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Introduction
The blood brain barrier (BBB) functions to insulate the central 
nervous system from its changing molecular environment  
(Carlson et al., 2000; Abbott et al., 2006). This insulation is essen­
tial to defend neurons from toxic substances and to maintain  
invariable ionic composition within the nervous system to enable 
efficient neuronal conductivity (Gloor et al., 2001; Zlokovic, 
2008). In the vertebrate central nervous system, BBB function 
depends on an efficient separation between the blood compo­
nents and the nervous system and is maintained by the sealing 
of brain endothelial cells by specialized tight junctions (Rubin 
and Staddon, 1999; Gloor et al., 2001; Zlokovic, 2008). How­
ever, insulation of a vertebrate’s peripheral nervous system is 
performed by myelinated Schwann cells that produce a myelin 
sheath covering the axon in segments separated by the nodes of 
Ranvier. The segmented myelin sheaths enable saltatory move­
ment of the nerve impulse from node to node (Banerjee and 
Bhat, 2007; Susuki and Rasband, 2008). The Schwann cell in 
each myelinated segment forms a continuous array of septate 

junctions with the underlying axon. These junctions insulate the 
Na+ channel–rich domain from the axon segment that under­
goes myelination (Spiegel and Peles, 2002).

The Drosophila melanogaster BBB is produced by the 
sealing of the nervous system from the outside surrounding en­
vironment by a layer of large glia cells called subperineurial 
glia (SPG); these cells tightly adhere to each other using an  
array of septate junctions formed at the lateral borders of these 
cells (Parker and Auld, 2006; Stork et al., 2008). Similar to  
vertebrates, sealing of the Drosophila nervous system is essen­
tial to its protection from toxic substances and high potassium 
ion concentrations characteristic of the surrounding hemolymph 
(Mayer et al., 2009). In addition to the membrane proteins 
NeurexinIV (NrxIV; Baumgartner et al., 1996), Neuroglian (Nrg; 
Bieber et al., 1989), and Contactin (Falk et al., 2002), Drosoph-
ila septate junctions contain components of vertebrate tight 
junctions such as the claudin-like proteins Sinuous (Wu et al., 
2004), Megatrachea (Behr et al., 2003), and Kune-kune (Nelson 
et al., 2010). In the fly, septate junctions functionally replace 
vertebrate tight junctions to provide an epithelial barrier in vari­
ous tissues, including the ectoderm, salivary gland, tracheal 
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neurial glia (SPG) and requires the Moody/G protein–
coupled receptor (GPCR) signaling pathway. In this study, 
we describe novel specialized actin-rich structures (ARSs) 
that dynamically form along the lateral borders of the SPG 
cells. ARS formation and association with nonmuscle myo-
sin is regulated by Moody/GPCR signaling and requires 

myosin activation. Consistently, an overlap between ARS 
localization, elevated Ca2+ levels, and myosin light chain 
phosphorylation is detected. Disruption of the ARS by  
inhibition of the actin regulator Arp2/3 complex leads to 
abrogation of the BBB. Our results suggest a mechanism 
by which the Drosophila BBB is maintained by Moody/
GPCR-dependent formation of ARSs, which is supported 
by myosin activation. The localization of the ARSs close to 
the septate junctions enables efficient sealing of membrane 
gaps formed during nerve cord growth.
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Further analysis demonstrated that the formation of the ARSs 
depends on the Moody signaling pathway as well as on the  
activity of the actin regulatory Arp2/3 complex and myosin  
activation. Importantly, ARS disruption leads to discontinuities 
in the septate junctions along the borders of the SPG cells,  
abrogating BBB function, similarly to the phenotype observed 
in moody mutants. We suggest that the ARSs support special­
ized membrane convolutions of the SPG plasma membrane that 
help to stabilize septate junctions at the lateral borders of the 
SPG cells.

Results
Specialized ARSs are present along the 
borders of the SPG cells
To gain insight into the actin cytoskeleton organization of the 
SPG cells, we expressed moesin-GFP (GMA-GFP) in the SPG 
cells using a specific Gal4 driver, moody-gal4. To analyze the 
cytoskeletal organization of the SPG cells, we chose to look at 
nerve cords of third instar larvae (half the way to adult fly devel­
opment), as at this stage the SPG cells are well defined and do 
not divide anymore. The moesin-GFP labeling was thus spe­
cific for the SPG cells, whereas phalloidin marked the F-actin 
throughout the entire nerve cord. GFP-positive rounded struc­
tures were detected along the lateral borders of the SPG cells. 
These structures overlapped the phalloidin-labeled regions, 
suggesting that they contain F-actin (Fig. 1, A–C); we therefore 
named them ARSs. The diameter of the GFP-positive ARSs was 
around 1–2 µm, which is significantly larger than typical F-actin 
distribution in adherens type junctions.

Expression of Lifeact-GFP, a 17-aa actin-binding peptide 
fused to GFP in the SPG cells, similarly decorated the ARSs. 
Previous experiments demonstrated that overexpression of  
Lifeact-GFP does not interfere with actin dynamics (Riedl et al., 
2008). Thus, based on the co-distribution of moesin-GFP,  
Lifeact-GFP, and phalloidin, we concluded that the intercellular 
border of the SPG cells is characterized by novel ARSs.

To reveal the distribution of the ARSs relative to the 
plasma membrane of the SPG cells, we expressed a membrane 
form of GFP (CD8-GFP) within the SPG cells and colabeled 
the nerve cord with phalloidin (Fig. 1, G–I). High magnification 
showed that the ARSs were in close proximity to the CD8-
GFP–labeled membranes, suggesting that the ARSs accumulate 
around specialized rounded plasma membrane structures at the 
intercellular SPG borders. The CD8-GFP labeled additional 
structures within the SPG cells, including weblike structures  
located at the basal surfaces of these cells.

