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Making heads or tails of phospholipids in mitochondria
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Mitochondria are dynamic organelles whose functional
integrity requires a coordinated supply of proteins and
phospholipids. Defined functions of specific phospholipids,
like the mitochondrial signature lipid cardiolipin, are
emerging in diverse processes, ranging from protein bio-
genesis and energy production to membrane fusion and
apoptosis. The accumulation of phospholipids within mito-
chondria depends on interorganellar lipid transport be-
tween the endoplasmic reticulum (ER) and mitochondria as
well as intramitochondrial lipid trafficking. The discovery
of proteins that regulate mitochondrial membrane lipid
composition and of a multiprotein complex tethering ER to
mitochondrial membranes has unveiled novel mechanisms
of mitochondrial membrane biogenesis.

Introduction

Mitochondria are engaged in a plethora of cellular processes and
are therefore of utmost importance for cell viability. Mitochon-
dria are not static entities but are highly dynamic and require that
supplies of proteins and membrane lipids be coordinated and
adjusted to meet physiological and functional demands. Although
an increasingly detailed structural and mechanistic picture is
emerging for the biogenesis, sorting, and compartmentation of
mitochondrial proteins (Schmidt et al., 2010), much less is known
about mechanisms regulating the supply of phospholipids and
the maintenance of mitochondrial membrane integrity. The mito-
chondrial phospholipid composition varies little among different
cells, suggesting that major changes cannot be tolerated. Indeed,
both altered phospholipid levels and phospholipid damage
have been linked to a variety of human disease states (Chicco
and Sparagna, 2007; Joshi et al., 2009). Phospholipids like
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cardiolipin (CL) have long been known to affect the stability and
catalytic activity of mitochondrial membrane proteins (Schlame
and Ren, 2009). However, considering phospholipids merely
as the fabric that keeps mitochondria together vastly under-
estimates their contribution toward the functional integrity of
these organelles.

In this article, we summarize recent findings that highlight
distinct functions of mitochondrial phospholipids in diverse
mitochondria-associated processes such as mitochondrial fusion,
protein import into mitochondria, and apoptosis. We will focus
on phosphatidylethanolamine (PE) and the mitochondria-specific
dimeric glycerophospholipid CL. Both PE and CL are non—
bilayer-forming phospholipids, a feature best explained by their
shape (Fig. 1; van den Brink-van der Laan et al., 2004). Bilayer-
forming phospholipids like phosphatidylcholine (PC) are
cylindrically shaped with the fatty acid portions defining
extended hydrophobic domains and the polar head groups
defining the short hydrophilic domains along the length of the
cylinder. The nearly equivalent diameters of the cylinder in both
domains allow molecular packing that favors bilayers. The non—
bilayer-forming lipids PE and CL are more conical shaped with
a smaller hydrophilic head group diameter and a relatively larger
hydrophobic domain diameter. This shape allows the formation
of hexagonal phases that can be observed for isolated lipids de-
pending on the pH and ionic strength (Ortiz et al., 1999). PE
and CL are thought to be present mainly in bilayer structures
in vivo, but their tendency to form hexagonal phases can cre-
ate tension in membranes that is likely of functional impor-
tance to various mitochondrial processes like membrane fusion
or the movement of proteins or solutes across membranes
(van den Brink-van der Laan et al., 2004). The functional im-
portance of non-bilayer-forming lipids is highlighted by the
fact that yeast and bacteria cannot tolerate simultaneous reduc-
tion of PE and CL (Rietveld et al., 1993; Gohil et al., 2005). The
biosynthesis of PE and CL occurs, at least in part, within
mitochondria and relies on an intricate exchange of precursor
forms between the membrane of the ER and the mitochondrial
outer membrane at distinct contact sites, whose structural
basis we are just beginning to understand. We will highlight
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Figure 1. Phospholipids in mitochondrial membranes. (A) The central structural element of phospholipids is a glycerol backbone. Acyl chains that can vary
in length and saturation are attached to the sn-1 and sn-2 hydroxyl groups. Distinct hydrophilic head groups can be attached to the sn-3 position of the
glycerol backbone via a phosphodiester bond and confer unique biophysical properties that distinguish the different phospholipid classes: PA, PS, PE, PC,
PG, P, and CDP-DAG. CDP-DAG is an intermediate that does not accumulate in significant amounts in mitochondrial membranes under normal conditions.
(B) CL is a lipid unique to mitochondria, which consists of two PA moieties covalently linked to each other by a glycerol bridge, with the phosphodiester
bonds at the sn-T and sn-3 positions of the bridging glycerol. (C) Bilayer and non-bilayer phospholipids have different shapes. The conical shape of non-
bilayer lipids induces membrane curvature or creates a unique biochemical microenvironment in a planar bilayer, where the hydrophobic parts are ex-

