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Introduction
A striking feature of the eukaryotic cell nucleus is the packing 
of DNA into highly folded chromatin that fits into a very limited 
space. However, chromatin occupies only half of the available 
nuclear volume, and the remaining interchromatin space har-
bors nuclear subcompartments and soluble components involved 
in dynamic structural changes to chromatin domains. Increasing 
evidence suggests that the arrangement of chromosomes, gene 
loci, and nuclear bodies is nonrandom and exhibits features of 
self-organization in space and time. In the context of a highly 
ordered environment, the nucleus thus supports the efficient and 
precise coordination of diverse processes, including transcrip-
tion, DNA repair, and replication.

Chromosomes and individual genes occupy preferred  
locations relative to one another and to landmarks within the  
interphase nucleus. Furthermore, localization has been associ-
ated with transcriptional activity. In metazoans, the lamina lining 
the inside of the nuclear envelope is considered to be a repres-
sive environment, harboring transcriptionally inactive facultative 
heterochromatin. In contrast, particularly in yeast, subsets of 
actively transcribed loci can be found at nuclear pores as well as 
specific interior compartments. Thus, specific architecture may 

create functional microenvironments to coordinate transcrip-
tional activity. Furthermore, changes in the transcriptional state 
have been associated with the movement of loci into and out of 
nuclear subcompartments.

In this review, we examine the evidence for spatial organi-
zation affecting gene expression and how changes in transcrip-
tional status are related to the selective localization of chromatin 
to specific nuclear subcompartments, including the nuclear lam-
ina, the nuclear pore, transcription factories, nucleoli and peri-
nucleolar regions, and polycomb bodies (Fig. 1). We discuss 
how spatial architecture is relevant to disease states, such as 
cancer, that disrupt genome integrity. We also discuss the capa-
bilities and limitations of the most pertinent techniques for in-
vestigating spatial architecture at the population level and in 
single cells as well as novel approaches that will allow a better 
evaluation of the relationship between the architecture of the 
nucleus and features of the linear genome, such as gene expres-
sion, histone modification, or binding of transcription factors. 
Finally, the development of mathematical approaches has per-
mitted a more complete picture of the dynamic nucleus, which 
can further our understanding of critical developmental pro-
cesses, such as cell specification and differentiation.

Interphase chromosome territories (CTs)
The spatial organization of whole chromosomes has emerged in 
recent decades as an important factor in gene regulation and ge-
nome stability. Using Giemsa staining and light and electron 
microscopy, Stack et al. (1977) observed that chromosomes 
occupy distinct domains in the eukaryotic interphase nucleus. 
Cremer et al. (1982) were the first to provide experimental evi-
dence for the existence of such interphase CTs (Cremer and 
Cremer, 2006, 2010; Heard and Bickmore, 2007). Targeting 
specific regions of the nucleus with a microlaser showed that 
damage was not randomly distributed across many chromo-
somes but limited to a few locations, and the investigators sur-
mised that chromosomes must, therefore, be constrained to 
CTs. Arrangement of these CTs is defined relative to each other 
as well as by proximity to the nuclear periphery. Nonrandom 
positioning is demonstrated in the segregation of gene-rich and 
gene-poor chromosomes, which tend to localize toward the  
nuclear interior or periphery, respectively. This nonrandom 

Although the nonrandom nature of interphase chromo-
some arrangement is widely accepted, how nuclear organi-
zation relates to genomic function remains unclear. Nuclear 
subcompartments may play a role by offering rich micro-
environments that regulate chromatin state and ensure 
optimal transcriptional efficiency. Technological advances 
now provide genome-wide and four-dimensional analyses, 
permitting global characterizations of nuclear order. 
These approaches will help uncover how seemingly sepa-
rate nuclear processes may be coupled and aid in the  
effort to understand the role of nuclear organization in 
development and disease.
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massively parallel sequencing, Lieberman-Aiden et al. (2009) 
and van Berkum et al. (2010) constructed proximity maps of the 
human genome in B cell and erythroid cell lines and confirmed 
the presence of CTs, proximity of small, gene-rich chromosomes, 
and the spatial segregation of open and closed chromatin.

