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eficits in mitochondrial function result in many
human diseases. The X-linked disease Barth syn-
drome (BTHS) is caused by mutations in the tafazzin
gene TAZI. lts product, Taz1p, participates in the metabo-
lism of cardiolipin, the signature phospholipid of mitochon-
dria. In this paper, a yeast BTHS mutant tafazzin panel is
established, and 18 of the 21 tested BTHS missense muta-
tions cannot functionally replace endogenous tafazzin.
Four BTHS mutant tafazzins expressed at low levels are

degraded by the intermembrane space AAA (i-AAA)

Introduction

The term mitochondrial medicine was first coined in 1994 by
Luft, who 32 years earlier had described a patient suffering
from hypermetabolism associated with profuse sweating and
what were described as mitochondria defective in normal respi-
ratory control (Ernster et al., 1959; Luft et al., 1962; Luft, 1994).
Luft syndrome was the first documented mitochondrial disease,
and amazingly, the causative gene has still not been identified.
As a relatively recent medical subspecialty, mitochondrial med-
icine is in its nascency. A major complication in patient diagno-
sis is that mutations in two genomes can result in mitochondrial
disease, a factor that contributes to the panoply of associated
phenotypes and varied timing for the onset of disease symptoms
(Thorburn, 2004; Haas et al., 2008). Still, as 99% of proteins
resident to mitochondria are encoded in the nuclear genome
(Sickmann et al., 2003; Pagliarini et al., 2008), the majority of
pediatric cases of mitochondrial disease exhibit typical Mende-
lian inheritance (Thorburn, 2004). Given the mitochondrion’s
central role in ATP production, not surprisingly, oxidative
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profease, suggesting misfolding of the mutant poly-
peptides. Paradoxically, each of these mutant tafazzins
assembles in normal protein complexes. Furthermore, in
the absence of the i-AAA protease, increased expression
and assembly of two of the BTHS mutants improve their
function. However, the BTHS mutant complexes are ex-
tremely unstable and accumulate as insoluble aggregates
when disassembled in the absence of the i-AAA protease.
Thus, the loss of function for these BTHS mutants results from
the inherent instability of the mutant tafazzin complexes.

phosphorylation disorders represent a major class of mito-
chondrial disease (DiMauro and Schon, 2003; Thorburn et al.,
2004). In fact, current estimates indicate that 1 in 5,000 chil-
dren will develop an oxidative phosphorylation disorder, plac-
ing this disease category on par with lysosomal storage diseases
as the most prevalent causes of inherited metabolic disease
(Thorburn, 2004).

Of the 79 known nuclear mitochondrial disease—associated
genes (Calvo et al., 2006; Calvo and Mootha, 2010), only
one, TAZI (G4.5 or TAFAZZIN), the mutant gene associated
with the X-linked disease Barth syndrome (BTHS; Online
Mendelian Inheritance in Man [OMIM] accession no. 302060),
is involved in the metabolism of the mitochondrial-specific phos-
pholipid cardiolipin (CL; Barth et al., 1983; Bione et al., 1996;
Schlame and Ren, 2006). BTHS patients suffer from skeletal
and cardiomyopathy and cyclic neutropenia. Heart failure and
opportunistic infection are major causes of patient mortality,
and there is currently no documented universal therapeutic
strategy. Mitochondria isolated from BTHS patients and models
exhibit deficits in oxidative phosphorylation assembly and/or
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function (Barth et al., 1983, 1996; Ma et al., 2004; Brandner
et al., 2005; McKenzie et al., 2006; Claypool et al., 2008b). CL,
which is highly enriched in the mitochondrial inner membrane
(IM), its site of synthesis, is an unusual dimeric phospholipid
consisting of two phosphatidic acids bridged by a central glyc-
erol moiety (Schlame et al., 2000). The four typically saturated
acyl chains of newly synthesized CL undergo a remodeling
process, the end result of which is the incorporation of more un-
saturated fatty acyl chains that display a high degree of symme-
try (Schlame et al., 2005). Tafazzin (Taz1p), the gene product of
TAZI, is a key player in the remodeling of newly synthesized
CL, functioning as a monolysocardiolipin (MLCL) transacylase
(Xu et al., 2006). Remodeling is initiated by a phospholipase,
which is identified in yeast as CL-specific deacylase 1 (Cld1;
Beranek et al., 2009). In the absence of tafazzin activity, MLCL
(only three acyl chains) accumulates, as the remodeling pathway
is initiated but cannot be completed. Thus, MLCL is a biochem-
ical signature of BTHS (Valianpour et al., 2005; Houtkooper
et al., 2009a).

Like many inherited disorders, there are a multitude of mu-
tations in TAZI associated with BTHS (Fig. 1). In addition to
frameshift mutations that cause tafazzin truncation and mutations
affecting splice donor and acceptor sites, 28 missense mutations
have been documented. Based on the wide distribution of the
missense mutations, it is reasonable to predict that there will
be multiple mechanisms for the loss of function of BTHS
mutant tafazzins. Support for this notion was provided by our
previous demonstration that four BTHS mutations in a unique
membrane anchor of Taz1p, when individually modeled in the
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BTHS Mutant Conserved
Putative acyltransferase motifs

Integral Interfacial Membrane Anchor

Saccharomyces cerevisiae Taz1p orthologue, resulted in two dis-
tinct biochemical fates: mislocalization to the mitochondrial matrix
or altered assembly in macromolecular complexes (Claypool
et al., 2006).

In the present study, we generate the complete collection
of yeast BTHS mutant tafazzins by modeling the 21 missense
mutations that occur at identical or conserved residues between
the human and yeast orthologues. The power of the yeast model
system to characterize the assorted BTHS mutant tafazzins is
demonstrated by the fact that 18 of the 21 BTHS mutant ta-
fazzins fail to complement the Ataz/ yeast strain based on the
accumulation of significant levels of the BTHS biomarker
MLCL. Our further in-depth characterization of four BTHS
mutant tafazzins (four mutations at three loci) expressed at low
levels demonstrates that each is degraded by the intermembrane
space (IMS) AAA (i-AAA) protease quality control apparatus
of the mitochondrial IM, suggesting misfolding of the mutant
polypeptides. Paradoxically, each of these mutant tafazzins as-
sembles in normal protein complexes, arguing against a gross
folding defect. Furthermore, in the absence of the i-AAA prote-
ase, the phospholipid profile of two of the BTHS mutants is
improved, indicating recovered function. However, the BTHS
mutant complexes are significantly more labile than wild-type (wt)
Taz1p—containing complexes and, once disassembled, accumu-
late as insoluble protein aggregates in the absence of the i-AAA
protease. Thus, we define a third mechanism explaining BTHS
mutant tafazzin loss of function, tafazzin complex lability. To our
knowledge, complex lability as a pathogenic mechanism has
not been previously documented.
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Figure 2.

Red = BTHS mutants further characterized

18/21 BTHS mutations result in dysfunctional yeast Taz1p. (A) The relative expression of each of the BTHS mutants was determined from whole-

cell extracts by immunoblotting for Taz1p (bottom) with a-ketoglutarate dehydrogenase (KDH) serving as a loading control (top). (B) The relative abundance
of MLCL was determined for each strain and is expressed as a percentage of the total phospholipid in each strain (means =+ SEM; n = 3). The dashed red
line indicates the highest level of MLCL detected in Atazl (WT Taz1). Asterisks indicate significant accumulations of MLCL relative to Atazl (WT Taz1;
P < 0.001) as defermined by one-way analysis of variance (ANOVA) with Holm-Sidak pairwise comparisons.

Results

Characterizing the yeast BTHS mutant
tafazzin panel

The expression of human tafazzin is complicated by the pres-
ence of two potential start sites and alternative splicing (Bione
et al., 1996; Houtkooper et al., 2009b). Of the multitude of de-
tected human Tazlp splice variants, only the exon 5—deleted
isoform complemented a yeast strain lacking endogenous ta-
fazzin (Atazl; Vaz et al., 2003). Consistent with this functional
homology, a comparison of the amino acid sequences of exon
5—deleted human and mouse Tazlp with the yeast orthologue
revealed a substantial degree of conservation (~18% identical
and ~41% conserved amino acids; Fig. 1). Furthermore, of the
28 missense mutations currently documented in the BTHS
patient population, 21 reside at either identical (Fig. 1, high-
lighted in red) or conserved (Fig. 1, highlighted in green) resi-
dues between the human and yeast orthologues.