posed between neighboring phospholipids (marked with arrows).

recent advances and unresolved questions regarding this inter-
organellar communication and the intramitochondrial traffick-
ing of phospholipids.

Mitochondrial phospholipids and

membrane domains

The phospholipid composition of mitochondrial membranes
has been determined in yeast and mammalian cells. Although
the exact composition determined in different studies varies,
most likely because of differences in the growth conditions or
the purity of the analyzed fraction, the relative abundance of
different phospholipids remains within a relatively narrow range.
PC and PE are the most abundant phospholipids and comprise
~40% and ~30% of total mitochondrial phospholipids, respec-
tively. CL and phosphatidylinositol (PI) account for ~10-15% of
phospholipids, whereas phosphatidic acid (PA) and phosphatidyl-
serine (PS) comprise ~5% of the total mitochondrial phospho-
lipids (Colbeau et al., 1971; Zinser and Daum, 1995). The lipids
CDP-DAG, phosphatidylglycerol (PG) phosphate (PGP), and
PG are important intermediates for the synthesis of the abun-
dant phospholipid species but do not accumulate in mitochon-
dria under normal conditions. However, it has to be noted that
PG, which accumulates in mitochondria in the absence of the CL
synthase, can partially compensate for several cellular functions
of CL (Jiang et al., 2000). In mammalian cells, mutations in
PGP synthase eliminate PG and CL pools, resulting in altered
mitochondrial structure and function (Ohtsuka et al., 1993a,b).
Other membrane lipids, like sphingolipids and sterols, which
are important structural lipids that significantly contribute
to the composition of the plasma membrane, the membrane
of the Golgi apparatus, and the lysosomal compartments,
are only found in trace amounts in mitochondrial membranes
(van Meer et al., 2008). Notable exceptions are mitochondria
of steroidogenic cells that are involved in the biosynthesis of
hormones and consequently have a higher content of sterols
(Strauss et al., 2003).

JCB « VOLUME 192 « NUMBER 1 « 2011

The diversity of mitochondrial membrane lipids is also a
consequence of the variation in chain length and degree of un-
saturation of fatty acids present within each class of phospho-
lipid. Acyl chains are important determinants for the biophysical
properties of cellular membranes. With the exception of the acyl
chain remodeling of CL, which has been studied in some detail
(Houtkooper et al., 2009; see Mitochondrial synthesis of CL),
the regulation of the acyl chain composition of mitochondrial
lipids and their functional importance for mitochondrial pro-
cesses are poorly understood.

Perhaps the most significant difference in the relative
abundance of phospholipids between the outer and the inner mito-
chondrial membrane is observed for CL. It has long remained
controversial whether CL is even present at all in the outer mito-
chondrial membrane. However, a recent study in yeast has now
convincingly demonstrated that a purified mitochondrial outer
membrane fraction from yeast indeed contains ~25% of the CL
of total mitochondrial membranes (Gebert et al., 2009).