The arrangement of interphase chromosomes into distinct 
territories is now generally accepted as a basic principle of nu-
clear organization (Cremer and Cremer, 2010). There are two 
prevalent models of CT organization in the interphase nucleus. 
In the CT–interchromatin compartment (IC) model, nuclei con-
tain CTs and the IC. Interconnected higher order chromatin net-
works define the predominant structure within individual CTs 
(Visser et al., 2000; Albiez et al., 2006). The IC is a 3D contigu-
ous spatial network that forms channels between CTs (Albiez  
et al., 2006; Rouquette et al., 2009). Actively transcribed genes 
lie at the surface of CTs, in the perichromatin region, where 
transcription, pre-mRNA processing, and DNA replication  
occur. Because of the variable width of ICs, the CT-IC model 
does not exclude the possibility of interactions between CTs, in 
which inter- and intrachromosomal rearrangements may occur 
(Markaki et al., 2011; Rouquette et al., 2010). In contrast, in the 
interchromatin network model, the interchromatin space acts as 
a commons for frequent intermingling of chromatin loops in  
cis and trans (Branco and Pombo, 2006). Chromatin looping 
out of CTs is only constrained by immediate steric interactions, 
such as intrachromosomal higher order conformation, adjacent 
chromosomes, nuclear subcompartments, and the nuclear 
envelope. Significant interchromosomal contact revealed by 
Hi-C data suggests regular intermingling, which is consistent 
with the interchromatin network model (Lieberman-Aiden et al., 
2009). Intermingling of chromosomal regions may influence 
whole chromosome organization as well, potentially promot-
ing chromosome-wide and genome-wide spatial repositioning 
by influencing the behavior of adjacent chromatin in cis and 
trans. Actively transcribed and repressed genes may frequently 
cluster into distinct functional subcompartments (Cremer and 
Cremer, 2010).

It is also important to consider two limitations of micros-
copy assays in the investigation of CTs and derivative models. 
First, repetitive sequences are eliminated during the generation 
of chromosome-specific paints. Although the common assump-
tion is that repeats are buried within the CT, this has not been 
formally shown, and it is possible that repeats may coat a terri-
tory or extend from it. Second, although there are numerous 
studies of specific loci looping from their respective CTs to ac-
tive or repressive subcompartments, the number of loops from 
any given CT is unknown (Volpi et al., 2000; Ragoczy et al., 
2003). Moreover, by visualization of the CT and a specific 
looped locus, the surrounding sequences connecting the locus 
to the CT are generally not detected. Thus, the true extent of the 
CT (CT boundaries) and the extent of intermingling have not 
been very accurately defined given the limitations of current re-
agents and methodologies.

Peripheral dynamics
Nuclear organization will depend on a variety of cellular cues in-
fluenced by environment, developmental state, and cell cycle stage. 

organization of CTs is evident across many different cell types 
and appears to be conserved through eukaryotic evolution (Croft 
et al., 1999; Boyle et al., 2001; Cremer et al., 2001; Neusser  
et al., 2007). It is thought that this high level of organization 
contributes to inter- and intrachromosomal interactions and a 
coordinated expression among sets of genes. Dynamic activity 
in CTs complements the highly organized system. Long-range 
movements of gene loci to and from CTs have been reported 
(with distances ≤5 µm) and have been linked to gene activation 
and silencing, presumably as access to the transcriptional  
machinery changes (Chuang et al., 2006; Dundr et al., 2007; 
Meister et al., 2010). However, it is yet unclear whether gene 
looping is the primary mechanism for colocalization of distant 
loci or whether a higher order rearrangement of chromatin me-
diates the interaction (Strickfaden et al., 2010).

The 3D architecture of chromosomes can compartmental-
ize the nucleus and reflect regional gene expression (Kosak and 
Groudine, 2004; Bolzer et al., 2005; Misteli, 2007; Dekker, 2008), 
but the analysis of nuclear architecture has been limited by meth-
ods that focus on interactions between specific loci rather than an 
unbiased genome-wide analysis (Dostie et al., 2006; Simonis  
et al., 2006; Zhao et al., 2006). The chromosome conformation 
capture (3C) technique identifies chromatin interactions between 
two regions of interest by cross-linking, restriction enzyme diges-
tion, intermolecular ligation, and PCR analysis of the resulting 
linked DNA fragments (Dekker et al., 2002). Recently described 
variants of the 3C technique have been used to investigate nuclear 
organization on a more global level (Lieberman-Aiden et al., 
2009). Using one of these, Hi-C, which probes the 3D architec-
ture of whole genomes by coupling proximity-based ligation with 

Figure 1.  Chromosome conformation and transcriptional activity are  
affected by the association of chromosomal regions with peripheral or 
central subcompartments. (a) The nuclear lamina and adjacent nuclear 
space, (b) nuclear pore complexes, (c) a nucleolus, where ribosomal DNA 
loci from different chromosomes cluster, (d) a transcription factory, where 
coregulated genes preferentially colocalize, and (e) a polycomb body. The 
filled gray region represents a CT that is interacting with both a and c.
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sequences in active promoters, which may facilitate optimal 
gene expression (Schmid et al., 2006; Taddei et al., 2006; 
Ahmed et al., 2010). It is important to note that interactions 
between promoters and soluble nucleoplasmic nuclear porins 
have been documented; therefore, localization to the nuclear 
pore cannot be determined using ChIP and DamID alone and 
should be confirmed by FISH (Capelson et al., 2010; Kalverda 
et al., 2010). The localization of chromatin to the nuclear pore 
microenvironment could expedite transport of transcripts into 
the cytoplasm as a result of proximity, lower concentrations of 
obstructive condensed DNA, and higher concentrations of pre-
mRNA–processing machinery (Blobel, 1985; Ishii et al., 2002; 
Kylberg et al., 2008; Krull et al., 2010; Strambio-De-Castillia 
et al., 2010).