We next performed immuno-EM experiments on nerve 
cords taken from larvae expressing moesin-GFP driven by 
moody-gal4, using anti-GFP antibodies to label the ARSs (Fig. 2). 
This approach enabled visualization of the actin distribution 
specifically in the SPG cells. The nerve cords were fixed and 
processed by high-pressure freezing (HPF) followed by a freeze 
substitution procedure, which preserved the antigenicity of the 
GFP. Ultrathin cross sections of the nerve cord were obtained 
and labeled with anti-GFP antibody, followed by secondary anti­
body conjugated to 10-nm gold particles. A low magnification 

cells, and glia cells (Furuse and Tsukita, 2006; Banerjee and 
Bhat, 2007). The dynamics of septate junction formation have not 
been elucidated. Specifically, their ability to provide the sealing 
function during growth and morphogenesis of these distinct tis­
sues is not understood at the structural or the molecular level.

In Drosophila, different types of glia cells exhibit differ­
ential functions in providing nurture, insulation, and support for 
the nervous system (Freeman and Doherty, 2006; Parker and Auld, 
2006; Stork et al., 2008). The SPG are large cells defined during 
embryonic development that form a continuous cell layer located 
between the more external layer of perineurial glia cells and the 
more internal cortex glia enveloping individual axons or axon 
bundles within the nerve cord. The SPG layer consists of uniquely 
large cells that maintain tight adhesion with both the external 
perineural glia and the more internal cortex glia. Importantly, 
the SPG cells form tight septate junctions in their lateral inter­
cellular border with neighboring SPG cells to form the BBB 
(Schwabe et al., 2005; Stork et al., 2008). Although the SPG 
cells are polarized, they do not exhibit the typical epithelial belt 
of apical cadherin-mediated adherens junctions and therefore 
lack the mechanical support that these junctions provide.

To maintain insulation of the brain and nerve cord during 
development from embryo to adult stages, the septate junctions 
along the entire circumference of the SPG cells must accommo­
date the growth and morphological changes of the developing 
nervous system. SPG cells grow in size to mediate their func­
tion in the changing environment without further divisions 
throughout development. Thus, cross talk between the growing 
brain and nerve cord and the dynamic formation of septate junc­
tions in the SPG cells would be expected to account for the 
maintenance of nervous system sealing during development. 
The precise mechanism regulating septate junction continuity 
along the changing borders of neighboring SPG cells has yet  
to be characterized.

The signaling pathway regulated by Moody, a G protein–
coupled receptor (GPCR) expressed uniquely by SPG cells, 
might be related to this function. In moody mutant flies, BBB 
function is disrupted, leading to behavioral abnormalities  
(Bainton et al., 2005). Ultrastructural analysis revealed that in 
moody mutant embryos, septate junctions are nevertheless es­
tablished, suggesting that all the elements required for their for­
mation exist within the SPG cells. However, the continuity and 
length of these junctions along the entire circumference of the 
SPG cells is disrupted, leading to holes in the seals between 
neighboring SPG cells and consequently to aberrant BBB func­
tion (Schwabe et al., 2005). Based on glial-specific rescue ex­
periments, it was proposed that the Moody/GPCR pathway is 
involved in the regulation of septate junction continuity along 
the SPG borders and might act autonomously within these cells. 
moody mutant SPG cells exhibit abnormalities in the actin cyto­
skeleton (Schwabe et al., 2005). However, the molecular link 
between Moody signaling, actin skeleton arrangement, and the 
establishment of elongated septate junctions along the SPG 
plasma membrane is not clear.

In this study, we describe novel highly dynamic actin-rich 
structures (ARSs) associated with convoluted membrane ex­
tensions detected in close proximity to the septate junctions.  
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detected by confocal microscopy. Therefore, we suggest that 
this structure represents an ARS. Notice that the ARS is located 
next to the septate junction but does not overlap it.

The septate junction components Nrg and 
Scribble but not NrxIV are associated with 
the ARSs
Nrg and NrxIV are two membrane proteins essential for proper 
septate junction formation (Bieber et al., 1989; Baumgartner  
et al., 1996). To gain insight as to the relationships between the 
localization of these two proteins and the ARSs, we analyzed 

of unlabeled cross section through the nerve cord fixed by 
chemical fixation is shown in Fig. 2 A, indicating the distribu­
tion of perineurial (PN), subperineurial (SPG), and axons (N) as 
well as the elongated septate junctions formed between the SPG 
cells. A corresponding section in similar orientation and magni­
fication processed by HPF and labeled with anti-GFP is shown 
in Fig. 2 (B–D). Notice that very close to the site of septate 
junction (Fig. 2, B and D, arrows) a convoluted rounded mem­
brane extension was labeled with the anti-GFP antibody (see 
arrows in high magnification in Fig. 2 C). The location, appear­
ance, and size of this structure were similar to that of the ARSs 

Figure 1.  ARSs are distributed along the SPG intercellular borders. (A–I) Nerve cords were dissected from third instar larvae, labeled with moesin-GFP 
(A–C), Lifeact-GFP (D–F), or CD8-GFP (G–I), driven to be expressed in the SPG cells, and then double labeled with phalloidin (Phall). The GFP labeling 
is shown in A, D, and G, phalloidin in B, E, and H, and their merged images in C, F, and I. The insets in each panel represent high magnification of the 
region marked by an arrow in the nerve cords. Note that the ARSs are distributed along the borders of the large SPG cells. Overlap between GFP and 
phalloidin is observed.
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spatial overlapping pattern of Nrg and ARSs suggests their func­
tional association. Interestingly, overexpression of Scribble-GFP, a 
cytoplasmic component of the septate junctions, also exhibited 
a distribution that overlapped with the ARSs, similarly to Nrg 
(Fig. 3, M–O). Collectively, these observations suggest that the 
membranes along the lateral borders of the SPG form unique 
convoluted looplike structures, which contain Nrg and Scribble 
but not NrxIV and are often surrounded by the ARSs.