Little is currently known about the lateral distribution of
phospholipids in mitochondrial membranes. The non-bilayer-
forming lipids PE and CL laterally segregate into distinct do-
mains in bacterial membranes, which, similar to mitochondria,
contain CL but lack sterols and sphingolipids (Mileykovskaya
and Dowhan, 2000; Kawai et al., 2004; Nishibori et al., 2005).
A spatially defined lipid distribution may also affect mitochon-
drial processes, such as fusion or fission, as well as the insertion
or extraction of membrane proteins. The high membrane curva-
ture at cristae tips may impose geometric constraints that could
lead to an enrichment of non-bilayer-forming lipids. Membrane
domains may self-assemble to some extent, but it is conceivable
that scaffolding proteins assist in their formation and maintenance.
This might be of particular relevance in the mitochondrial inner
membrane, which is considered to be the most protein-rich cel-
lular membrane. Prohibitins, which are evolutionarily conserved
proteins forming ring complexes in the mitochondrial inner mem-
brane (Tatsuta et al., 2005), were proposed to act as membrane
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scaffolds that recruit proteins to lipid domains enriched in PE
and CL in the mitochondrial inner membrane (Fig. 2 A; Osman
et al., 2009a,b). Bacterial flotillins, scaffolding proteins of
the SPFH family distantly related to prohibitins, have recently
been found to associate with negatively charged phospholipids
(Donovan and Bramkamp, 2009). Similarly, prohibitins may
enrich PE and CL within the ring complexes. This could explain
genetic evidence in yeast demonstrating that prohibitins are
essential for the survival of yeast cells containing reduced levels
of mitochondrial PE or CL (Osman et al., 2009a). Accordingly,
a perturbed membrane organization could cause the pleiotropic
mitochondrial deficiencies observed in prohibitin-deficient
cells, but direct experimental evidence in support of a lipid
scaffolding function of prohibitin complexes remains elusive.

Mitochondrial phospholipid biosynthesis

The maintenance of a defined lipid composition within mito-
chondria depends on their capacity to synthesize phospholipids
such as CL, PE, PG, and PA, whereas PI, PC, and PS are pri-
marily synthesized in the ER and must be imported into the
organelle for use as a finished end product or precursors for
other lipids (Fig. 2). The biochemical steps in the synthesis of
all phospholipids commence with the acylation of the sn-7 posi-
tion of glycerol-3-phosphate (G3P) or dihydroxyacetone phosphate
by acyltransferases (G3P acyltransferases [GPATs]) producing
lyso-PA (Fig. 2 A). The yeast GPATS are associated with the ER
and lipid particles, whereas the mammalian GPATs are local-
ized to multiple organelles, including mitochondria (Wendel et al.,
2009). Several lyso-PA acyltransferases (LPAATSs) then convert
lyso-PA to PA, which serves as a crucial intermediate supplying
two independent cellular pathways for the synthesis of phos-
pholipids (Fig. 2 A). One branch of the pathway converts PA to
DAG catalyzed by the phosphatase Pahl (Han et al., 2006) and
eventually produces the zwitterionic lipids PE and PC in an en-
zymatic cascade known as the Kennedy pathway (Daum et al.,
1998). The other branch of the pathway leads to the synthesis of
CDP-DAG catalyzed by Cdsl1 (Shen et al., 1996) and produces
the acidic phospholipids PS, PI, PG, and CL as its principal
products (Fig. 2 A).