Each of the identical and conserved BTHS missense mu-
tations was individually modeled in yeast tafazzin, generating a
yeast BTHS mutant tafazzin panel (Fig. 2, highlighted in blue
or red). Humanized yeast tafazzin constructs (Fig. 2, highlighted
in green) were additionally generated for the BTHS mutations
that occur at conserved residues to allow discrimination be-
tween a BTHS mutant—specific phenotype versus simple differ-
ences between the human and yeast polypeptides. The yeast
BTHS mutant tafazzin panel was transformed into the Arazl
strain, and their expression was determined by immunoblotting
(Fig. 2 A). Most of the mutant tafazzins were expressed at levels
similar to wt Tazlp. However, some, including the previously
characterized three membrane anchor mutants (V223D, V224R,
and I226P), were expressed at drastically lower levels, even
though all of the tafazzin variants are under control of the
endogenous TAZI promoter. Next, the ability of each mutant ta-
fazzin to restore the altered phospholipid profile of the Ataz/
strain was assessed. Critically, 18 of the 21 BTHS mutant tafazzins
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Figure 3. The BTHS mutant tafazzins localize fo and within mitochondria normally. (A) Immunoprecipitation (IP) of Taz1p from the indicated metaboli-
cally labeled yeast extracts. The asterisk highlights a nonspecific band. (B) Subcellular fractions were prepared from the indicated yeast strains through a
series of differential centrifugations. 25 pg of each fraction was separated by SDS-PAGE and analyzed by immunoblotting using antisera specific for the
indicated subcellular organelle. (C) Submitochondrial localization of wt and BTHS mutant tafazzins. Intact mitochondria, mitochondria subjected to osmotic
shock (mitoplasts), or mitochondria solubilized with 0.1% TX-100 were incubated alone or in the presence of the indicated concentration of proteinase K.
50 pg/lane wt Taz1p and 100 pg/lane BTHS mutants were resolved by SDS-PAGE and immunoblotted as indicated. For simplicity, only one set of control
immunoblots is shown. The controls for every source of mitochondria are provided in Fig. S2. The four BTHS mutants being characterized in the present
study are shown in red. The previously characterized matrix-mislocalized BTHS mutant tafazzin is shown in purple. KDH, a-ketoglutarate dehydrogenase.

Mito, mitochondria. (A-C) n = 3.

failed to rescue the Atazl strain based on the significant mito-
chondrial accumulation of MLCL relative to Azaz/ yeast trans-
formed with wt Tazlp (Fig. 2 B). Importantly, with only one
exception, humanized tafazzin constructs functioned as well as
wt Tazlp. Furthermore, the humanized construct that failed to
phenocopy wt Taz1p (N109D) did accumulate significantly less
MLCL than the corresponding BTHS mutant (N109V). Inter-
estingly, greater variability was observed in the abundance of
CL in the BTHS mutant tafazzin strains, with many containing
significantly more CL than the empty vector—transformed Ataz/
yeast strain (Fig. S1). From these analyses, clearly not every BTHS
mutation is equivalent to a complete loss of function; otherwise,
the MLCL and CL levels in each BTHS mutant strain would be
expected to be the same as either the empty vector— or wt Taz1p—
transformed Atazl strain. Finally, these results validate using
yeast to biochemically characterize each BTHS mutant tafazzin
that fails to complement the Araz/ yeast strain (18/21).

i-AAA protease-mediated degradation of
four BTHS mutant tafazzins

To begin to characterize the BTHS mutant panel, we focused on
four mutants occurring at three BTHS loci that were expressed
at significantly lower levels than wt Tazlp: A88R/E, S140R,
and L148H (Fig. 2 A, highlighted in red). Immunoprecipitation
of Tazlp from [**S]methionine/cysteine pulse-radiolabeled
yeast extracts indicated that, as expected, all four mutant
tafazzins are translated as robustly as wt Tazlp (Fig. 3 A).

JCB « VOLUME 192 « NUMBER 3 « 2011

Unlike most mitochondrial proteins, Tazlp lacks a typical
N-terminal targeting signal. Thus, mutations within the tafazzin
polypeptide could inactivate a cryptic internal mitochondrial
localization signal. However, each of the four mutant ta-
fazzins cofractionated with mitochondria (Fig. 3 B) just like wt
Tazlp. Thus, each BTHS mutant tafazzin retains normal mito-
chondrial targeting information. Yeast tafazzin normally associ-
ates with both the outer and inner mitochondrial membranes
always facing the IMS (Claypool et al., 2006; Gebert et al.,
2009). Previously, we demonstrated that three BTHS mutations
that occur in the unusual membrane anchor of yeast Tazlp
(V223D, V224R, and I226P) result in their mislocalization to
the mitochondrial matrix (Claypool et al., 2006). Importantly,
each of these membrane anchor mutants is expressed at drasti-
cally reduced levels similar to the A8SR/E, S140R, and L148H
BTHS mutant tafazzins (Fig. 2 A). To determine whether the
AS88R/E, S140R, and/or L148H BTHS mutant tafazzin is mis-
localized within mitochondria, their submitochondrial localiza-
tion was ascertained by a proteinase K accessibility assay
(Fig. 3 C). As with wt Tazlp, each of these BTHS mutant ta-
fazzins was degraded by added proteinase K upon disruption of
the mitochondrial outer membrane (OM; mitoplast), demon-
strating that they are resident to IMS-facing membranes. In con-
trast, the V224R BTHS mutant tafazzin, which is mislocalized
to the mitochondrial matrix, is only degraded by proteinase K
upon the addition of the detergent Triton X-100 (TX-100). It is
worth mentioning that CL-deficient mitochondria exhibit a
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Figure 4. The BTHS mutant tafazzins are degraded by the i-AAA protease. (A and B) Steady-state expression was determined from wholecell extracts

derived from the indicated strains by immunoblotting for Tazlp, Ymelp, cyt
(C) Increased halflife of the BTHS mutants in the absence of Yme1p. Whole-ell

ochrome ¢ peroxidase (CCPO), and the loading control, porin. n = 3.
extracts were harvested after incubation with cycloheximide (CHX) for the

indicated times, and the Taz1p remaining was defermined by immunoblotting. Yme1p and porin are mitochondrial controls, and hexokinase (Hxk1p) is a

cytosolic control. The four BTHS mutants being characterized in the present stud

defective swelling response (Fig. S3; Ma et al., 2004); there-
fore, the failure to completely degrade DId1p (positive control
IMS protein) and the four BTHS mutant tafazzins upon mito-
plasting simply reflects an incomplete rupturing of the OM.
Thus, the AS8R/E, S140R, and LL148H BTHS mutant tafazzins,
all of which are expressed at steady state at extremely low levels,
are translated as well as wt Taz1p and still localize to and within
mitochondria normally.

Next, the possibility that each of these BTHS mutant ta-
fazzins was unable to fold subsequent to their proper sorting to
and within mitochondria was addressed. The mitochondrial IM
contains three resident proteases implicated in enforcing quality
control in this compartment: Omalp, the matrix AAA (m-AAA)
protease, and the i-AAA protease (Tatsuta, 2009; Tatsuta and
Langer, 2009). The m-AAA protease, in yeast composed of
YtalOp and Ytal2p, and the i-AAA protease, consisting of
Ymelp and the adaptor subunits Mgrlp and Mgr3p, are both
embedded in the IM but have their active sites facing opposite
sides. Omalp has recently been demonstrated to degrade pre-
sumably misfolded Cox 1p in Acoa?2 yeast (Bestwick et al., 2010).

y are shown in red. Relative molecular masses are shown on the left.

The expression of the four BTHS mutant tafazzins was com-
pared in Atazl strains harboring additional deletions of Omalp
(Aomal; deletion monitored by PCR), the m-AAA protease
(Aytal?2; deletion confirmed by aberrant processing of its
substrate, cytochrome ¢ peroxidase), or the i-AAA protease
(Aymel; Fig. 4 A). The expression level of wt Taz1p was invari-
ant in the absence of any of the three IM proteases. In contrast,
the expression level of the A8SR/E, S140R, and L148H BTHS
mutant tafazzins was restored to wt levels in the absence of the
major i-AAA protease subunit Ymelp. There was no impact on
their expression in the absence of either Omalp or the m-AAA
protease. Ymelp is the major building block of the oligomeric
i-AAA protease and is responsible for its proteolytic capacity.
Recently, two additional subunits of the i-AAA protease, Mgrlp
and Mgr3p, have been identified (Dunn et al., 2006, 2008).
Consistent with the conclusion that Mgrlp and Mgr3p function
as i-AAA protease adaptors that increase the efficiency of
Ymelp-mediated proteolysis, the expression of the A88R/E,
S140R, and L148H BTHS mutant tafazzins was partially re-
stored in the absence of either of these two proteins (Fig. 4 B).