The ARSs are included within the 
boundaries of a single SPG cell
The tight lateral association between the cell membranes of 
neighboring SPG cells did not allow us to determine whether 
the ARSs are formed on the membranes of two neighboring 
SPG cells or, alternatively, whether a given ARS originates 
within a single SPG cell. To address the relationships between 
the ARSs and the SPG cells, individual glial cells were labeled 
with GFP by glial-specific Flippase-dependent excision of a ge­
nomic spacer localized between a tubulin promoter and GFP 
(see Materials and methods). Using this method, additional 
types of individual glia cells were also labeled; however, the 
SPG cells were easily recognized because of their typical large 
cubical appearance (Fig. 4 A, arrow). We analyzed the localiza­
tion of the ARSs, labeled with phalloidin, in individual GFP- 
labeled SPG cells that were surrounded by non–GFP-labeled SPG. 

their localization relative to phalloidin labeling along the SPG 
cell borders. To this end, we used two distinct protein trap lines: 
Nrg-GFP and NrxIV-GFP, in which a GFP fusion protein ex­
pressed under the endogenous promoter is formed (Morin et al., 
2001; Buszczak et al., 2007). Interestingly, although both pro­
teins are components of the septate junctions, their subcellular 
distribution along the borders of the SPG cells differed; Nrg  
was detected in a convoluted distribution at the intercellular 
SPG borders forming looplike structures, whereas NrxIV was 
spread along a relatively straight line of the plasma membrane  
(Fig. 3, A–L). Importantly, these two proteins differed in their 
degree of association with the ARSs. Nrg often appeared to be 
surrounded by F-actin, in many cases overlapping the ARSs 
(Fig. 3, D–F, white arrowheads). In a few cases in which the 
ARSs were distal to the plasma membrane, no overlap was ob­
served between Nrg and phalloidin (Fig. 3, A–D, open arrow­
heads). In contrast, NrxIV appeared to be separated from the 
ARSs, as it did not overlap the phalloidin labeling (Fig. 3, J–L). 
The fact that Nrg and NrxIV did not always overlap at the SPG 
membranes suggests that at least one of these proteins does not 
exhibit restricted localization to septate junctions. Consistent 
with a previous study suggesting that the distribution of Nrg is 
not restricted to septate junctions (Hortsch and Margolis, 2003), 
we observed that the localization of Nrg in the convoluted loop­
like membranes did not overlap septate junctions. However, the 

Figure 2.  Ultrastructure of the ARSs labeled with gold-conjugated anti-GFP. (A–D) Cross sections of nerve cords dissected from third instar larvae carry-
ing moesin-GFP in the SPG cells and processed either by chemical fixation (A) or by HPF followed by freeze substitution (B–D). The perineurial (PN) and 
subperineurial (SPG) cells (two neighboring SPG cells are marked by yellow or by pink), septate junctions (S.J.), and neurons (N) are indicated in A and B. 
The nerve cords shown in B–D were labeled with anti-GFP antibody and secondary 10-nm gold–conjugated antibody to visualize moesin-GFP. Low magni-
fication (similar to that in A) of the nerve cord is shown in B, and the two corresponding regions marked in B are shown in higher similar magnification in 
C and D. The immunogold labeling in C (arrows) is detected very close to the membrane indentation that corresponds to the ARSs. No GFP labeling was 
detected at the nearby septate junction shown in D (arrow).
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and localized in close proximity to the septate junctions as 
shown in Fig. 2. Moreover, cross sections of nerve cords of larvae 
carrying Nrg-GFP protein trap and labeled with phalloidin 
showed that in contrast to NrxIV, Nrg is localized along convoluted 
membrane indentations that wrap the ARSs (Fig. 4, H and I).  
To confirm that these membrane indentations are separated 
from the septate junction site (as was also suggested by the  
immuno-EM analysis shown in Fig. 2), we labeled nerve cord 
cross sections from larvae carrying the Nrg-GFP with phalloi­
din and NrxIV. Whereas NrxIV appeared as a straight line local­
ized between two neighboring SPG cells, corresponding to the 
septate junction, Nrg-GFP and the ARSs were located proximal 
to that straight line (Fig. 4, J–L). These results combined with 
the immuno-EM analysis suggest that the ARSs are located 
within Nrg-positive membrane convolutions next to the septate 
junctions at the lateral borders of the SPG cells (Fig. 4 M).

We have excluded the possibility that the ARSs associate 
with early endosomal compartments, as we did not detect over­
lapping distribution between the ARSs and Rab-5–GFP in the 

In the majority of cases, ARSs were detected within the bound­
aries of a single GFP-labeled SPG cell (Fig. 4, B–E). We  
assume that in the few cases in which the relative localization  
of the ARSs was not clearly visible within a single cell, it was 
because of the relatively weak GFP expression levels at the 
edges of the SPG cell, which did not permit adequate identifica­
tion of the cell borders. Thus, the clonal analysis demonstrated 
that the ARSs are produced within a single SPG cell, suggesting 
that at the lateral borders of the SPG cells, the plasma mem­
brane is highly convoluted, forming looplike structures that 
contain Nrg (but not NrxIV) and are surrounded by F-actin–rich 
structures as demonstrated in Fig. 4 (F–H).

Cross sections of third instar larvae nerve cords express­
ing moesin-GFP in the SPG cells and labeled with anti-NrxIV 
antibody (Fig. 4, F and G) were performed. High magnification 
of a single confocal optical section shows that the ARSs are lo­
cated at both sides of the NrxIV-labeled septate junction formed 
between two neighboring SPG cells, supporting the notion that 
the ARSs are included within the borders of a single SPG cell 

Figure 3.  The ARSs are associated with Nrg-
containing membrane loops. (A–O) Nerve 
cords dissected from third instar larvae carry-
ing Nrg-GFP (A–F), Nrx-GFP (G–L), or Scribble-
GFP (M–O). GFP labeling is shown in A, D,  
G, J, and M, and the corresponding phalloidin 
staining is shown in B, E, H, K, and N. The cor-
responding merged images are shown in C, F, 
I, L, and O. D–F and J–L show high magnifica-
tions of the corresponding area marked with a 
white rectangle in C and I. Note that the ARSs 
often overlap the Nrg-GFP labeling (white  
arrowheads in D–F). In rare cases, we detected 
an ARS distal from the SPG border that does 
not overlap Nrg-GFP (open arrowheads in 
D–F). NrxIV does not overlap the ARSs (white 
and open arrowheads in J–L). Partial overlap 
is also noted between Scribble and phalloidin 
staining (arrowheads in M–O).
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moesin-GFP driven by the moody-gal4. Third instar larvae were 
immobilized between two cover slides, and the GFP labeling was 
analyzed during a 20–30-min period. This analysis revealed that 
the ARSs are highly dynamic structures; they continuously form 
and disintegrate (Fig. 5). Interestingly, we detected elevation of 
ARS number in early pupal stages (1 h after pupal formation;  
Fig. S2 A). In contrast, in the adult brain, we did not detect typical 
ARSs (Fig. S2 B), which is consistent with the idea that these 
structures are more pronounced during brain morphogenesis.