Although mechanisms governing spatial positioning and 
how specific nuclear subcompartments at the periphery influence 
transcriptional state are not well understood, they appear to be 
important regulatory events in development. In a study in human 
ESCs, repressed chromatin, marked by H3K27 trimethylation, 
was enriched at the nuclear periphery, but a small percentage of 
active chromatin at the periphery was preserved. Differentiated 
cells contained the same percentage of active chromatin but had 
significantly less peripheral repressed chromatin than ESCs (Luo 
et al., 2009). In addition, some histone deacetylases associate 
with lamin-associated proteins at the periphery (Somech et al., 
2005), suggesting an actively maintained repressive environ-
ment. Thus, targeting certain loci to the peripheral microenviron-
ment may ensure the persistence of repression until appropriate 
cues signal the release and activation of developmentally required 
genes. During differentiation, loci containing up-regulated genes 
move from a repressive to an active nuclear compartment, whereas 
loci containing down-regulated genes move in the opposite direc-
tion (Brown et al., 1997; Skok et al., 2001; Kosak et al., 2002; 
Ragoczy et al., 2006). On a local level, movement of loci may be 
accompanied by the looping of loci from their CTs (Williams 
et al., 2006). Furthermore, investigation of the monoallelically 
expressed GFAP gene showed that the active allele is found in  
a more internal radial position than the nonexpressed allele 
(Takizawa et al., 2008).

A notable inversion of the predominant pattern of nuclear 
organization is found in retinal rod cells of nocturnal mammals, 
where, though the same high level of order is present, hetero-
chromatin is internal and euchromatin is peripheral, an arrange-
ment that minimizes light scattering (Solovei et al., 2009). 
Therefore, rod cells exemplify the broad flexibility of biological 
systems and also illustrate that the functional requirements of a 
specific cell type may closely guide nuclear architecture.

Central dynamics
Many other nuclear subcompartments participate in the dy-
namic regulation of the genome and likely impose a particular 
spatial configuration inside the interphase nucleus. For exam-
ple, nucleoli, the most prominent nuclear bodies, emerge from 
the congregation of multiple tandem repeats of ribosomal DNA 
from several chromosomes. They are the sites of ribosomal RNA 
(rRNA) transcription by RNA polymerase I, posttranscriptional 
processing of the rRNA, and assembly of ribosomal subunits. 

Thus, models of nuclear organization must encompass the 
dynamic flexibility of chromosomes required by an adaptable 
and responsive nuclear environment, while at the same time  
allowing for a high level of order as reflected in the functional  
specialization of nuclear subcompartments. The relationship 
between spatial arrangement and gene expression is illustrated 
by the dynamic association of chromosomes with peripheral 
structures at the nuclear envelope as well as with more central 
nuclear subcompartments. In general, peripheral localization 
correlates with attenuated transcription and heterochroma-
tin, whereas movement toward the nuclear center correlates 
with higher transcription and euchromatin. However, two 
competing domains may be influencing gene expression at the 
nuclear periphery.

One important component is the nuclear lamina, a network 
of intermediate filaments (lamins, LAP2, emerin, etc.) lining 
the inner nuclear membrane, providing both a mechanical and 
signaling scaffold for the nucleus. The nuclear lamina has been 
shown to interact with chromatin, and loci at this interface tend 
to exhibit reduced expression. Moreover, tethering experiments 
in which loci are anchored to the nuclear lamina have revealed 
silencing upon peripheral localization (Finlan et al., 2008; 
Reddy et al., 2008). Genome-wide scanning for loci in close as-
sociation with the nuclear lamina, using DNA adenine methyl-
transferase identification (DamID; a method that uses fusions 
to a bacterial methyltransferase to identify genomic binding 
sites of a particular protein), has revealed numerous lamin- 
associated domains (LADs) in largely silent heterochromatic re-
gions of human, mouse, and Drosophila melanogaster nuclei 
(Pickersgill et al., 2006; Guelen et al., 2008). Regions in the 
tens of kilobases to >10 Mb have been identified, but the exact 
lamin-binding motifs have not been defined (Peric-Hupkes 
et al., 2010). The ubiquitous nature of these interactions was 
recently demonstrated by Peric-Hupkes et al. (2010), who iden-
tified LADs during spatial reorganization during the differen-
tiation of embryonic stem cells (ESCs) into neural progenitor  
cells and astrocytes. The study revealed that in each of the three 
differentiation stages as well as in 3T3 mouse embryonic fibro-
blasts 40% of the genome is comprised of LADs and that 
LADs in the different cell types overlap by 70–90%. Notably, 
during differentiation, some LADs reposition away from the pe-
riphery, suggesting impending or actual transcriptional activity 
(Meister et al., 2010). Thus, although overlapping sets of LADs 
are present in different cell types regardless of lineage or devel-
opmental stage, LAD identity is dynamic.