Pathogenic complex lability * Claypool et al.
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Figure 5. The BTHS mutant tafazzins assemble in normal complexes. (A) 1.5% (wt/vol) digitonin extracts from mitochondria derived from the indicated
strains were resolved by 2D BN/SDS-PAGE, and Taz1p complexes were detected by immunoblotting. 150 pg Atazl (WT Taz1) and 250 pg Ataz] yeast
transformed with empty vector or BTHS mutant tafazzin were analyzed. The red arrows highlight a complex only detected in mutant tafazzin extracts.
(B) Digitonin extracts from mitochondria derived from the indicated strains were separated by glycerol density gradient centrifugation, and collected frac-
tions (1 = top and 20 = bottom) were immunoblotted for F1-8 (top) and Taz1p (bottom). 100% of each BTHS mutant fraction was analyzed versus 40%
of Ataz] (WT Taz1) fractions. The numbers above the arrowheads indicate the molecular weights of the high molecular weight standards (Stds). n = 3.
(C) Endogenous AAC2 was immunoprecipitated from digitonin extracts from the indicated mitochondria. 0.5% of the starting material and final flow
through versus 100% of the material remaining attached to the immunoprecipitation beads after washing were immunoblotted for the indicated mitochon-
drial proteins. exp, exposure. The four BTHS mutants being characterized in the present study are shown in red. (A and C) n = 5.

Next, in vivo degradation experiments were performed to deter-
mine the half-life of wt Taz1lp and the four BTHS mutants, in
the presence and absence of Ymelp, after the inhibition of
new protein synthesis by the addition of cycloheximide (CHX;
Fig. 4 C). Relative to wt Tazlp (¢, = ~243 h), each of the four
BTHS mutant tafazzins has a significantly shorter half-life
(t1 of 4-6 h; Fig. 4 C). Although not restored to wt Taz1p values,
the half-life of the A88R/E, S140R, and L148H BTHS mutant
tafazzins was significantly increased in the absence of Ymelp.
The increase in the half-lives of the four BTHS mutants in the
absence of Ymelp is in contrast to the shorter half-life calcu-
lated for wt Tazlp in the absence of the i-AAA protease (¢, =
~158 h). One possible explanation for this observation is that
perhaps Ymelp is involved in the routine quality control of
Tazlp, and in its absence, more suboptimal Taz1p exists that is
intrinsically less stable and capable of being degraded by pro-
teases in addition to Ymelp. Interestingly, compared with wt
Tazlp (t,, = ~243 h), another mitochondrial protein (porin, #;,, =
~1,824 h), and a cytosolic protein (hexokinase [Hxklp], t;, =
~360 h), Ymelp itself has a relatively short half-life (¢,, = ~27 h).
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Collectively, these results indicate that the A8SR/E, S140R,
and L148H BTHS mutant tafazzins are targeted to and within
mitochondria normally where they are rapidly degraded by the
i-AAA protease. The simplest explanation for the rapid turn-
over of the four mutants is that they are unable to fold normally.
However, when their assembly status was determined by 2D
blue native (BN)/SDS-PAGE, each of the four BTHS mutant ta-
fazzins formed, with the exception of a single aberrant complex
of ~480 kD (Fig. 5 A, red arrows), the normal Taz1p complexes
(Fig. 5 A). The assembly status of the four BTHS mutants was
additionally assessed by glycerol density gradient centrifuga-
tion (Fig. 5 B). Consistent with the results of the 2D BN/SDS-
PAGE, the BTHS mutant tafazzins were detected in a range of
complexes similar in size to those formed by wt Taz1p. Finally, as
the formation of complexes presumes normal folding of a poly-
peptide, the ability of the four BTHS mutant tafazzins to associ-
ate with a known binding partner of yeast Tazlp, the major
ADP/ATP carrier AAC2 (Claypool et al., 2008a), was directly
assessed (Fig. 5 C). Indeed, each of the four BTHS mutant
tafazzins was coimmunoprecipitated with endogenous AAC2.

920z Atenige4 g0 uo 1senb Aq ypd-2 /1800102 A9l/0S22 .G L/LYY/E/z6 1 /3pd-aonue/qol/Bio ssaidnyy/:dny woly pspeojumoq



A Yme1 Rescue: Whole Cell Extracts

Ataz1Ayme1  Ataz1Aymel1 Ataz1Aymel Ataz1Aymel Ataz1Aymet
[WT Taz1] [A88R] [A8BE] [S140R] [L148H]

M(k;12341234123412341234
7; — | e ———— o — Y me1p
43— — Taz1p

| |‘ R Porin
26— | |

Yme1 Rescue Code: 1 = [Empty Vector] 3 = [Yme1K327R]|

2=[WTYmel] 4=[Yme1E%1q

B Affinity Purification: Yme1-His;

— Ataz1Ayme1 [A8SE]

2" Dimension:

2D BN/SDS-PAGE

15! Dimension:
 6-16% BN-PAGE

|

£
4 3g 2 s & 9 X Ataz1Ayme1 [ASSE]
3| wmwl 5 2 ‘? o~ ‘,3 o transformed with:
§ 55 —
& L — . ——E— ‘ [Empty Vector]
L e e———-. 'WT Yme1
3| = ‘ [ ]
- L ——————
43 - — . ‘ [Yme1 K327R]
55| —
] - - —— | [Yme1E549]

Taz1p Immunoblot

Ataz1Ayme1 [WT Taz1]

[Empty Vector][WT Yme1] [Yme1%32R] [Yme15419] [Empty Vector]WT Yme1] [Yme132/R] [Yme185419]

mg, T_FT_B T FT B TFI B T FT B TFT B T FT B T FT B T FT_B
o ---."—.I L — Yme1p
43— - -_— ’—- | Taz1p
o — - - = | - o —-— - — |T|m22p
2
3 h - e - ’O. S e | Cytip
14
r-— e — | P - — ’Cox5,6p
557
‘ | i C — - - C — I F1B
32 | | [—-— —— w——— — TAAcz
[ = - = . -_— o — - - «
| — —  — | |—. ——— —— — | Porin

T = Total (20 ug)
FT = NiNTA Elow Thru (20 ng)
B =Bound to NiNTA (600 nug)

Figure 6.

i-AAA protease mutants bind the A88E BTHS mutant, but not wt, tafazzin. (A) Steady-state expression was determined from whole-cell extracts

derived from Ataz1Aymel yeast transformed with the indicated Taz1p and Yme1p variants by immunoblotting for Taz1p, Yme1p, and the loading control,
porin. (B) Digitonin extracts from mitochondria derived from the indicated strains were subjected to Ni?* nitrilotriacetic acid (NiNTA) chromatography. The
indicated amount of total, TCA-precipitated flow through, and bound material was resolved by SDS-PAGE and immunoblotted as indicated. The asterisk
highlights the cross-reaction with porin of the AAC2 antiserum. (C) Digitonin extracts from mitochondria derived from the indicated strains were resolved by
2D BN/SDS-PAGE, and Taz1p complexes were detected by immunoblotting. 150 pg Ataz1Aymel yeast transformed with empty vector or Yme 1 mutants
and 250 pg Ataz1Aymel (Wt Ymel) were analyzed. The four BTHS mutants being characterized in the present study are shown in red. Stds, molecular

weight standards. (A-C) n = 3.

The relatively weak association between the A88R and S140R
BTHS mutants and AAC2 compared with the AS8E and L148H
mutants could reflect a slightly lower expression level of the
former and/or indicate that these two mutants are more severely
impaired than the A88E and L148H mutants. Thus, the assem-
bly of the A88R/E, S140R, and L148H mutants as determined
by both 2D BN/SDS-PAGE and glycerol density gradient cen-
trifugation reflects their ability to engage in normal inter-
actions, indicating that the BTHS mutant tafazzins are not, as
predicted, absolutely unable to fold. If these four BTHS mutant
tafazzins are not grossly misfolded, why are they being de-
graded by the i-AAA protease?