Live larvae simultaneously labeled for F-actin and Nrg  
using both Lifeact-Ruby driven by moody-gal4 and Nrg-GFP 

SPG cells (Fig. S1, D–F). Similarly, the possible association 
between the ARSs and cellular lipid droplets was excluded as 
no overlap in the staining of fluorescent nonpolar BODIPY 
493/503 (a specific marker for cellular lipid droplets) and phal­
loidin in the SPG cells was detected (Fig. S1, A–C).

Live imaging of the ARSs reveals their 
dynamic appearance in wild-type  
nerve cords
To further characterize the dynamics of the ARSs within the  
SPG cells, we followed nerve cords of live larvae carrying the  

Figure 4.  The relative distribution of the ARSs within a single SPG cell. Nerve cord dissected from third instar larvae in which single glia cells were labeled with 
GFP and with phalloidin (e.g., arrow in A). High magnification of the borders between GFP-positive and -negative SPG cells labeled with phalloidin (B and D) 
or their merged images (C and E) are shown. Arrows in B and C indicate three ARSs that belong to the GFP-negative cell marked by white lines in C. 
Arrowheads in D and E indicate five ARSs, all of which belong to the GFP-positive SPG cell, marked by white lines in E. (F) A cross section in the nerve 
cord of third instar larvae carrying moesin-GFP, driven by Moody-Gal4 and stained with anti-NrxIV (red; F and G) and anti-GFP (green; F and G; arrow 
in F indicates the SPG layer). (G) High magnification of the region marked by the rectangle in F. The septate junction (S.J.) formed between neighboring 
SPG cells is marked by NrxIV staining (red; arrows). The ARSs are marked by arrowheads. (H and I) High magnification of a cross section of nerve cord 
dissected from larvae expressing Nrg-GFP (green; H) labeled with phalloidin (red; I). The ARSs are indicated by arrowheads, and the septate junction 
between neighboring SPG is marked by arrows. J–L show a cross section in Nrg-GFP–expressing larvae labeled with anti-GFP (green; K and L), phalloidin 
(Phall; red; J and L), and NrxIV (blue; J–L). Arrowheads indicate the ARSs, and arrows show the septate junction. (M) A scheme of the relative distribution 
of the ARSs, membrane convoluted loop, and septate junction deduced from our analysis.
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constructs to compromise Arp2/3 function was demonstrated 
previously (Massarwa et al., 2009). These experiments demon­
strate that ARS formation in the SPG cells depends on activa­
tion of the Arp2/3 complex, which is recruited to the intercellular 
SPG borders.

To directly assess the contribution of the ARSs to BBB 
function, we performed a permeability assay for larvae in which 
the ARSs were disrupted by SPG-specific knockdown of the 
Arp2/3 complex. Live larvae were submerged into a solution 
containing 3-kD fluorescein-dextran for 30 min. The larvae 
were then dissected and fixed, and dye penetration to the ventral 
cord was assessed by measuring the fluorescent intensity in the 
nerve cords using confocal microscopy. The fluorescence inten­
sity was measured in three distinct areas in each nerve cord 
within a single optical section taken from the ventral cord.  
As expected, dye penetration was significantly higher in the 
moody mutant compared with wild-type larvae, as demon­
strated previously (n = 12; P < 0.0066; Fig. 6 G; Bainton et al., 
2005; Schwabe et al., 2005). Significantly, dye penetration of 
larvae carrying SPG-dependent RNAi for the Arp2/3 complex 
was also significantly higher when compared with controls of 
either larvae carrying RNAi for Arp2/3 alone (arp2/3RNAi/+; 
Fig. 6 H) or moody-gal4 alone (moody-gal4/+; Fig. 6 H).  
Comparison of the three groups of nerve cords (Moody-
Gal4>Sop2i;Arp3i, Moody-gal4/+, and Sop2i;Arp3i/+) was 
performed by one-way analysis of variance (ANOVA) with 
Dunnett’s t test (using SAS program) to determine the statistical 
significance of the difference between the experimental group 
(Moody-Gal4>Sop2i;Arp3i) and the control groups (Moody-
gal4/+ or Sop2i;Arp3i/+). The difference between the experi­
mental group and each of the control groups was statistically 
significant (at  = 0.05).

demonstrated partial overlap between the ARSs (red) and the 
Nrg-GFP convolutions at the intercellular SPG borders (Fig. 5, 
I and J), similarly to the association shown in fixed nerve cords. 
These experiments showed that the formation of the ARSs and 
the Nrg-containing membrane convolutions are highly dynamic 
and can be detected as well in live preparations.

Disruption of the ARSs leads to abrogated 
septate junctions and BBB function
To address the molecular basis for ARS formation and its func­
tional significance, the subcellular distribution of the actin 
regulatory subunit Arp3 was analyzed in SPG cells. Driving 
Arp3-GFP to SPG cells led to its specific colocalization with 
the ARSs (Fig. 6, A–C), suggesting that the Arp2/3 complex is 
specifically recruited to the sites of ARSs and might regulate 
their formation. Reducing the expression of the Arp2/3 complex 
using RNAi for both Sop2 and Arp3 subunits of this complex in 
the SPG cells led to a severe reduction of their size (Fig. 6 D and 
Fig. S3 G) and number (Fig. 6 D). Temporal restriction of the 
knockdown of Sop2 and Arp3 to third instar larvae stage (using 
Gal80ts) led to similar reduction of the ARS size (Fig. S3, A–C). 
These results suggest that the correct size of the ARSs is regu­
lated by the activity of the Arp2/3 complex, which is localized 
along the lateral borders of the SPG cells.

