-EIIIA is a physiologically
relevant integrin a9 ligand (Bazigou et al., 2009).

The Tiel and Tie2 endothelial receptor tyrosine kinases
are essential for blood vascular remodeling, maturation, and

stabilization, and they also control lymphatic vascular develop-
ment. Mice hypomorphic for Tiel exhibit LEC hyperplasia and
abnormal remodeling of lymph sacs, whereas mice deficient in
one of the Tie2 ligands, angiopoietin-2, show defective lymphatic
vascular remodeling and lack valves (Gale et al., 2002; Dellinger
et al., 2008; D’Amico et al., 2010). Tie2 activation induces
phosphoinositide (PI) 3-kinase and Akt signaling in vitro, and
consistent with these observations, mutations in several PI3-kinase
pathway components or loss of Akz/ leads to lymphatic-remodeling
defects (Gupta et al., 2007; Mouta-Bellum et al., 2009; Zhou
et al., 2010). Zebrafish tie2™"~ undergoes normal lymphangio-
genesis. However, redundancy with Tiel needs to be examined
(Gjini et al., 2011).

Pathological lymphatic vascular
morphogenesis

Given the importance of lymphatic vessels for normal body
functions, it is not surprising that defects of the lymphatic vascu-
lature are implicated in a variety of human pathologies. Roles of
lymphatic vessels in tumor metastasis and inflammation have
been recently covered in several excellent reviews (Sleeman
et al., 2009; Tammela and Alitalo, 2010). Here, we will concen-
trate on the defects of vascular morphogenesis in human lymph-
edema syndromes and some rare but debilitating diseases in
which lymphatic vasculature is suggested to play a central role.

Hereditary lymphedema syndromes. Lymphatic
vessel dysfunction results in progressive accumulation of protein-
rich interstitial fluid and formation of nonpitting localized tis-
sue swelling or lymphedema (Fig. 3). It is a chronic debilitating
condition associated with increased local susceptibility to infec-
tions and certain cancers, such as angiosarcoma. Lymphedema
can be inherited (primary lymphedema) but is more com-
monly caused by damage incurred by collecting lymphatic
vessels or lymph nodes during cancer surgery or radiation ther-
apy (secondary lymphedema). Pathologies of secondary lymph-
edema have recently been reviewed (Rockson, 2001, 2008;
Tammela and Alitalo, 2010).

Hereditary lymphedema is a rare genetic disorder, which
can develop in utero, neonatally, or more frequently, years or de-
cades after birth (Fig. 3 and Table II). Missense mutations within
the VEGFR-3 tyrosine kinase domain cause Milroy disease, which
is characterized by underdeveloped and dysfunctioning cutaneous
lymphatic vessels (Karkkainen et al., 2000; Mellor et al., 2010).
Recently, mutations in the recessive CCBE! gene, shown to con-
trol lymphatic sprouting in zebrafish (Hogan et al., 2009a), have
been identified in a subset of Hennekam syndrome patients, who
develop limb lymphedema, dilated intestinal lymphatic vessels,
mental retardation, and facial anomalies (Alders et al., 2009).
Intestinal lymphatic capillaries are also reduced in number and
abnormally patterned, suggesting that defective lymphatic capil-
lary function is a cause of the syndrome (Alders et al., 2009).

Loss-of-function mutations in FOXC2 cause lymphedema—
distichiasis syndrome (LD), which is characterized by late onset
lymphedema and a double row of eyelashes (distichiasis; Fang
et al., 2000). Gain-of-function mutations in FOXC2 occur in
patients with lymphedema, but the association of these muta-
tions with distichiasis awaits further investigation (van Steensel
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Figure 3. Causes of human hereditary lymph-
edemas. Lymph transport can be impaired
because of a hypoplastic initial lymphatic capil- (

lary network, because of abnormal coverage of \‘
lymphatic capillaries with basement membrane 4
components and SMCs or because of a lack
of or malfunctioning lymphatic valves. Defec-
tive lymphatic drainage leads to tissue fibrosis
and fat deposition caused by the abnormal
local chronic inflammatory response. Genes that
are mutated in human hereditary lymphedema
are indicated in blue next to the processes to
which they are thought to be causally related.
Mechanisms of the action of GJC2, PTPN14,
and IKBKG are not fully understood.