Reintroduction of wt Ymelp into the AtazlAymel strain
restored the expression of the four BTHS mutant tafazzins to
low levels (Fig. 6 A). This prompted us to probe the ability of
two defined Ymelp mutants to regulate the expression of the
A88R/E, S140R, and L148H mutant tafazzins. The i-AAA pro-
tease contributes to mitochondrial quality control through its
proteolytic activity and via its ability to provide, in some cases,
chaperone-like properties (Leonhard et al., 1999). Mutation
of glutamate 541 within the catalytic domain renders Ymelp
proteolytically dead (Leonhard et al., 1996). Mutation of lysine

327 within the Walker A motif disrupts ATP binding. In the ab-
sence of ATP binding, both Ymelp proteolytic and chaperone-
like activities are lost (Leonhard et al., 1999). Interestingly, the
expression level of Yme1***’® and Yme1®*? was higher than
wt Ymelp (each construct under control of the YMEI promoter),
suggesting that Ymelp regulates its own expression (Fig. 6 A).
The expression level of the four BTHS mutants was the same in
AtazlAymel transformed with either Ymel®*?’® or Yme1®**IQ
as the empty vector control. Thus, a catalytically active Ymelp
is required to degrade the A88R/E, S140R, and L148H BTHS
mutant tafazzins.

Proteolysis is expected to occur subsequent to physical
recognition. To test this, Ymelp was affinity purified by virtue
of an appended C-terminal Hisq tag from AzazlAymel strains
expressing either the AS8E BTHS mutant or wt Tazlp and wt
Ymelp, Ymel®*® Ymel®*!Q or the empty vector (Fig. 6 B).
wt Ymelp failed to copurify either the A88E or wt Tazlp.
In contrast, Yme1%¥?’R and Yme 1%**!Q copurified a small amount
of the ASSE mutant polypeptide. Importantly, wt Taz1p and the
controls Tim22p, Cytlp, Cox5,6p, F1-3, AAC2 (all resident to
IM), and porin (OM) were not copurified with either Yme1¥**"®
or Ymel™*? Consistent with the minor detected interaction,

Pathogenic complex lability « Claypool et al.
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Figure 7. Increased function of the A88E and L148H BTHS mutants in the absence of the i-AAA protease. (A and B) The relative abundance of MLCL (A)
and CL (B) was determined for each strain and is expressed as a percentage of the total phospholipid in each strain (means = SEM; n = 5). Student t tests
were performed for each construct as expressed in Ataz] and Ataz1Aymel yeast strains with significant differences indicated. (C) Comparison of CL in
Ataz] and Ataz1Ayme yeast strains transformed as indicated. The mass content of each molecular form of CL (acyl chain composition indicated) was de-
termined by multidimensional mass spectrometric array analyses by comparison of the peak intensity of each individual ion to that of the internal standard
(means = SEM; n = 3). The four BTHS mutants being characterized in the present study are shown in red. m/z, mass to charge ratio.

there was no discernable difference in the assembly of the ASSE
BTHS mutant tafazzin in the absence or presence of Ymelp,
functional or not functional (Fig. 6 C). The failure to copurify
the AS8E mutant with wt Ymelp implies that substrate binding
by Ymelp is quickly followed by substrate degradation.

Absence of Yme1p restores activity of
A88E and L148H BTHS mutant tafazzins
Although not expected given the fact that the AS8R/E, S140R,
and L148H BTHS mutants are degraded by the mitochondrial
quality control executioner Ymelp, the fact that these mutants
did assemble normally (Fig. 5, A and B) prompted us to deter-
mine whether their accumulation in the absence of Ymelp restored
MLCL and/or CL levels to normal. Amazingly, there were both
significant decreases in the abundance of MLCL (Fig. 7 A) and
increases in the abundance of CL (Fig. 7 B) in strains express-
ing the A88E and L148H BTHS mutants in the absence versus
the presence of Ymelp. These results suggest that, in the ab-
sence of i-AAA protease—mediated degradation, for two of
these four mutant tafazzins, increased steady-state abundance
correlates with the recovery of Taz1p function. If this is true, the
CL that accumulates should resemble mature remodeled CL.
Indeed, the abundance of the most common mature forms of CL in
wt Taz1p—expressing yeast is increased in AS8SE and L148H BTHS
mutant strains in the absence of the i-AAA protease (Fig. 7 C).
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Do the BTHS mutants accumulate in a nonmitochondrial
compartment in the absence of the i-AAA protease? Based on
their continued cofractionation with mitochondria, the AS8R/E,
S140R, and L148H mutant tafazzins localize normally to mito-
chondria even in the absence of Ymelp (Fig. 8 A). Moreover,
the assembly status of wt, AS8R/E, S140R, and L148H tafazzins
is unaffected by the absence of Ymelp (Fig. 8 B). The only dis-
cernable difference minus Ymelp is that the BTHS mutant
complexes are more abundant. Finally, focusing on the ASSE
and L148H BTHS mutant tafazzins that had recovered function
in the absence of the i-AAA protease, wt, ASSE, and L148H ta-
fazzins still associate with IMS-facing membranes in the ab-
sence of Ymelp (Fig. 8 C). Notably, the overall rupturing of the
OM (tracked by a decrease in the IMS signal with the addition
of proteinase K to mitoplasts) was consistently better for ASSE
and L148H mitochondria in the absence versus the presence of
Ymelp, which is consistent with the restored function of both
mutants in the absence of the i-AAA protease (Fig. 7).

As a routine component of 2D BN/SDS-PAGE, the solubili-
zation efficiency of every source of mitochondria is determined.
Through these analyses, it was noticed that the solubilization
efficiency of the mutant tafazzins was specifically impaired in the
absence of Ymelp. Thus, to determine whether the mutant ta-
fazzins are prone to aggregation in the absence of Ymelp, a se-
quential detergent solubilization assay was performed (Fig. 8 D).
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Figure 8. Increased assembly, but with protein aggregation, of the A88E and L148H BTHS mutants in the absence of the i-AAA protease. (A) Fractions were
prepared from the indicated yeast strains through a series of differential centrifugations. 25 pg of each fraction was separated by SDS-PAGE and analyzed
by immunoblotting for the indicated subcellular organelle. (B) Digitonin extracts from mitochondria derived from the indicated strains were resolved by 2D
BN/SDS-PAGE, and Taz1p complexes were detected by immunoblotting. The red arrows highlight a complex only detected in mutant tafazzin extracts.
250 pg (Ataz 1 transformed with [A88R], [A88E], [S140R], or [L148H]) and 150 pg (all the rest) were analyzed. Stds, molecular weight standards. (A and B) n= 3.
(C) Mitochondria derived from the indicated strains were treated exactly as described in Fig. 3 C. 50 pg/lane of each sample was resolved by SDS-
PAGE and immunoblotted as indicated. (D) Solubility of Taz1p in detergents. Mitochondria isolated from the indicated strains were solubilized with
digitonin and separated into a supernatant (S1) and pellet (P1) by centrifugation. Nonextracted material (P1) was solubilized with TX-100 and fractionated
info a supernatant (S2) and pellet (P2) by centrifugation. Fractions were resolved by SDS-PAGE and immunoblotted as indicated. The asterisk highlights the
cross-reaction with porin of the AAC2 antiserum. The four BTHS mutants being characterized in the present study are shown in red. Mito, mitochondria.

(Band D) n = 4.

In this assay, protein aggregates accumulate in the TX-100 in-
soluble fraction (P2). In the presence of a functional i-AAA
protease, both the ASSE and LL148H BTHS mutant tafazzins,
similar to wt Taz1p, were readily solubilized by digitonin. How-
ever, in the absence of Ymelp, a sizeable proportion of the
AS88E and L148H mutant tafazzins was resistant to solubiliza-
tion by digitonin (detected in P1). Further extraction with
TX-100 demonstrated that these two BTHS mutants accumu-
lated in TX-100-resistant aggregates (P2). wt Taz1p was equally
extracted by digitonin in the presence or absence of Ymelp. Thus,
whereas in the absence of Ymelp the abundance of A8SE and
L148H mutant tafazzin complexes is increased and the MLCL/CL

levels are partially restored, both mutants additionally accumu-
late in presumably nonfunctional protein aggregates.