ARS size reduction induced by knockdown of Sop2 and 
Arp3 by RNAi led to gaps in Nrg distribution along the inter­
cellular borders of the SPG cells, and its convoluted structure  
disappeared (Fig. 6 E). Importantly, the overlap between the 
Nrg-GFP and the ARSs was eliminated, supporting the hypoth­
esis that the ARSs are essential to maintain septate junctions 
along the intercellular SPG borders and for Nrg-GFP membrane 
convolutions. The efficiency of both Sop2 and Arp3 RNAi  

Figure 5.  ARS dynamics in live third instar larvae. 
(A–H) GFP images of the ARSs taken at distinct time 
intervals (in minutes) of the nerve cord of third instar 
larvae immobilized between two coverslips carrying 
the moesin-GFP under Moody-Gal4. The arrows and 
arrowheads indicate to the same ARSs at the different 
time points. I and J are images of live larvae carrying 
Nrg-GFP and Lifeact-Ruby driven by Moody-Gal4. An 
Nrg loop and the ARS associated with it, labeled with 
Lifeact-Ruby, are indicated (empty arrowheads).
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Myosin activation is required for  
ARS formation
The specific F-actin organization of the ARSs might be pro­
moted by myosin contractile activity. To address this possibility, 
we first characterized the distribution of nonmuscle myosin  
relative to the ARS in wild-type larval nerve cords. The sub­
cellular distribution of two nonmuscle myosin proteins, Spaghetti-
squash (Sqh; nonmuscle myosin regulatory light chain) and 

These experiments demonstrate that disruption of the 
ARSs in the SPG promotes discontinuous appearance of Nrg-
GFP along the SPG intercellular borders, leading to the opening 
of the BBB in a similar fashion as detected in moody mutant 
larvae. Therefore, we suggest that the ARSs provide support for 
the formation of continuous septate junctions along the entire 
circumference of the SPG cells, which is essential for the main­
tenance of the BBB.

Figure 6.  The Arp2/3 complex is required for ARS formation and for maintenance of BBB function. (A–C) Nerve cord of third instar larvae express-
ing Arp3-GFP fusion protein driven by Moody-Gal4. The Arp3-GFP (A) colocalizes with the ARSs labeled with phalloidin (B). The merged image is 
shown in C. Arrowheads in A–C indicate ARSs colabeled with phalloidin and Arp3-GFP. (D–F) Nerve cord from larvae expressing RNAi for both 
Arp2 and Arp3 proteins labeled for phalloidin (D). The larvae also carried the Nrg-GFP protein trap. Nrg-GFP is shown in E, and the merged image 
is shown in F. Arrows show aberrant ARSs that no longer associate with Nrg-GFP labeling. Arrowheads indicate sites lacking Nrg-GFP continuity. 
(G) Dye penetration to the nerve cord was measured by the fluorescent intensity of nerve cords dissected from wild-type (WT) larvae and compared 
with moody mutant larvae (moody17). The difference between the averaged fluorescent intensity of the two groups was calculated by Student’s t test 
and was found to be significant (***, P < 0.0066). (H) Dye penetration was compared between three groups: control larvae carrying RNAi to the 
Arp2/3 components alone (UAS-sop2i;arp3i/+), control larvae carrying moody-gal4 alone (moody-gal4/+), or an experimental group of Arp2/3 
knockdown larvae (moody-gal4:UAS-sop2i;arp3i). One-way ANOVA test with Dunnett’s test (using SAS program) was used to determine the statisti-
cal significance of the difference between the experimental and the control groups (Moody-gal4/+ or Sop2i;Arp3i/+). In both cases, the difference 
between the experimental group and each of the control groups was statistically significant (at  = 0.05; indicated by asterisks). (G and H) Error 
bars indicate standard deviation.
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in Fig. S3 H). Thus, myosin activation is required to maintain 
the normal morphology of the ARSs but not their association 
with the intercellular SPG borders.

Labeled cross sections of nerve cords dissected from lar­
vae expressing moesin-GFP with anti-phospho–myosin light 
chain (MLC [P-MLC]) showed a specific positive labeling of  
P-MLC at the ARSs (Fig. 7, J–L). Moreover, in larvae expressing  
a recently developed sensitized Ca2+ indicator, GCaMP3 (Tian 
et al., 2009), driven to the SPG cells, we detected elevated levels 
of Ca2+ at the ARSs (Fig. 7, M and N). Collectively, these results 
demonstrate that specific activation of myosin takes place at the 
ARSs presumably as a result of elevated internal Ca2+ levels and 
that this activation is essential to maintain the ARS size.

Zipper (nonmuscle myosin heavy chain), was analyzed using 
flies carrying Sqh-GFP under its endogenous promoter (Bertet 
et al., 2004) or UAS-Zipper-GFP (Franke et al., 2005) driven by 
moody-gal4 driver. Both myosin-GFP constructs showed spe­
cific labeling that was tightly associated with the ARSs at the 
intercellular SPG borders (Fig. 7, A–F). Interestingly, myosin/
GFP labeling appeared to wrap the ARSs.