Lymphatic
valves

et al., 2009). Lymphatic vessel density is normal or increased in
LD patients; however, lymphatic transport is inefficient because
of lymph reflux, likely caused by incompetent lymphatic valves.
LD patients also have venous reflux, suggesting a common
mechanism for the morphogenesis of venous and lymphatic
valves (Brice et al., 2002; Mellor et al., 2007)
Dominant-negative mutations in SOX18 occur in hypo-
trichosis—lymphedema-telangiectasia syndrome (HLT) character-
ized by sparse hair, swelling of legs, and dilation of small blood
vessels. Based on phenotypic similarities with mice producing a
dominant-negative form of Sox18, HLT patients likely have lym-
phatic capillary hypoplasia (Irrthum et al., 2003; Francois et al.,
2008). Novel causes of hereditary lymphedema include muta-
tions in gap junction protein GJC2 and protein tyrosine phospha-
tase PTPN14 (Au et al., 2010; Ferrell et al., 2010). GJC2 is highly
expressed by oligodendrocytes, and recessive loss-of-function
mutations in GJC2 cause hereditary Pelizacus—Merzbacher-like
disease, which is characterized by central nervous system de-
myelination. Given the dominant character of GJC2 mutations in
lymphedema, mutant proteins might exert a dominant-negative
effect either on remaining wild-type GJC2 molecules or other
connexins. A subset of Ptpnl4-deficient mice has hyperplas-
tic lymphatic vasculature, and a role for PTPN14 in restricting
Vegfr-3 activation has been proposed (Au et al., 2010).
Lymphangioleiomyomatosis (LAM). LAM is arare
lung disease affecting women of childbearing age characterized
by the proliferation of smooth muscle-like cells and lymphatic
vessels as well as the formation of pulmonary cysts. LAM can
also occur in the axial lymphatics and is associated with a benign
kidney tumor angiomyolipoma (Seyama et al., 2010). The origin
of the SMCs in LAM lesions is unknown, but they respond to
estrogen and express multiple chemokine receptors and lym-
phangiogenic growth factors VEGF-C and VEGF-D, which may
explain the highly metastatic behavior of LAM cells and their
close association with lymphatic vessels (Pacheco-Rodriguez
et al., 2009; Yu et al., 2009). LAM is a benign neoplasm. However,
LAM cells frequently disseminate through lymphatic vessels to
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distant sites, where they may block lymphatic function, causing
accumulation of lymph in the chest and abdominal cavity and
lymphedema. The cystic destruction of the lung parenchyma
over time impairs lung function, which is ultimately only rescu-
able through lung transplantation (Seyama et al., 2010).

The kinase mammalian target of rapamycin (mTOR) plays
a central role in integrating growth factor—activated signaling.
Its abnormal activation is a likely cause of LAM, as patients
with germline mutations of mTOR repressors tuberosis sclero-
sis complex-1 and -2 (TSC1 and TSC2) genes develop the dis-
ease. Somatic biallelic loss of TSC2 occurs in sporadic LAM
cases (Carsillo et al., 2000; Sato et al., 2002). In line with these
findings, encouraging results were observed in patients treated
with mTOR inhibitors (Glasgow et al., 2010). Given the close
association of LAM cells with lymphatic vessels and the lym-
phatic pattern of dissemination, combining the blockage of
mTOR with antilymphangiogenic therapy seems to be a reason-
able further step in developing better treatment for this disease.

Gorham disease (GD). GD is arare disease of unknown
etiology characterized by bone resorption and local vascular pro-
liferation. The disease is frequently complicated by systemic
dysfunction of lymphatic vessels, such as chylothorax and chy-
lous ascites (Radhakrishnan and Rockson, 2008). Endothelial
cells in the lesions are likely of LEC origin, as they express LEC
markers LYVE-1 and podoplanin, and VEGFR-3 is increased
in 50% of vessels (Hagendoorn et al., 2006). Nonendothelial
cells from GD lesions resemble immature osteoclasts; they se-
crete cytokines and angiogenic factors, are highly invasive, and
may, thus, contribute to disease progression (Colucci et al.,
2006). Moreover, GD osteoclast precursors show increased sen-
sitivity to humoral factors, promoting osteoclast formation and
bone resorption (Hirayama et al., 2001). Overall, the clinical pic-
ture points to an intriguing link between LEC proliferation and
activation of osteoclast-mediated bone resorption; however, at
present, no candidate genes for GD have been identified.

Kaposi sarcoma (KS): a case of mixed identity.

KS is a tumor caused by human herpes virus 8§ (HHVS8 or
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Table Il.  Main human hereditary lymphedema syndromes