BTHS mutant tafazzin complex lability

Still unclear is why the mutant tafazzins are even targeted for
i-AAA protease—mediated degradation. One possibility is that
the four mutant tafazzins are not imported into mitochondria as
efficiently as wt Taz1p. To test this, wt mitochondria were incu-
bated with ¥S-labeled wt, AS8R/E, S140R, or L148H tafazzins
and treated with trypsin to remove nonimported proteins, and
the OM was disrupted by osmotic shock in the absence or pres-
ence of proteinase K to degrade proteins in the IMS (Fig. 9 A).

Pathogenic complex lability * Claypool et al.
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Figure 9. The A88R/E, S140R, and L148H BTHS mutants are recognized as defective by the i-AAA protease quickly after import. (A and B) In vitro import

of ¥*Sradiolabeled wt Taz1 or the BTHS mutant Taz1 precursor into wt (A) or

AymeT (B) mitochondria. The nonimported precursor was removed with

trypsin, mitochondria were reisolated, and the OM was ruptured by osmotic shock in the absence or presence of proteinase K (Prot. K). C, control (2.5%
of precursor proteins + 100 pg mitochondria). The samples were resolved by SDS-PAGE, the bottom half of the gel was analyzed by phosphoimaging,
and the top half was immunoblotted for markers of the OM (Tom70p), membranes facing the IMS (DId1p), and the matrix (a-ketoglutarate dehydrogenase
[KDH]). The percentage of each precursor imported at each time point was defermined after phosphoimaging. Significant differences were determined by

one-way ANOVA with Holm-Sidak pairwise comparisons and are indicated. R

elative molecular masses are shown on the left. (C) Comparison of import

info wt versus Ayme I mitochondria. Significant differences between the percentage of each precursor imported into wt versus Ayme 1 mitochondria were

determined at each time point by Student t tests, with significant differences indi

cated. The four BTHS mutants being characterized in the present study are

shown in red. Values are means + SEM (n = 5-7 for import info wt mitochondria, and n = 4 for import into Ayme I mitochondria).

With only one exception, each of the BTHS mutants was im-
ported into IMS-facing membranes to a similar extent as wt
Tazlp. After a 20-min import, significantly less AS8E mutant
tafazzin was productively imported into wt mitochondria than
wt Tazlp. However, compared with the steady increase in im-
port of wt Tazlp over time, the amount of each BTHS mutant
imported had plateaued or even decreased by the final import
time point, suggesting that the mutants were already being
recognized and degraded by the i-AAA protease. Therefore,
in vitro import reactions were also performed using Aymel
mitochondria (Fig. 9 B). Indeed, all four tested BTHS mutants
were imported into Aymel mitochondria to a similar extent as
wt Tazlp. Moreover, there was a steady increase in import into
Aymel mitochondria for each of the BTHS mutants over time.
Finally, the import of each of the four BTHS mutant tafazzins
was significantly better in Ayme! than wt mitochondria (Fig. 9 C).
The improved import of wt Tazlp into Aymel mitochondria
(approaching the level of significance by the final time point)
also indicates that the i-AAA protease is intimately involved in
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the routine assessment of Taz1p biogenesis and either the folding/
assembly of Tazlp is intrinsically inefficient or that chaper-
ones required for Tazlp folding/assembly are saturated in the
in vitro assay. Collectively, these results indicate that the AS8R/
E, S140R, and L148H BTHS mutants are imported into mito-
chondria as well as wt Taz1p.

The results from the in vitro import experiments further
imply that the A88R/E, S140R, and L148H BTHS mutant ta-
fazzins are recognized as defective by the i-AAA protease soon
after their import into IMS-facing membranes. Perhaps the sub-
sequent folding and/or assembly of the mutant tafazzins is less
efficient than wt Tazlp, and the stalled assembly intermediates
are recognized and degraded by the i-AAA protease. In the
absence of the i-AAA protease, some of the stalled assembly
intermediates eventually mature into fully assembled Tazlp
complexes. The detection of more abundant mutant Tazlp
complexes in the absence of Ymelp is entirely consistent with
this possibility. Unfortunately, conditions have not been defined
as of yet that allow assembly of wt Tazlp into mature Tazlp
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Figure 10. BTHS mutant tafazzin complexes are unstable, and the mutant polypeptide accumulates in aggregates. Mitochondria were harvested from
the indicated strains after incubation with CHX for the indicated times. (A) Solubility of Taz1p in detergents was determined as described in Fig. 8 D. The
asterisk highlights the cross-reaction with porin of the AAC2 antiserum. For Taz1p immunoblots, 50 pg (Ataz] [A88E]) and 20 pg (all the rest) were ana-
lyzed. For immunoblots of control proteins (Tom70p, F1-a/B, and AAC2), 20 pg was analyzed. (B) Versadoc-captured images were quantified using the
affiliated Quantity One software, and the percentage of Taz1p in TX-100~insoluble aggregates and the percentage of Taz1p solubilized by digitonin were
determined (means + SEM; n = 5). Significant differences were determined by one-way ANOVA with Holm-Sidak pairwise comparisons and are indicated.
(C) Digitonin extracts from mitochondria derived from the indicated strains were resolved by 1D BN-PAGE, and immunoblotting was performed for Taz1p,
the ATP synthase/complex V (F1-8), and respiratory supercomplexes (Cox2p). The migrations of the Vainer, Vionomer, 1121V2, and Il IV supercomplexes are
indicated where appropriate. 250 pg (Ataz1[A88E]) and 150 pg (all the rest) were analyzed. 25 pg mitochondrial protein was additionally resolved by
SDS-PAGE and immunoblotted as indicated. n = 3. (D) wt Taz1p assembles with partner proteins (generically denoted A) into final Taz1p complexes that
are very stable. In contrast, the characterized BTHS mutant tafazzins have a retarded rate of assembly into final Taz1p complexes that quickly disassemble.
The i-AAA protease recognizes both the delayed rate of BTHS mutant Taz1p assembly and the unregulated disassembly of Taz1p complexes. In the absence
of the i-AAA protease, disassembled BTHS Taz1 forms aggregates. The BTHS mutants being characterized in the present study are shown in red.

complexes in organello (unpublished data). Thus, the kinetics of
import and assembly of the mutant tafazzins cannot be com-
pared with wt Taz1p at present.

Another possible explanation as to why the A88R/E,
S140R, and L148H BTHS mutant tafazzins are degraded by the
i-AAA protease is that complexes containing the mutant tafazzins
assemble but fall apart at significantly faster rates. Further-
more, perhaps the accumulation in TX-100-insoluble aggre-
gates is a consequence of the unregulated disassembly of BTHS

mutant—containing complexes. To test this hypothesis, mitochon-
dria were isolated from yeast strains expressing wt Taz1p or the
AS88E BTHS mutant, in the presence or absence of Ymelp, after
incubation with CHX for 8 or 48 h. wt Taz1p was readily solu-
bilized by digitonin, regardless of the presence or absence of
Ymelp, even when new protein synthesis was inhibited for 2 d
(Fig. 10, A [lanes 7—15 and 25-33] and B). As expected, the ab-
solute abundance of the ASSE BTHS mutant in the presence of
Ymelp was significantly decreased after 8-h CHX incubation
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(Fig. 10 C, bottom, lanes 1 and 2). Similar to wt Tazlp, the
AS88E mutant tafazzin remaining after 8-h CHX incubation was
readily solubilized by digitonin when a functional i-AAA pro-
tease was present (Fig. 10, A [lanes 1-6] and B). In contrast,
whereas the steady-state abundance of the ASSE BTHS mutant
in the absence of Ymelp remained stable throughout the CHX
chase (Fig. 10 C, bottom, lanes 6-8), the fraction of ASSE
mutant tafazzin solubilized by digitonin decreased significantly
after new protein synthesis was halted for 48 h (Fig. 10, A [lanes
16-24] and B). Moreover, in the absence of Ymelp, the
abundance of the ASS8E BTHS mutant detectable in the TX-100—
insoluble P2 fraction steadily and significantly increased
throughout the CHX chase (Fig. 10, A and B). Similar to the
solubilization data, wt Tazlp complexes were stable in the
absence of new protein synthesis for up to 2 d regardless of
the presence or absence of the i-AAA protease (Fig. 10 C, top,
lanes 3-5 and 9-11; 2D BN/SDS-PAGE analyses are shown in
Fig. S4). In the presence of Ymelp, after only an 8-h incubation
with CHX, A88E BTHS mutant complexes, like the poly-
peptide, were virtually undetectable (Fig. 10 C, lanes 1 and 2).
Strikingly, in mitochondria lacking Ymelp, inhibition of new
protein synthesis for only 8 h significantly reduced ASSE BTHS
mutant tafazzin complexes compared with control mitochondria
not incubated with CHX. After 2-d CHX incubation, in the
absence of Ymelp, AS8S8E BTHS mutant complexes were un-
detectable even though the A88E polypeptide remained stable
throughout the CHX chase (Fig. 10 C, lanes 68, compare top
BN-PAGE with bottom SDS-PAGE). In stark contrast to the
AS88E mutant tafazzin complexes in the absence of Ymelp, ad-
ditional protein complexes of the mitochondrial IM (ATP syn-
thase, respiratory supercomplexes, and AAC2 complexes) and
OM (porin complexes) persisted even in the absence of new
protein synthesis for 2 d (Fig. 10 C and Fig. S4). Thus, A88E
BTHS mutant tafazzin complexes are specifically and selec-
tively much more transient than wt Tazlp complexes. More-
over, the increased lability of the mutant complexes when
expressed in the absence of the i-AAA protease correlates di-
rectly with the accumulation of BTHS mutant polypeptide in
TX-100-insoluble aggregates.