Importantly, inhibition of Zipper activation by expressing 
a dominant-negative form of Zipper led to its complete dissoci­
ation from the ARSs (Fig. 7 G) and accumulation around the 
nucleus. Furthermore, dissociation of myosin from the ARSs 
led to shrinking of the ARSs but did not affect their localiza­
tion (statistical analysis of the reduction in ARS size is shown  

Figure 7.  Activation of nonmuscle myosin is essential for correct morphology of the ARSs. (A–I) Nerve cords were dissected from third instar larvae carry-
ing MLC Sqh (Sqh-GFP) under its own promoter (A–C) and myosin heavy chain Zipper (Zip-GFP; D–F) or a dominant-negative form of Zipper fused to GFP 
(DNZip-GFP; G–I) both driven by the Moody-Gal4 driver. A, D, and G show GFP labeling, B, E, and H show phalloidin labeling, and C, F, and I are the 
corresponding merged images. The arrows in A–F show the ARSs and indicate overlap staining between phalloidin and myosin labeling. The arrows in  
G show dissociation of Zip-GFP from the ARSs and in H show abnormal morphology of the ARSs. J–L show a cross section of third instar larvae expressing  
moesin-GFP in SPG cells labeled with anti–P-MLC (red) and GFP. Their merged image is shown in L. An overlap between the ARSs and the P-MLC staining 
is observed (arrowheads). M and N show the border between two SPG cells of nerve cord dissected from larvae expressing the Ca2+ indicator GCaMP3 
in SPG cells (M) and labeled with phalloidin (red; N). An overlap between the phalloidin staining representing the ARSs and the fluorescence of the Ca2+ 
indicator is observed (arrowhead).
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staining was closely associated with the ARSs but did not en­
tirely overlap these structures (Fig. 8, G–I).

We have attempted to rescue the ARS phenotype in moody 
mutants by expressing UAS–Moody- or UAS–Moody- in 
moody mutant larvae. Only partial rescue of the ARSs was de­
tected, presumably because of the sensitivity of the ARSs to 
Moody levels (Fig. S3, D–F). These results suggest an essential 
supportive function of the ARSs in the formation of persistent 
septate junctions along the entire circumference of the SPG cells.

Discussion
The nervous system of the developing fly undergoes significant 
morphological changes during its development from embryo to 
adult stages. Surprisingly, the number of the SPG cells does not 
change (Sepp et al., 2000; Stork et al., 2008). Because these 
cells maintain the sealing function of the nervous system, we 
assumed that a mechanism must exist to couple nerve cord 
growth and the maintenance of septate junctions along the 
changing borders of the SPG cells. Our analysis suggests that as 
part of this mechanism, the SPG cells produce specialized con­
voluted membrane structures that are associated with accumu­
lated F-actin, the ARSs, along their intercellular lateral borders. 
These structures are highly dynamic and contain Nrg but not 
NrxIV. Significantly, they are essential for maintaining BBB 

The Moody/GPCR signaling pathway 
regulates ARS morphology and association 
with myosin
To address whether the Moody signaling pathway regulates the 
morphology of the ARSs, myosin distribution was examined in 
moody17 mutant nerve cords. In contrast to the association of 
the Sqh-GFP with the ARSs detected in wild-type larvae nerve 
cords (Fig. 7 A), it was completely eliminated from the ARSs in 
moody17 mutant nerve cords (Fig. 8 A). Significantly, in these 
mutants, the ARSs lost their normal morphology and shrank 
into small dots that remained localized along the SPG borders 
(Fig. 8, B and E). This result suggests that the moody pathway 
regulates the association of nonmuscle myosin with the ARSs. The 
change in the morphology of the ARSs in moody mutant nerve 
cords might result from their dissociation from the myosin.

As reported previously (Schwabe et al., 2005), the distri­
bution of Nrg-GFP was discontinuous along the lateral inter­
cellular borders of the SPG (Fig. 8 D, arrowhead). In addition, 
Nrg-GFP distribution lost its convoluted membrane morphology  
in moody mutants, and importantly, there was no overlap between 
the remaining ARS dots and Nrg-GFP (Fig. 8, D–F, arrows).

These experiments strongly suggest that the Moody/GPCR 
pathway controls the association of nonmuscle myosin with the 
ARSs, possibly by inducing phosphorylation of MLC as a result 
of localized elevation of Ca2+ levels. Consistently, Moody- 

Figure 8.  The Moody/GPCR pathway regulates myosin association with the ARSs. (A–F) Nerve cords dissected from moody17 mutant larvae and also 
carrying either Sqh-GFP (A–C) or Nrg-GFP (D–F). GFP labeling is shown in A and D, and phalloidin labeling is shown in B and E. C and F are their 
corresponding merged images. The arrow in A shows a complete dissociation of Sqh-GFP from the ARS and in B abnormal morphology of the ARSs. 
The arrowhead in D shows discontinuity of Nrg-GFP labeling, and the arrows in D and E show corresponding locations of abnormal ARS morphology.  
(G–I) Cross section of third instar larvae nerve cord expressing moesin-GFP and labeled with Moody- (red). A partial overlap between the moesin-GFP 
and Moody- is detected. Moody staining wraps the ARS (arrows).
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The ARSs are unique structures of the 
SPG cell
The ARSs are novel structures and have not been previously  
described. One possible explanation is that these are highly del­
icate structures and might disintegrate during fixation. We suspect 
that the association of the moesin-GFP with the ARSs led to 
their stabilization, enabling their visualization both in fixed and 
live nerve cords. Indeed, when staining wild-type larvae nerve 
cords only with phalloidin, fewer ARSs were detected; how­
ever, their presence was clearly observed in third instar larvae. 
Moreover, we also detected ARSs using Lifeact-GFP. Two  
additional types of F-actin structures were detected in SPG cells, 
apical stress fibers arranged in an anterior posterior polarity and 
basal weblike stress fibers forming large circles of F-actin. The 
function of this basal F-actin network as well as its possible 
contribution to BBB maintenance is yet to be elucidated.

An interesting feature of the ARSs is their association 
with the plasma membrane. Because the SPG cells do not ex­
hibit a typical epithelial-like belt of apical adherens junctions, 
we suspect that the ARSs instead provide mechanical support 
for the intercellular septate junctions formed along the SPG  
intercellular borders. In summary, we have described novel ARSs 
involved in the maintenance of convoluted Nrg-positive mem­
brane indentations in the SPG cells, which are essential for 
maintaining septate junctions between neighboring SPG cells.