Chromatin also interacts with components of the nuclear 
pore complex. Unlike peripheral association with the nuclear 
lamina, loci near nuclear pore complexes tend to be euchro-
matic and more actively transcribed (Blobel, 1985; Krull et al., 
2010). The association between nuclear pore proteins and ge-
nomic DNA has been documented in yeast, Drosophila, and 
mammalian systems (Akhtar and Gasser, 2007; Luthra et al., 
2007; Brown et al., 2008). In yeast, chromatin immunoprecipi-
tation (ChIP) of nuclear pore–associated proteins has revealed 
interactions with actively transcribed genes (Casolari et al., 
2004). Additionally, nuclear porins in the inner nuclear pore 
basket have been shown to associate with particular DNA  
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polymerase tracking along DNA (Sexton et al., 2007; Papantonis 
et al., 2010).

Transcription factories specialize depending on the type 
of polymerase, the transcription factors, and the chromosomal 
regions present. For example, RNA polymerase I localizes to 
nucleoli for ribosome synthesis, whereas RNA polymerase II 
and III localize to dedicated, mutually exclusive nucleoplasmic 
regions (Pombo et al., 1999). Genomic regions and cell type 
may also determine the transcription factory function reviewed 
in Bartlett et al. (2006). In a recent study, Schoenfelder et al. 
(2010) used a variation of 3C to screen the genome for loci that 
colocalize with active - and -globin genes (Hba and Hbb) in 
erythroid cells. Many erythroid-specific genes, both on the same 
and different chromosomes, were found associated with the 
globin genes. Each globin gene colocalized with sets of loci 
with very little overlap. Moreover, a subset of genes identified 
by colocalization with Hbb shared binding sites for Krüppel-
like factor 1 (Klf1), an erythroid lineage transcription factor. 
Klf1 was found in a subset of transcription factories along with 
the identified Klf1-regulated genes, suggesting the existence of 
lineage-specific factories optimized for the expression of co-
regulated genes. Consistent with this hypothesis, in the absence 
of Klf1, the coregulated genes failed to colocalize.

However, many questions remain, such as whether tran-
scription factories are stable or whether they spontaneously and 
transiently self-organize and whether the developmental state in-
fluences the status and dynamics of transcription factories. Con-
firming the validity of transcription factor dynamics will require 
further investigation of loci on a genomic scale as well as devel-
opment of higher resolution detection methods and tracking 
transcription factory formation and localization over time.

Methods for exploring the 3D genome
A variety of biochemical methods have been developed to inves-
tigate the conformation of chromatin (or chromosomal) regions, 
providing insight into nuclear subcompartments and local gene 
expression patterns. Initially, such characterizations only ana-
lyzed one or a few loci at most (Dostie et al., 2006; Simonis  
et al., 2006; Zhao et al., 2006), but the recent development of 
unbiased high throughput genome-wide spatial analyses has the 
potential to reveal critical global characteristics of the nucleus that 
may participate in the regulation of transcriptional programs.

As previously stated, the recently developed Hi-C method 
probes the 3D architecture of whole genomes (Fig. 2 A) by cou-
pling proximity-based ligation with massively parallel sequenc-
ing (Fig. 2 B). Spatial proximity maps of the human genome 
have been constructed using Hi-C at a resolution of 0.1–1 Mb 
(Lieberman-Aiden et al., 2009), and the use of a similar method 
to Hi-C has provided a model of the 3D architecture of the yeast 
genome (Duan et al., 2010). Maps constructed using the human 
genome data support the presence of CTs and the spatial proxim-
ity of small, gene-rich chromosomes. The maps also identified 
an additional level of genome organization that is characterized 
by the spatial segregation of open and closed chromatin (based 
on DNase I hypersensitivity) into two genome-wide compart-
ments. Although the compartment patterns appear to be similar 
between different cell types, the composition of individual loci 

Spatial clustering of these distant genomic loci is critical for 
their function, making nucleoli a prominent example of special-
ized nuclear compartmentalization (Boisvert et al., 2007).