Discussion

Currently there are 28 known missense mutations in tafazzin
associated with the X-linked disease BTHS. With the exception
of our previous characterization of four mutations present in the
membrane anchor of Taz1lp (Claypool et al., 2006), an explana-
tion for the inability to properly function as an MLCL trans-
acylase had not been provided for any of the other 24 BTHS
mutant tafazzins. Here, we generate a panel of BTHS mutant
yeast strains, focusing on the 21 missense mutations that occur
at conserved positions in the human and yeast orthologues.
Critically, 18 of the 21 tested BTHS mutant yeast strains accu-
mulated significant quantities of the stalled CL-remodeling inter-
mediate and BTHS biomarker MLCL, providing yet another
illustration of the conservation of many basic mitochondrial
processes from humans to fungi. Thus, the BTHS mutant yeast
panel serves as another superb example of the power of the
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S. cerevisiae model system to characterize pathogenic muta-
tions that cause human disease.

The detailed characterization of four BTHS mutations
occurring at three loci uncovered a paradox. Whereas the ASSR/E,
S140R, and L148H BTHS mutants are degraded by an inte-
gral component of the mitochondrial quality control machin-
ery, the i-AAA protease, suggestive of a severe folding defect
of the mutants, each of the BTHS mutant tafazzins assem-
bled in roughly normal Tazlp complexes, just of reduced
abundance. Moreover, each BTHS mutant tafazzin retained the
ability to associate with the ADP/ATP carrier. Yeast Tazlp asso-
ciates with the ATP synthase and the ADP/ATP carrier in dis-
crete complexes (Claypool et al., 2008a). Still, the composition
of the majority of the Taz1p interactome remains a mystery. The
ability to engage in a normal range of physical interactions is
strong evidence that the BTHS mutants are in fact able to fold
properly. In the absence of Ymelp, the major subunit of the
i-AAA protease, more BTHS mutant tafazzin complexes are de-
tected. This strongly suggests that the mutant tafazzins exhibit a
retarded rate of assembly into final Taz1p-containing complexes
(Fig. 10 D). This interpretation is based on the rationale that, if
a BTHS mutant tafazzin had an increased frequency of forming
dead-end assembly intermediates independent of Ymelp, the
absence of the i-AAA protease should simply increase the abun-
dance of such misassemblies. The fact that more BTHS mutant
tafazzin complexes are detected in the absence of Ymelp argues
that the mutants can fold and assemble normally; they just do so
with a reduced efficiency. Based on the significantly increased
in vitro import into mitochondria devoid of Ymelp, the folding
and/or assembly of Tazlp is normally monitored by the i-AAA
protease. Ymelp recognizes the presumed defect in the folding
and/or assembly of the four BTHS mutant tafazzins and then
quickly and actively proteolyzes the mutant polypeptides sub-
sequent to a physical association. Thus, the delayed folding and
assembly and consequent degradation by Ymelp undoubtedly
contribute to the overall loss of function associated with these
particular BTHS mutant tafazzins.

Strikingly, complexes containing the AS§E BTHS mu-
tant tafazzin fall apart much faster than wt Tazlp complexes
(Fig. 10 D). Moreover, in the absence of i-AAA protease—
mediated degradation, disassembled BTHS mutant tafazzin
accumulates in TX-100-insoluble aggregates. Therefore, although
these four BTHS mutant tafazzins undoubtedly display a re-
duced rate of complex formation, the inherent instability of the
formed complexes ensures that they fail to perform their physio-
logical tasks. To our knowledge, complex lability has never
been described as an underlying pathogenic mechanism for a
disease-associated mutation.

Why are the mutant tafazzin complexes more labile? One
possibility is that perhaps while retaining the ability to fold,
these four BTHS mutant tafazzins do so more loosely. Mutations
that destabilize but not completely destroy tafazzin structures
would be expected to both delay folding and complex assembly
and weaken complexes that are formed during a loosening event
of the mutant tafazzin. Furthermore, such destabilized mutants
might be predicted to be detected during their folding and as-
sembly by mitochondrial chaperones and/or Tazlp assembly
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factors, resulting in the degradation of the mutant polypeptides
by the i-AAA protease. The dual observations that more mutant
tafazzin complexes are detected in the absence of Ymelp but
these complexes rapidly fall apart suggest that chaperones
assisting in the folding and assembly of Tazlp are unable to
efficiently promote the reassembly of mutant Taz1p complexes.
Thus, for the four BTHS mutant tafazzins, the equilibrium be-
tween assembly and disassembly has been shifted significantly
in the direction of disassembly. This strongly implies that the
formation of stable Tazlp complexes is critical for normal
tafazzin function. Therefore, the partial recovery in the MLCL
and CL levels upon deletion of Ymelp was driven by the con-
tinual supply of newly translated AS8E and L148H BTHS
mutant tafazzins.

An obvious question is whether the results obtained with
yeast accurately model the same mutations in human tafazzin as
expressed either in patient samples or a mammalian model. Un-
fortunately, our efforts to raise antibodies against human Taz1p
have yielded reagents that lack the required sensitivity and
specificity to detect any of the endogenous tafazzin isoforms
predicted at the mRNA level (Houtkooper et al., 2009b). This
has significantly hampered the development of a mammalian
cell culture model that is experimentally tractable and yet physio-
logically relevant. Similar to BTHS-derived cells, knockdown
of tafazzin in HeLa cells results in a decrease in the abundance
of CL (Gonzalvez et al., 2008). However, in contrast to BTHS-
derived cells, tafazzin knockdown HeLa cells did not signifi-
cantly accumulate MLCL, which is an established biomarker
for BTHS (Houtkooper et al., 2009a). The Human Tafazzin
(TAZ) Gene Mutation and Variation database available on the
Barth Syndrome Foundation website is a wonderful resource
that lists defined mutations, provides salient patient informa-
tion, and, when available, indicates whether decreased CL and/or
increased MLCL was detected in a patient with a specific
tafazzin lesion. Unfortunately, information regarding the CL
and MLCL profiles in patients harboring G8OR/E, G131R, and
L139H tafazzin mutations, corresponding to the yeast ABSR/E,
S140R, and L148H BTHS mutants characterized in detail in the
present study, are not currently available. The absence of this
data likely reflects the fact that awareness of this serious human
disease is incomplete at best and that an affordable and reliable
method to detect CL and MLCL from blood spots has only re-
cently been established (Kulik et al., 2008). Thus, validation of
the yeast BTHS mutant tafazzin library remains an important
but challenging goal for our future investigations.