In vertebrates’ peripheral nervous system, myelinated 
Schwann cells form a myelin sheath that wraps the axon in 
segments separated by the nodes of Ranvier. The segmented 
myelin sheaths enable saltatory movement of the nerve impulse 
from node to node. The myelin membrane of the Schwann cell 
forms convoluted loops at the paranodal region separating  
between the Na+ channels at the node of Ranvier and the 
juxtaparanodal K+ channels located along the paranodal loops 
(Spiegel and Peles, 2002). These paranodal loops form septate 
junctions with the axonal membrane, enabling separation  
between the electrical activity at the node of Ranvier and the  
internodal region. Whereas the precise cytoskeletal composi­
tion of the paranodal loops as well as potential signaling in­
volved in their formation is yet to be elucidated, the convoluted 
looplike structures of the ARSs in Drosophila SPG cells are 
structurally reminiscent of these paranodal loops, which are as­
sociated with the septate junctions. It remains to be elucidated 
whether similar GPCR-dependent molecular signaling mediates 
the formation of vertebrate peripheral nervous system paranodal 
loops and axoglial septate junctions.

Materials and methods
Fly strains
The following fly strains were obtained from published sources: UAS-
GCaMP3 (Tian et al., 2009), UAS–Moody-–GFP and UAS–Moody-–
GFP (Mayer et al., 2009), UAS-GMA-GFP (Kiehart et al., 2000), 
UAS-Zipper-GFP and UAS-ZipperDN-GFP (Franke et al., 2005), moody-gal4 
and Repo-flp1/Cyo; tub >6k> gal4-UAS-GFP/TM6 (C. Klämbt, University 
of Münster, Münster, Germany) and moody17 (Bainton et al., 2005), UAS-
Lifeact-GFP (F. Schnorrer), UAS-CD8-GFP (Lee and Luo, 1999), Nrg-GFP 
(Morin et al., 2001), Neurexin-GFP (Edenfeld et al., 2006), UAS-Scribble-
GFP (Zeitler et al., 2004), WaspDN (Tal et al., 2002), arp3-GFP (Hudson 
and Cooley, 2002), and UAS-sop2RNAi;UAS-arp3RNAi (E. Schejter, 
Weizmann Institute of Science, Rehovot, Israel). RNAi knockdown strains 

function in larval nerve cords, and their maintenance depends 
on their association with and activation of nonmuscle myosin, 
which is downstream of Moody/GPCR signaling. Failure to 
maintain this signaling or direct inhibition of myosin activation 
leads to dissociation of myosin from the ARSs, shrinking and 
detachment of the ARSs from the Nrg-positive membrane con­
volutions, and BBB disruption.

A functional link between the ARSs, 
moody/GPCR signaling, and  
myosin activation
A previous study (Schwabe et al., 2005) demonstrated that 
the BBB is disrupted in moody mutant embryos. This analy­
sis indicated that although septate junctions are formed in 
moody mutants, their morphology is aberrant. Importantly, in 
moody mutants, the septate junctions were discontinuous 
along the entire circumference of the SPG cells, leading to 
abrogation of the BBB. Comparative analysis performed 
showed that the lack of moody leads to a less severe BBB 
disruption phenotype relative to that of an NrxIV mutant, as 
measured by dye injection assay (Stork et al., 2008). This is 
presumably because of the fact that in moody mutants, sep­
tate junctions are formed and part of the BBB function is 
preserved; however, persistent junction formation at the lat­
eral SPG border is aberrant. These results are consistent with 
a function for the Moody pathway in the regulation of septate 
junction continuity.

Our results indicate that moody signaling controls the  
association of the ARSs with membrane convolutions formed 
along the lateral borders of the SPG cells. Disruption of the 
ARSs by expression of RNAi against the Arp2/3 components 
abrogated BBB function to a similar extent as that of moody 
mutants. We suggest a model in which Moody/GPCR signal­
ing promotes myosin activation and association with the ARSs. 
GPCR signaling often leads to activation of myosin contrac­
tion in different cellular/developmental contexts because of a 
transient release of internal Ca2+ pools (Blaser et al., 2006; 
Turu and Hunyady, 2010). Indeed, we detected elevation of 
Ca2+ levels at the ARS sites. Activation of myosin is essential 
to preserve ARS morphology and may promote their dynamic 
behavior. How this behavior relates to the persistent appear­
ance of septate junctions along the lateral SPG borders is yet 
to be determined. The correlation between the disruption of 
the ARSs and elimination of the Nrg-positive membrane con­
volutions is consistent with the idea that the ARSs provide  
mechanical support for these structures. We hypothesize that 
these Nrg-positive membrane convolutions are essential for 
the fast reconstitution of septate junctions during nerve cord 
growth and morphogenesis. Consistently, lack of the ARSs 
leads to discontinuity in the appearance of septate junctions as 
well as abrogation of BBB function. Because some of the 
ARSs were still detected at the SPG cellular borders in moody 
mutant larvae, we suggest that a Moody-independent mecha­
nism promotes ARS formation at the SPG cellular borders. 
The Moody/GPCR pathway then maintains their morphology 
and association with septate junction components by regula­
tion of myosin activation.
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Dye penetration assay
Third instar larvae were placed in fluorescein-dextran (3 kD, 10 mg/ml;  
Invitrogen) diluted 1:50 for 30 min. The larvae were dissected immediately 
and fixed as described in Immunohistochemistry and imaging, and the 
nerve cords and brains were dissected and analyzed by an LSM 710  
system for fluorescent intensity. Dye penetration was quantified using  
ImageJ (National Institutes of Health). A single optical section from each 
nerve cord was examined, three equal-sized areas were selected and aver-
aged for their mean pixel intensity, and background intensity was sub-
tracted. The light intensity of the areas taken from each larva was averaged. 
For each experiment, 3–10 larvae were analyzed. The statistics were 
calculated in the following manner: for comparing permeability of 
moody17 with wild-type, we have used Student’s t test, and the p-value in 
this assay was P < 0.0066. For comparing the three groups of nerve cords 
(Moody-Gal4>Sop2i;Arp3i, Moody-gal4/+, and Sop2i;Arp3i/+), we 
used a one-way ANOVA test with Dunnett’s test (using SAS program) to  
determine the statistical significance of the difference between the experi-
mental group (Moody-Gal4>Sop2i;Arp3i) and the control groups (Moody-
gal4/+ or Sop2i;Arp3i/+). In both cases, the difference between the 
experimental group and each of the control groups was statistically signifi-
cant (at  = 0.05).