The perinucleolar region is another nuclear domain with 
distinct characteristics, exhibiting low RNA polymerase II tran-
scriptional activity (Németh et al., 2010). Sequencing, genome-
wide microarray analysis, 3D FISH, and immunofluorescence 
have revealed that nucleolar-associated domains comprise 4% 
of the human genome, are largely transcriptionally repressed, 
and are enriched in repressive histone modifications and depleted 
of those associated with transcriptional activity (Németh et al., 
2010). A notable exception to transcriptional repression in the 
perinucleolar region is the RNA polymerase III–transcribed 
tRNA genes (Bertrand et al., 1998). tRNA genes are enriched in 
nucleolar-associated domains, suggesting a possible common 
mechanism for the spatial positioning of the many genomic 
regions carrying tRNA genes (Németh et al., 2010). This posi-
tioning is dependent on RNA polymerase III occupancy and 
transcriptional activity, as promoter point mutations eliminate 
association with the nucleolus (Thompson et al., 2003). The close 
spatial proximity of tRNA and rRNA synthesis could be impor-
tant for the coordinated expression of translational machinery.

Polycomb bodies provide another example of spatial 
positioning in the interior of the nucleus that results in gene 
repression. Polycomb bodies are discrete foci that consist of 
polycomb group (PcG) proteins, which attenuate gene expres-
sion in many cell types, and target loci that contain PcG re-
sponse elements (Saurin et al., 1998). PcG proteins and response 
elements have been shown to facilitate long-range interchromo-
somal interactions of multiple loci even when loci are artifi-
cially inserted into ectopic sites (Bantignies et al., 2003; Vazquez 
et al., 2006). Genes associated with polycomb bodies undergo 
chromatin modifications catalyzed by the PcG complex proteins 
PRC1 and PRC2 (mechanisms of PcG repression are reviewed 
in Morey and Helin, 2010). Polycomb-mediated repression ap-
pears to be critical for maintaining the appropriate temporal re-
pression of loci during development, as their disruption can 
induce the activation of differentiation pathways (O’Carroll et al., 
2001; Pasini et al., 2007; Ezhkova et al., 2009).

Transcription factories
Dynamic movements of genes into and out of a CT may permit 
specific loci or sets of coregulated genes to rapidly engage the 
transcription machinery. Indeed, transcription of coordinately 
regulated genes that rely on the same transcription factors and 
cofactors would be much more efficient if this machinery were 
preassembled at high local concentrations in compartments. 
The observation that labeled nascent transcripts localize to dis-
crete transcription foci led to the concept of such “transcrip-
tion factories” (Jackson et al., 1993; Wansink et al., 1993), and 
it is now known that RNA polymerase II accumulates in tran-
scription factories at ≤1,000-fold higher concentrations than 
elsewhere in the nucleoplasm (Cook, 2002). In addition, the 
observation that RNA polymerases are relatively immobile 
and anchor to nuclear structures supports the transcription 
factory model, as actively transcribing genes can move effi-
ciently through clustered polymerase complexes rather than the  
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(O’Sullivan et al., 2009). For example, macrosatellite D4Z4  
repeats in chromosome 4 appear to have an epigenetic role in 
the expression of a locus that acts in a dominant fashion to 
cause facioscapulohumeral muscular dystrophy. With >10 re-
peats, the entire region is heterochromatic and methylated, 
whereas with <10 repeats, the region is less methylated and less 
heterochromatic, allowing expression of the “toxic” DUX4 
transcript (Lemmers et al., 2010). Spatial analysis has yet to be 
conducted, but an attractive explanation is that architecture and 
long-range interactions are critical for activation or silencing in 
this region.

Current biochemical chromatin conformation analyses 
measure the probability of any given interaction by the number 
of sequencing reads obtained from a population of cells. How-
ever, these techniques do not reveal which interactions are func-
tionally relevant, which must be confirmed experimentally. 
Furthermore, these techniques require millions of cells to im-
prove the likelihood of capturing a particular interaction, mak-
ing it difficult to determine which interactions/configurations 
occur simultaneously in any given cell (Simonis et al., 2007). 
High resolution live-cell imaging, with gene loci and nuclear 
bodies labeled using bright fluorophores and low photobleach-
ing or novel multiplex labeling systems, will likely be necessary 
to validate many findings about the genomic organization at the 
single-cell level. Microscopy approaches more effectively re-
veal individual nuclear components and their topography with 
respect to each other. Multicolor DNA and RNA FISH (M-FISH 
or 3D-FISH) allows visualization of interphase chromosomes 
in their entirety as well as transcription events. The spectral 