Materials and methods

Yeast strains

All strains were derived from the wt parental S. cerevisiae yeast strain
GA74-1A (MATa, his3 -11,15, leu2, ura3, trpl1, ade8, rho*, mit*). The
AtazHis1.5 (MATa, leu2, ura3, trp1, ade8, Ataz 1::HISMX) strain (Claypool
et al., 2006) served as the parent for the BTHS tafazzin panel that con-
tained all of the IM proteases. To generate the AtazlAomal (MATq, leu2,
trpl, ade8, Atazl::URAMX, Aomal::HISMXE), Ataz1Aytal2 (MATa, leu2,
his3-11,15, ade8, Ataz1::URAMX, Aytal2::TRP), Ataz1Aymel (MATa,
leu2, trp1, ade8, Ataz1::URAMX, Aymel::HISMX4), Ataz1Amgr] (MATa,
lev2, trpl, ade8, Atazl::URAMX, Amgrl::HISMXé), and Atazl1Amgr3
(MATa, leu2, trp1, ade8, Ataz1::URAMX, Amgr3::HISMXE) strains, the entire
open reading frame of each gene was replaced using the PCR-mediated

one-step gene replacement strategy (Wach et al., 1994). The Ayme IHis1.1
(MATa, leu2, ura3, trp1, ade8, Ayme1::HISMX6) strain has been described
previously (Hwang et al., 2007).

Molecular biology and recombinant protein expression

pRS425wt Taz1 containing ~300 bp of a 5’ untranslated region has been
described previously (Claypool et al., 2006). The series of BTHS point
mutations were generated by overlap extension (Ho et al., 1989) using
pRS425wt Taz1 as a template. Each construct was subcloned into pRS425wt
Taz1. For in vitro transcription/translation, the open reading frame of
Taz1p was subcloned into pSP64. The A88R/E, S140R, and L148H BTHS
mutants were shuttled from pRS425-based constructs into pSP64yTaz.
Ymel, including ~500 bp of a 5" untranslated region and a C-erminal
Hiss tag, was amplified by PCR using genomic DNA isolated from the
GA74-6A yeast strain as a template. Yme1°?7% and Yme 155419 were gen-
erated by overlap extension. All Yme1 constructs were cloned into the 2-pm
vector pRS424. To generate yeast DId1p (plactate dehydrogenase) con-
taining an N-terminal Hiss tag, the entire open reading frame was cloned
into the pET28a vector (EMD) in frame and downstream of the Hiss tag,
and the thrombin cleavage site was provided by the vector. HissDId1 was
induced in BL21-CodonPlus(DE3)-RIL Escherichia coli (Agilent Technolo-
gies), and inclusion bodies were isolated from native protein extracts by
centrifugation at 10,000 g for 20 min at 4°C. Inclusion bodies were solu-
bilized with 3 ml of inclusion body solubilization buffer (1.67% [wt/vol]
sarkosyl, 0.1-mM EDTA, 10-mM DTT, 10-mM TrisCL, pH 7.4, and 0.05%
polyethylene glycol 3350) by vigorous vorfexing, incubated on ice for 20 min,
and diluted with 6 ml of 10-mM Tris-CL, pH 7.4, and the solubilized pro-
teins were recovered after centrifugation for 10 min at 12,000 g at 4°C. After
dialysis against phosphate-buffered saline, HissDld1 was purified under
native conditions using Ni%*-agarose (QIAGEN) as per the manufacturer’s
instructions. The sequence of every construct was verified by sequencing.

Antibodies

Most of the antibodies used in this work were generated in the Schatz or
Koehler laboratories and have been described previously (Poyton and
Schatz, 1975; Djavadi-Ohaniance et al., 1978; Maccecchini et al., 1979;
Daum et al., 1982; Ohashi et al., 1982; Riezman et al., 1983; Scherer
et al., 1990; Glick et al., 1992; Horst et al., 1997; Koehler et al., 1998;
Claypool et al., 2006, 2008b; Hwang et al., 2007). Antibodies were
raised in rabbits using His¢DId1 as an antigen. Other antibodies used
were mouse anti-Sec62p (gift from D. Meyers, University of California, Los
Angeles, Los Angeles, CA), mouse anti-yAAC2 (clone 6H8; Panneels
et al., 2003), and horseradish peroxidase-conjugated secondary anti-
bodies (Thermo Fisher Scientific).

Metabolic labeling and immunoprecipitation of Taz1p

Yeast were grown overnight at 30°C in synthetic complete (SC)-Leu me-
dium. Each culture was diluted 1:10 in SC-leu and grown at 30°C for
90 min to ODggos of 0.4-1.0. 2.5 ODo units of cells were resuspended
with 0.4 ml of fresh SC-leu and incubated at 30°C while shaking at
200 rpm for 15 min. Proteins were labeled at 30°C for 10 min with 150 pCi
(two experiments) or 500 pCi (one experiment) trans—>°Slabel (MP Bio-
medicals). Labeling was terminated by transferring the cells to an equal
volume of ice-cold 2x azide stop mix (20-mM NaNj, 40-mM cysteine,
40-mM methionine, and 0.5 mg/ml BSA). Sedimented cells were washed
with 0.5 ml of ice-cold distilled H,O, resuspended with 0.5 ml of 1%
TX-100 (vol/vol) lysis buffer (20-mM HepesKOH, pH 7.4, 50-mM NaCl,
1-mM EDTA, 2.5-mM MgCl,, and 0.1% SDS [wt/vol]) supplemented with
protease inhibitors (1-mM PMSF, 10 pM leupeptin, 2 pM pepstatin A, and
10 pM chymostatin), transferred to a microfuge tube containing 0.1 ml of
glass beads, and disintegrated by vortexing on high for ~30 min at 4°C.
The lysate was transferred to a new tube, and the beads were washed with
0.5 ml of 1% TX-100 (vol/vol) lysis buffer to recover all of the exiract.
Lysates were precleared twice (rotating at 4°C for 1 h/preclear) with normal
rabbit serum (Lampire Biological Laboratories, Inc.) prebound to protein
A-Sepharose (GE Healthcare). Tafazzin was captured from precleared
lysates with rabbit anti-yeast tafazzin antisera prebound to protein
A-Sepharose rofating at 4°C overnight. Immune complexes were sequentially
washed (1 ml and 10-min rotating at 4°C/wash) twice with lysis buffer
containing 0.1% TX-100 (vol/vol), twice with high salt wash buffer
(0.1% TX-100 [vol/vol], 20-mM Hepes-KOH, pH 7.4, and 500-mM NaCl),
and once with low salt wash buffer (0.1% TX-100 [vol/vol] and 20-mM
Hepes-KOH, pH 7.4). Bound material was resolved on 12% SDS-PAGE
gels, and labeled proteins were detected using a K screen and an image
scanner (Pharos FX Imager; Bio-Rad Laboratories).

Pathogenic complex lability « Claypool et al.

459

920z Atenige4 g0 uo 1senb Aq ypd-2 /1800102 A9l/0S22 .G L/LYY/E/z6 1 /3pd-aonue/qol/Bio ssaidnyy/:dny woly pspeojumoq



460

In vivo degradation experiments

In vivo degradation experiments were performed essentially as described
previously (Metzger et al., 2008). In brief, overnight cultures were resus-
pended to ODggo = 4.0 in SC media and incubated with shaking for 5 min
at 30°C, and new protein synthesis was inhibited by the addition of CHX
([200 pg/mllsna). At each time point, 0.5 ml of cells was transferred to a
tube containing an equal volume of icecold 2x azide stop mix (20-mM
NaN3z and 0.5 mg/ml BSA). Cells were pelleted by centrifugation (845 g
for 10 min at 4°C), the supernatant was aspirated, and pellets were stored
at —80°C until all time points were collected. The preparation of yeast cell
extracts was performed otherwise as described previously (Claypool et al.,
2006). For quantitation of immunoblots, images captured with either a
Versadoc (Bio-Rad Laboratories) or Fluorchem Q (Cell Biosciences, Inc.)
quantitative digital imaging system were quantitated using Quantity One
software (Bio-Rad Laboratories). Half-lives were determined from exponen-
tial curve fits using Excel (Microsoft). wt and BTHS mutant tafazzin half-lives
were calculated using the mean of seven to eight individual repetitions. The
halfife of Yme1p was calculated from experiments using Ataz 1 (wt Taz1;
n = 3). Data from the longer CHX chase studies were pooled together to
calculate the halflife of porin (n = 42) and Hxk1p (n = 18).