Online supplemental material
Fig. S1 shows that there is no overlap between the distribution of the ARSs 
and lipid droplets (labeled with BODIPY) or with Rab-5–associated endo-
somes. Fig. S2 shows enrichment of the ARSs in pupal but not in adult fly 
brains. Fig. S3 shows that temporal knockdown of Arp2/3 only during the 
third instar larvae stage leads to aberrant ARSs and includes statistical 
analysis of ARS size after Apr2/3 knockdown after expression of dominant-
negative Zipper. Online supplemental material is available at http://www 
.jcb.org/cgi/content/full/jcb.201007095/DC1.
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Tub-gal80ts/+;Moody-Myr-RFP/UAS-sop2RNAi,UAS-arp3RNAi was 
obtained by crossing the lines Tub-gal80ts/Tub-gal80ts;TM2/TM6 (Bloom-
ington Stock Center, Bloomington, IN) and UAS-Zip-GFP/Cyo; Moody-Myr-
RFP/TM6 to create Tub-gal80/UAS-Zip-GFP; Moody-Myr-RFP/TM6. These 
flies were crossed with UAS-sop2RNAi, UAS-arp3RNAi/TM6. All crosses 
were kept at 25°C. Embryos of the latter cross were moved to 18°C until 
they reached second instar larvae stage. Third instar larvae were moved to 
29°C for 24 h and then dissected and stained for FITC-phalloidin. For  
the rescue experiment, females of the genotype moody17/FM7(Blue 
balancer);Moody-Gal4/Cyo were crossed to males homozygous for UAS–
Moody-–GFP or UAS–Moody-–GFP, and the GFP-positive moody mutant 
larvae males were labeled with phalloidin and examined.

Immunohistochemistry and imaging
Larvae nerve cords and brains were dissected in PBSX1.66 and fixed in 
6.4% PFA for 20 min. The nerve cords were then washed twice for 10 min 
in PBS containing 0.1% Triton X-100 (PBT) and were immersed in 80% 
glycerol solution for 10 min. Then the nerve cords and brains were further 
cleaned to remove fat and other tissues and mounted on a slide with Aqua-
mount (Thermo Fisher Scientific).

For staining with TRICT-phalloidin (P1951; Sigma-Aldrich) or FITC-
phalloidin (P5282; Sigma-Aldrich), fixed nerve cords were incubated with 
phalloidin (1:200) diluted in PBT (from a stock of 1 mg/ml phalloidin solu-
bilized in methanol) for 1 h and then washed four times for 10 min with 
PBT. Lipid droplet staining was performed using BODIPY 493/503 
(D3922; Invitrogen). Larvae nerve cords were dissected in PBSX1.66 and 
fixed in 6.4% PFA for 20 min. After two washes of 10 min in PBT, the  
larvae were put in 30% glycerol with BODIPY diluted to 5 µg/ml for  
15 min. The brains were dissected and mounted using glycerol 30%. Live 
imaging was performed as follows: live third instar larvae were placed  
between two coverslips, which were glued together with gel glue and  
imaged for 0.5–2 h.

For staining of nerve cord cross sections, larvae nerve cords were 
dissected and fixed as described in the beginning of this section and then 
incubated in 10% sucrose solution until they sunk. Nerve cords were 
moved to 30% sucrose solution for 1 h, arranged in a mold, and frozen in 
OCT. Cross sections of 8 µm were obtained using a cryostat (CM3050S; 
Leica). After several washes with PBS, samples were incubated with per-
meabilization solution (0.25% Triton X-100 and 1% BSA in PBS) for 15 min 
and blocked with 10% BSA for 1 h. Samples were transferred into primary 
antibody and incubated overnight at 4°C. After additional washes in PBS, 
samples were incubated with secondary antibody for 1 h, washed with 
PBS, and mounted in Aqua-mount. The following primary antibodies were 
used: rabbit anti-NrxIV (1:1000; C. Klämbt), rabbit anti–Moody- (1:70; 
R.J. Bainton, School of Medicine, University of California, San Francisco, 
San Francisco, CA), rabbit anti–P-MLC2 (1:70; Cell Signaling Technol-
ogy), and chick anti-GFP (1:70; Aves Laboratories). Secondary antibodies 
used were as follows: Cy5 anti–rabbit, Cy2 anti–chick, and Cy3 anti– 
rabbit (Jackson ImmunoResearch Laboratories, Inc.). Both intact nerve 
cords and sections were mounted with Aqua-mount. All confocal images 
were acquired at room temperature using an LSM 710 system (Carl Zeiss, 
Inc.). Intact nerve cord images were taken using 40×/1.20 water immer-
sion lens, and nerve cord cross sections were taken using 63×/1.40 oil 
immersion lens.

HPF and immunogold labeling for EM
Larvae carrying GMA-GFP under the control of moody-gal4 were dis-
sected in cacodylate buffer and fixed in 0.1% glutaraldehyde. HPF was 
performed in a Bal-Tec HPM10 apparatus. Frozen samples were trans-
ferred to the AFS (Leica) and freeze substituted in acetone, containing 
0.1% glutaraldehyde and 0.1% uranylacetate at 90°C for 72 h. The 
samples were washed in series of the alcohols and embedded in HM20 
resin at 30°C. Ultrathin sections (70–90-nm thickness) were prepared 
with Ultramicrotome UCT (Leica) collected on Ni grids coated with form-
var, analyzed under 120 kV on a transmission electron microscope  
(Tecnai Biotwin Spirit; FEI) and digitized with a charge-coupled device 
camera (EAGLE; FEI) using TIA software (FEI). For immunogold labeling, 
the ultrathin sections were washed with PBS + 0.2% glycine. After 20 min 
of blocking using 0.1% glycine, 0.1% Tween 20, and 1% BSA in PBS, 
anti-GFP was added in the blocking buffer and incubated for 1.5–2 h at 
room temperature or overnight. The anti–rabbit conjugated to 10-nm 
gold particles was added at 1:20 dilution in the blocking buffer for  
30 min at room temperature and then washed once by PBS and another 
six times in H2O.
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