differs, and there is a strong correlation between the compart-
ment pattern and chromatin accessibility in the same cell type 
(Lieberman-Aiden et al., 2009). These results demonstrate the 
power of Hi-C to map the conformations of whole genomes and, 
furthermore, that open and closed chromatin domains through-
out the genome occupy different spatial compartments in the nu-
cleus. These patterns may distinguish specific cell types or states. 
The predecessor method to Hi-C, 3C, only probes small genomic 
regions. Advances in this technique, such as 4C or 5C, allow 
analysis of whole genomic regions or long-range interactions but 
are still biased in the sense that they rely on PCR amplification 
with specific bait primer sets and application to microarrays (for 
more information on these techniques see Naumova and Dekker, 
2010; van Steensel and Dekker, 2010). Another recent method, 
chromatin interaction analysis with paired-end ditag sequencing, 
uses a combination of ChIP with a specific antibody, intramolec-
ular ligation of enriched sequences, and sequencing, allowing 
the detection of protein factor binding as well as long-range 
interactions (Fullwood et al., 2009).

As described for CT analyses using FISH whole chromo-
some probes, one major issue with these approaches is that they 
exclude many repetitive and nonprotein-coding sequences. Be-
cause identified sequences are mapped back to the genome, any 
sequences from nonannotated genomic regions and repeats are 
not considered in the analysis (Shapiro and von Sternberg, 
2005; Alexander et al., 2010). Repetitive elements are found 
throughout the genome, and it is possible that they influence ex-
pressed loci through long-range regulatory regions or by having 
other structural roles in higher order chromatin arrangements 

Figure 2.  Methods for exploring the 3D genome. (A) A schematic representation of the 3D genome (courtesy of J. Dekker and N.L. van Berkum, University 
of Massachusetts Medical School, Worcester, MA). (B) The Hi-C technique. (B1) DNA is cross-linked and digested with restriction enzymes. (B2) High 
throughput sequencing (8.5 million reads) is used to determine the spatial proximity of sequences, including those on the same or different chromosomes 
using paired-end sequencing. (C) Image of a murine hematopoietic progenitor interphase nucleus labeled by SKY. All chromosomes are labeled with a 
unique color to visualize their territories. (D) Once algorithms are developed to characterize the spatial relationships among all CTs in the interphase 
nucleus simultaneously from SKY data, spatial proximity maps can be generated that integrate both SKY and Hi-C data to more precisely define inter- and 
intrachromosomal interactions.
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consideration in whole-genome 3D analyses is the use of a non-
transformed primary cell system with a normal karyotype.

Technical advances also have facilitated a genome-wide 
study of specific interactions and processes in the linear ge-
nome. Replication timing during S phase can be tracked using 
BrdU pulse labeling, microarray analysis, and deep sequencing 
(Hiratani et al., 2008); transcription factor–DNA interactions or 
histone modifications can be globally profiled using ChIP com-
bined with microarray analysis or sequencing (ChIP-chip or 
ChIP-seq); and chromatin-interacting proteins can be tracked 
using DamID. Heterochromatin and euchromatin can also be 
profiled using DNase I treatments that target open chromatin 
coupled with ligation-mediated PCR amplification and micro
arrays or sequencing (Naumova and Dekker, 2010). Comparisons 
between such profiles and spatial proximity maps may provide 
additional information about how seemingly separate nuclear 
processes coincide and influence each other. Ryba et al. (2010) 
showed that G1 replication timing decision points were related 
to spatial architecture. Many other potential relationships await 
investigation. For example, transcription factors that act as mas-
ter regulators, such as MyoD in differentiating skeletal muscle 
cells, may influence nuclear architecture. MyoD, in addition to 
its expected binding of muscle-specific regulatory regions, also 
binds broadly throughout the genome at sites associated with 
histone acetylation before muscle cell differentiation. Thus, 
MyoD may also play a role in regulating epigenetic features and 
genomic organization (Cao et al., 2010).

Spatial positioning and cancer
Various cancers are associated with specific translocations. It has 
been shown that the high frequency of certain translocations re-
flects prevalent tissue-specific spatial positioning of particular 
chromosomes, as these translocations occur when the chromo-
some partners are in close proximity (Misteli, 2004; Soutoglou 
and Misteli, 2008). Moreover, translocations affect spatial posi-
tioning as well as gene expression (Croft et al., 1999; Taslerová 
et al., 2003; Harewood et al., 2010) and may play a role in tu-
morigenesis through disruption of the coupling between spatial 
arrangements and expression. For example, Harewood et al. 
(2010) studied the effect of a reciprocal translocation between 
chromosome 11 and 22 (t(11;22)(q23;q11)) that is associated 
with an increased risk of breast cancer and has been shown to 
affect the spatial positioning of chromosomes. In a transcrip-
tome analysis, cell lines from individuals with the translocation 
had higher numbers of differentially expressed genes compared 
with the expected variation in cell lines from individuals with-
out it (Harewood et al., 2010). However, not every translocation, 
even when associated with tumorigenesis, results in changes in 
spatial positioning or gene expression (Snow et al., 2011). This 
is not a surprising result if chromosome arrangement is a key 
feature in gene regulation. The time or path to reach an impor-
tant global configuration may change after a translocation or 
mutation, but only major disruptions in chromosome topology 
that alter localization patterns of individual genes may increase 
the likelihood of disease states.