Name Inheritance MIM number Main manifestations Mutated gene  Candidate locus
Syndromes with lymphedema as a primary manifestation
Hereditary lymphedema 1A Autosomal dominant 153100 Congenital lymphedema, chylous FIT4 (VEGFR-3) 5g35.3
(Milroy disease) with reduced ascites caused by hypoplasia of
penetrance lymphatic vessels
Hereditary lymphedema IB Autosomal dominant 611944 Llymphedema of lower limbs, nature Unknown 6q16.2-922.1
with reduced of lymphatic vascular defects is
penetrance unknown
Hereditary lymphedema IC Autosomal dominant 613480 Lymphedema of limbs, age of onset  GJC2 (connexin47)  1g41-q42
1-15 yr, nature of lymphatic
vascular defects is unknown
Hereditary lymphedema |l Unknown 153200 Puberty onset lymphedema, nature Unknown Unknown
(Meige disease) of lymphatic vascular defects is
unknown
Syndromes with lymphedema as a consistent feature
Anhidrotic ectodermal dysplasia  X-linked recessive 300301 Severe infections, osteopetrosis, IKBKG (Nemo) Xq28
with immunodeficiency, nature of lymphatic vascular TER420TRP
osteopetrosis and lymphedema defects is unknown
Cholestasis-lymphedema Autosomal recessive 214900 Severe neonatal cholestasis, neonatal Unknown 1591
syndrome (Aagenaes syndrome) or childhood onset lymphedema
caused by hypoplasia of lymphatic
vessels
Hennekam lymphangiectasia- Autosomal recessive 235510 Llymphedema of limbs, intestinal CCBE1 18g21.32
lymphedema syndrome lymphangiectasia, mental
retardation, facial anomalies
HLT syndrome Autosomal dominant 607823 Alopecia, ectatic blood vessels, SOX18 20q13.33
lymphedema, nature of lymphatic
vascular defects is unknown
Lymphedema, microcephaly, Autosomal dominant 152950 Congenital microcephaly and Unknown Unknown
chorioretinopathy syndrome lymphedema, nature of lymphatic
vascular defects is unknown
Lymphedema-choanal atresia Autosomal recessive 608911 Blockage of nasal passage (choana), PTPNT14 1932-q41
syndrome lymphedema of lower legs at
4-5 yr, nature of lymphatic
vascular defects is unknown
Llymphedema-distichiasis syn- Autosomal dominant 153400/  Late onset leg lymphedema and FOXC2 6q24.3
drome, yellow nail syndrome 153300 metaplasia of Meibomian glands
(distichiasis), impaired lymphatic
drainage caused by incompetent
lymphatic valves
Persistence of mullerian deriva- Autosomal recessive? 235255 Intestinal and pulmonary Unknown Unknown
tives with lymphangiectasia and lymphangiectasia, protein-osing
postaxial polydactyly (Urioste entheropathy, polydactyly, and
syndrome) mullerian duct remnants
Pulmonary congenital lymphan- Unknown 265300 Congenital pulmonary lymphangiecta- Unknown Unknown

giectasia

sia, subcutaneous edema,
nonimmune hydrops, chylothorax

References can be found under the corresponding Online Mendelian Inheritance of Man (MIM) entry.

KS-associated herpes virus [KSHV]). The lesions are composed
of spindle-shaped tumor cells, leaky and highly proliferative
vessels, extravasated red blood cells, and inflammatory infiltrate
(Mesri et al., 2010). KS cells express markers of both blood
(CD34 and CXCR4) and LEC lineages (VEGFR-3, LYVE-1, and
podoplanin). Interestingly, KSHV infection of BECs shifts the
transcriptional profile toward a LEC phenotype, whereas KSHV
infection of LECs induces transcriptional reprogramming toward
a more BEC-like phenotype (Hong et al., 2004; Wang et al., 2004).

The major latency viral transcripts expressed in KS cells
include the latency-associated nuclear antigen, viral cyclin, VFLIP,
viral-encoded micro-RNAs, and kaposin-A and -B. These
transcripts are important for KHSV-induced cell proliferation,

production of proangiogenic and inflammatory cytokines, and un-
restricted replicative potential (Mesri et al., 2010). Notably, some
of these molecules control endothelial cell differentiation in vitro:
four KS micro-RNAs target the transcription factor MAF and con-
tribute to reprogramming of the LEC to BEC phenotype, whereas
kaposin-B stabilizes PROX1 mRNA, which has a key role in
lymphatic endothelial identity (Hansen et al., 2010; Yoo et al.,
2010). Overall, these data provide an intriguing example of virus-
mediated change of the endothelial cell differentiation program.

Open questions and outlook
Impressive progress has been achieved in the past decade in the
field of lymphatic vascular biology, but many questions remain
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unresolved. Development of novel imaging techniques and
analysis of signaling pathways in situ will certainly provide ad-
ditional insights into the mechanisms of lymphangiogenesis.
Considerable phenotypic plasticity of endothelial cells is now
obvious; however, the genetic and epigenetic mechanisms of
LEC differentiation are far from being fully understood. Contri-
butions of other cell types in regulating lymphatic development
and function need to be addressed under physiological and
pathological conditions. Finally, organ- and disease-specific
features and responses of lymphatic endothelium have not been
studied in detail, although this knowledge may have a critical
impact on developing better treatments for human pathologies,
including lymphedema, cancer, and inflammation.
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