Glycerol density gradient centrifugation

Glycerol density gradient centrifugation was performed essentially as de-
scribed previously (Tamura et al., 2009) with minor alterations. In brief,
5 mg/ml mitochondria was solubilized with lysis buffer base (20-mM
HepesKOH, pH 7.4, 50-mM NaCl, 0.1-mM EDTA, and 10% glycerol)
supplemented with 1.5% (wt/vol) digitonin (Biosynth International, Inc.)
and 1-mM PMSF for 30 min on ice; insoluble material was removed by
centrifugation for 30 min at 21,000 g at 4°C. The 100-pl supernatant was
placed onto a 5-ml glycerol step gradient (20-40%) in 20-mM Hepes-
KOH, pH 7.4, 50-mM NaCl, 50-mM 6-aminohexanoic acid, 0.1-mM
EDTA, and 0.1% (wt/vol) digitonin and then centrifuged at 45,000 rpm for
15 hin a rotor (SW55Ti; Beckman Coulter) at 4°C. 270 pl of fractions was
collected from the top. Proteins were precipitated with 20% TCA and then
resolved by SDS-PAGE followed by immunoblotting.

Ni?* nitrilotriacetic acid purification

Detergent solubilization of mitochondria (5 mg/ml) was performed for
30 min on ice with lysis buffer base (20-mM Hepes-KOH, pH 7.4, 100-mM
NaCl, 20-mM imidazole, 1-mM CaCly, and 10% glycerol) supplemented
with 1.5% (wt/vol) digitonin and protease inhibitors; insoluble material
was removed by centrifugation for 30 min at 21,000 g at 4°C. 0.6 mg
digitonin extract was added to a tube containing 25 pl Ni?* nitrilofriacetic
acid beads (QIAGEN) and 0.88 ml lysis buffer base with added protease
inhibitors and incubated by rotating at 4°C for 1 h. Nonbinding material
was TCA precipitated. Beads were washed twice (1 ml and 10-min rotat-
ing at 4°C wash) with 0.1% digitonin wash buffer (20-mM Hepes-KOH,
pH 7.4, 100-mM NaCl, 20-mM imidazole, 1-mM CaCl,, and 10% glyc-
erol), and bound material was eluted with sample buffer supplemented

with 300-mM imidazole.

Multidimensional mass spectrometry-based shotgun lipidomic analysis of
mitochondrial lipids

The yeast mitochondrial lipidome was determined using multidimensional
mass spectrometry—-based shotgun lipidomics as previously described (Han
and Gross, 2005; Han et al., 2006; Yang et al., 2009). In brief, a 400-pg
aliquot of mitochondrial protein was transferred to a disposable borosili-
cate glass tube. Internal standards as a premixture were added based on
protein concentration. A modified Bligh and Dyer procedure was used to
extract lipids from each mitochondrial preparation. Each lipid extract was re-
constituted with a volume of 200 pl/mg mitochondrial protein in chloroform/
methanol (1:1; vol/vol). The lipid extracts were flushed with nitrogen,
capped, and stored at —20°C for electrospray ionization mass spectro-
metric analysis.

Sequential solubilization assay

Protein aggregation was determined as previously described (Rabl et al.,
2009). In brief, mitochondria were solubilized with 1.5% (wt/vol) digitonin
lysis buffer supplemented with protease inhibitors as previously described
in the Ni?* nitrilotriacetic acid purification section. After centrifugation at
4°C for 10 min at 21,000 g, solubilized material was transferred to a new
tube, and nonsolubilized material (P1) was either directly analyzed or re-
solubilized for 30 min on ice with 1% (vol/vol) TX-100 lysis buffer (20-mM
Hepes-KOH, pH 7.4, 20-mM imidazole, 10% glycerol, 100-mM NaCl,
and 1-mM CaCl,) supplemented with protease inhibitors. TX-100-insoluble
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material (P2) was separated from solubilized extract (S2) by centrifugation
for 10 min at 21,000 g at 4°C. The percentage of Taz1p in TX-100-insoluble
aggregates and the percentage of Taz1p solubilized by digitonin were
calculated as follows: P2/(S1 + S2 + P2) x 100 and S1/(S1 + S2 + P2) x
100, in which S1, S2, and P2 are the volumes of Taz1p detected in frac-
tions ST, S2, and P2, respectively.

In organello import into mitochondria

Radiolabeled precursors were generated using an SP6 Quick Coupled
Transcription/Translation system and guidelines (Promega) and a *°S Easy-
Tag (PerkinElmer). Radiolabeled precursors were incubated for 5, 10, or
20 min at 30°C with wt GA74-1A or Ayme | mitochondria in import buffer
(0.6-M sorbitol, 2-mM KH,PO,, 60-mM KCI, 50-mM Hepes, 10-mM
MgCl,, 2.5-mM EDTA, pH 8.0, 5-mM 1-methionine, 10 mg/ml BSA, 2-mM
ADP, and 2-mM NADH). Import was stopped, and the nonimported precur-
sor was degraded with an equal volume of ice-cold BB7.4 (0.6-M sorbitol
and 20-mM Hepes-KOH, pH 7.4) containing 40 pg/ml trypsin. Trypsin
was inhibited with 100 pg/ml of soybean trypsin inhibitor, and mitochon-
dria were reisolated by spinning at 8,000 g for 5 min at 4°C. To rup-
ture the OM, mitoplasting was performed in the absence or presence of
100 pg/ml proteinase K as previously described (Claypool et al., 2006).
As a control, the wt Taz1 precursor was incubated with mitochondria
on ice for 20 min and treated with trypsin, or not treated, to remove a non-
imported precursor, and reisolated mitochondria were subjected to osmotic
shock in the absence of proteinase K. This control demonstrates that import
does not occur at 4°C and that trypsin removes all of the nonimported pre-
cursor. 100% of each time point and 2.5% of imported precursors were re-
solved on 12% SDS-PAGE gels and analyzed by phosphoimaging. The
percentage of precursor imported was calculated as follows: (T/P) x 2.5,
in which T is the volume of Taz1p at a given import time point, and P is the
volume of the Taz1p precursor.

Miscellaneous

The performed experiments used mitochondria harvested from yeast grown
at 30°C to an ODggp of ~3 in synthetic lactate—Leu (0.17% yeast nitrogen
base minus amino acids and ammonium sulfate, 0.5% ammonium sulfate,
0.2% Drop-out Mix Synthetic minus Leu, 0.05% dextrose, 2% lactic acid,
3.4-mM CaCl, 2H,0, 8.5-mM NaCl, 2.95-mM MgCl, 6H,0, 7.35-mM
KH,PO,, and 18.7-mM NH,CI) in Figs. 3 (B and C), 5, 7 C, 8, 10, S2,
and S4; rich lactate medium (1% yeast extract, 2% tryptone, 0.05% dex-
trose, 2% lactic acid, 3.4-mM CaCl, 2H,0, 8.5-mM NaCl, 2.95-mM
MgCl, 6H,0, 7.35-mM KH,POy, and 18.7-mM NH,CI) in Figs. 9 and S3;
and synthetic lactate—Leu—His-Trp-Ura (0.17% yeast nitrogen base minus
amino acids and ammonium sulfate, 0.5% ammonium sulfate, 0.2% Drop-
out Mix Synthetic minus Leu, His, Trp, and Ura, 0.05% dexirose, 2% lactic
acid, 3.4-mM CaCl, 2H,0, 8.5-mM NaCl, 2.95-mM MgCl, 6H,0, 7.35-mM
KH,PO,, and 18.7-mM NH,CI) in Fig. 6 (B and C). The preparation of
yeast cell extracts (SC media), subcellular fractionation, isolation of mito-
chondria, submitochondrial localization, 1D BN-PAGE, immunoblotting,
and immunoblot quantitation were performed as previously described
(Claypool et al., 2006); 2D BN/SDS-PAGE and AAC2 immunoprecipi-
tation (Claypool et al., 2008b) and phospholipid labeling (synthetic
lactate—Leu), extraction, and data collection (Claypool et al., 2006, 2008a)
were performed as previously described. Statistical comparisons were
performed using SigmaPlot 11 software (Systat Software, Inc.).

Online supplemental material

Fig. S1 shows the CL levels in the BTHS mutant tafazzin panel. Fig. S2
shows the submitochondrial localization of BTHS mutant tafazzins with
additional controls. Fig. S3 shows the defective swelling response of
Cl-deficient mitochondria. Fig. S4 shows 2D BN/SDS-PAGE immuno-
blots of wt and A88E tafazzin, porin, and AAC2 in the presence and
absence of Ymelp after incubation of yeast with CHX. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full /
jcb.201008177/DC1.
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