Repositioning in cancer cells, compared with normal 
tissue, also appears to be gene specific and has been linked to 

karyotyping (SKY) technique uses 3D-FISH as well as special-
ized equipment and computational analyses to allow capture of 
the entire emission spectrum in a single image (Fig. 2 C). These 
techniques facilitate comparisons that may help identify cell- 
to-cell variability of chromatin arrangements and cell type– 
specific arrangements of certain chromatin domains.

Bolzer et al. (2005) were the first to use 3D-FISH to si-
multaneously detect all chromosomes in single diploid human 
fibroblasts in interphase and in prometaphase rosettes. They dis-
covered that particular CTs consistently bordered only select 
neighbors, and their analysis suggested that the intermingling of 
chromatin loops between CTs was not extensive, as this would 
have made the CTs much less discrete. However, this does not 
exclude the possibility of nonrandom intermingling between 
CTs or colocalization of genes in the IC. In addition, investiga-
tion of relative positioning of all CTs has not been revisited or 
explored in other cell types. If significant intermingling does 
occur, accurate measurements of chromosome shape and rela-
tive position will be difficult to determine by microscopy (Cremer 
and Cremer, 2010).

One difficulty with any 3D characterization using labeling 
methods and microscopy is the shape of nuclei, which depends 
on cell type. Human fibroblasts, for example, have flat ellipsoid 
nuclei, in which the orientation of structures within can be well 
defined using major and minor axes. Spherical nuclei, however, 
present a challenge in that it is difficult to assign a spatial co
ordinate system and polarity. Geometric computational techniques 
can assist in defining specific features, such as a central point or 
centroid, and help to characterize relationships between CTs by 
determining the distance between centroids and the closest dis-
tance between any two CTs. Development of more sophisticated 
computational tools may permit further investigation of com-
plex CT characteristics, such as shared volume and contact area 
(Eils et al., 1996; Roix et al., 2003; Cremer and Cremer, 2010). 
Furthermore, microscopy techniques that provide a higher reso-
lution in three dimensions, such as laser-based microscopy and 
focused ion beam with scanning electron microscopy, will be 
critical to refining existing models of chromatin organization 
(Hell, 2007; Schroeder-Reiter et al., 2009).

Although the single time points in recent Hi-C and  
M-FISH studies have provided important clues about how ge-
nomes organize (Bolzer et al., 2005; Lieberman-Aiden et al., 
2009), extending this to multiple time points is required to un-
derstand the dynamic flexibility of chromosome organization. 
Across a time course of differentiation, for example, much can 
be learned about the importance of gene positioning in the con-
text of development and transcriptional regulation. An investi-
gation of two time points during differentiation in the murine 
hematopoietic lineage suggests that dramatic changes in total 
genomic order take place (Rajapakse et al., 2009). In this study, 
prometaphase rosettes were examined using SKY. Although 
this arrangement was validated by pairwise comparisons of a 
few interphase CTs (Kosak et al., 2007), it is not yet known 
whether all prometaphase chromosome arrangements are re-
flected in the interphase nucleus. Moreover, additional time 
points during the course of differentiation may provide a more 
detailed picture of chromosome reorganization. An additional 
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time, the system exhibits a continual interplay of bottom-up  
and top-down processes. Therefore, the coordination of the  
activities of individual complex elements enables a system to  
develop, sustain complexity at a higher level, and change over 
time (Fig. 3 B).

An intriguing example of self-organization in biology is 
the slime mold Physarum polycephalum, which has a talent for 
finding the most efficient configuration in its quest for food. 
When the slime mold is placed near an array of different-sized 
oat flakes, it makes contact with all flakes within reach. Next, it 
begins erasing connections between smaller oat flakes and 
strengthening the connections between bigger and central 
flakes. Eventually, it will converge to the optimal solution in 
which the most robust connections are established between the 
most important/central nodes and the redundant connections 
slowly disappear (Tero et al., 2010). In many scientific disci-
plines, optimality has long been an organizing principle of a 
system. We can argue the same for the living cell. The cell is  
a self-organizing, self-replicating, environmentally responsive 
machine of staggering complexity. The instructions for this 
complexity are contained within the cell’s genetic code, but 
how this information is accessed, read, and interpreted is influ-
enced by the environment and epigenetic factors during devel-
opment and differentiation.

Networks. The basic mechanisms underlying self- 
organization in complex biological networks are still far from 
clear. However, self-organizing systems can be simplified, while 
retaining complex information, by the deconstruction of their 
elements into well-defined networks. If we think of the nucleus 
as a system composed of such networks, studying the dynamics 
between networks may provide a useful framework for inves-
tigating complex 4D nuclear organization. A network—a graph 
in the mathematics literature—is a collection of points, or nodes, 

disease-specific 3D rearrangements. Meaburn et al. (2009) iden-
tified several genes with altered localization in cells derived 
from invasive breast cancer tissue compared with cells from 
normal tissue. Changes in copy number did not correlate with 
chromosome rearrangement, suggesting that spatial reposition-
ing was not a result of genome instability. In addition, breast 
cancer cells could be distinguished from noncancer cells based 
on gene repositioning alone with nearly 100% accuracy using 
the gene HES5 (Meaburn et al., 2009). Thus, spatial organiza-
tion appears to be an important feature related to nuclear 
function that has a potential diagnostic utility for identifying 
cancerous tissue.

Perspective
Self-organization and optimum configurations. It has 
been suggested that the positioning of genes and chromo
somes as well as formation of nuclear subcompartments is the 
result of self-organization (Misteli, 2001; Kosak and Groudine, 
2004). Self-organization in a system is a process by which the 
global level pattern emerges solely from many interactions 
among lower level components; the pattern is an emergent prop-
erty of the system rather than a property imposed on the system 
by an external ordering influence (Ashby, 1947; Camazine et al., 
2003). The rules for behavior in such systems are nonlinear,  
and the whole of a nonlinear system is not simply an additive 
function of its parts (Anderson, 1972; Strogatz, 1994, 2001, 
2003). A more refined view of self-organization is that the 
global pattern, although not in control of the local interactions, 
can feed back to influence those local components (Fig. 3 A). 
The resulting changes in local behavior may then change the 
global pattern, and the self-organized system fine tunes over 
time. Thus, self-organized systems have local to global and 
global to local feedback that leads to increasing order, and over 

Figure 3.  The mechanics of self-organization 
and differentiation. (A) Local interactions that 
make up the transcriptome network (gene co-
regulation) and spatial architecture that makes 
up the chromosomal network mutually influ-
ence each other and lead to the emergence 
of cell-specific nuclear organization. In turn, 
this order feeds back to strengthen the local 
associations, and the self-organized system 
fine tunes over time. (B) Two possible models, 
form precedes function (FPF) and form follows 
function (FFF), representing the relationship be-
tween chromosomal (form) and transcriptome 
(function) networks over time during differen-
tiation (horizontal black arrow). At the green 
arrow, a stimulus initiates the process of dif-
ferentiation. CP1 and CP2 are critical points 1 
and 2 or defined states in nuclear architecture. 
The solid, dotted, and bold boxes represent 
nuclear organization as determined by the 
interaction between the networks. Plus and 
minus symbols show changing or unchanging 
architecture, respectively, within each network. 
In the undifferentiated state in both models, the 
transcription and space networks are chang-

ing and mutually influence each other. After the stimulus in the form precedes function model, only the space network changes over time until CP1. At CP1, 
when the space network has reached a particular configuration, the transcription network begins to change, and again they become mutually related. In 
the form follows function model, only the transcription network changes over time until CP1, and the system behaves in the opposite fashion as the form 
precedes function model, with the transcription network leading the space network. Between CP1 and CP2 in both models, the system fine tunes, or feed-
back between the networks leads to the optimum configuration for terminal differentiation at CP2.
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network (Fig. 2 D), allowing more accurate snapshots of the 
dynamics of a cell’s functional and structural networks. One 
important question is how to identify the fundamental processes 
that help establish stable transitions between cellular states 
during development. For example, we can address on a global 
scale whether lineage determination patterns a specific nuclear 
architecture that shapes the expression of differentiation genes 
or whether the transcription of differentiation genes initiates 
transitions in nuclear architecture. We suggest that investigating 
the relationships between nuclear architecture (form) and ex-
pression (function) will be critical to improve our understand-
ing of cell fate (Fig. 3 B), including missteps that can propel 
normal cells into an unstable state that leads to cancer. By study-
ing disruptions in networks that globally represent the nucleus 
of any cell type, we can potentially predict instabilities and ulti-
mately determine how to redirect cells from a differentiated 
state to pluripotency or from a pathological to a benign state. 
Emerging technologies in microscopy, high throughput bio-
chemical assays, and computational tools invite an integrated 
approach that puts a more refined understanding of nuclear or-
ganization within reach.
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