Mitochondrial synthesis of CL. A multienzyme
cascade in the mitochondrial inner membrane synthesizes CL
from CDP-DAG (Fig. 2 B; Joshi et al., 2009; Schlame and Ren,
2009) by the stepwise formation of PGP catalyzed by Pgs1
(Chang et al., 1998; Dzugasova et al., 1998) and its subsequent
dephosphorylation catalyzed by the recently identified yeast
PGP phosphatase Gep4 (Osman et al., 2010). Gep4 localizes to
the matrix side of the inner membrane (Osman et al., 2010),
which is also the predicted location for Pgs1. The localization
of both enzymes in yeast mitochondria is in agreement with
the proposed initiation of CL synthesis on the matrix-exposed
leaflet of the inner membrane (Joshi et al., 2009; Schlame and
Ren, 2009). How newly synthesized CL molecules are then
redistributed within mitochondria remains to be examined.
Although CL synthase generates CL from PG and CDP-DAG
on the matrix side of the membrane (Schlame and Haldar, 1993),
later acyl chain remodeling steps appear to occur on the outer
leaflet of the inner membrane (Claypool et al., 2006). The acyl
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Figure 2. Mitochondria and the synthesis of phospholipids. (A) Sche-
matic summary of phospholipid biosynthesis. Cleavage of the pyro-
phosphate bond in CDP-DAG provides the energetic driving force to
catalytically replace CMP with inositol, G3P, or serine to form PI, PGP, or
PS, respectively, using specific synthetic enzymes. PGP is dephosphory-
lated to produce PG. CL is synthesized from PG and CDP-DAG substrates
with the catalytic cleavage of the pyrophosphate bond in the latter sub-
strate providing the chemical energy to transfer the PA moiety to the
vacant primary hydroxyl of PG. PS can be decarboxylated to PE, which
in turn can be methylated to yield PC. Alternatively, PE and PC can be
synthesized via an enzymatic cascade known as the Kennedy pathway.
See Mitochondrial phospholipid biosynthesis for further details. Cho,
choline; Etn, ethanolamine; MLCL, monolyso-CL; P-Cho, phosphocholine;
P-Etn, phosphoethanolamine. (B and C) Membrane topology and lipid
transport events in the synthesis of CL (B) and aminoglycerophospho-
lipids (PE and PC; C). Yeast biosynthetic enzymes are indicated. PA synthe-
sized in the ER or mitochondria drive biosynthetic reactions. CDP-DAG
may derive from the ER/MAM or be generated at the mitochondrial
inner membrane by the action of CDP-DAG synthase (Cds1; Kuchler
et al., 1986). IM, mitochondrial inner membrane; OM, mitochondrial
outer membrane.

chain composition of nascent CL species is remodeled by the
sequential action of a phospholipase A (Cldl in yeast) and a
transacylation reaction catalyzed by Tazl (Xu et al., 2006;
Beranek et al., 2009). In humans, mutations in Taz1 cause cardio-
myopathy and Barth syndrome, underscoring the physiological
importance of CL and its remodeling for mitochondrial homeo-
stasis and function (Bione et al., 1996; Houtkooper et al., 2009).

Although enzymes involved in CL biosynthesis from CDP-
DAG are localized at the mitochondrial inner membrane, it is

Mitochondrial phospholipids ¢« Osman et al.
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currently not clear how much CL synthesis depends on the trans-
port of precursor lipids from extramitochondrial sources. The de
novo synthesis of PA occurs in the ER, but PA may also be gener-
ated within mitochondria by phospholipases like MitoPLD (Choi
et al., 2006). Thus, mitochondria may use both extrinsic and intrin-
sic sources of phospholipid precursors for CL formation.

Mitochondrial synthesis of PE. Extramitochondrial
PS formed in the ER or specialized domains of the ER that are
tightly associated with mitochondria serve as a precursor for
mitochondrial PE in both yeast and mammalian cells (Fig. 2 C).
This PS is synthesized from a CDP-DAG substrate in yeast (Letts
et al., 1983; Nikawa and Yamashita, 1984; Kuchler et al., 1986)
or by base exchange enzymes in mammalian cells (Kuge and
Nishijima, 1997; Vance, 2008). The imported PS is a substrate
for Psd1 (PS decarboxylase 1) located in the mitochondrial inner
membrane (Clancey et al., 1993; Trotter et al., 1993). Although a
second decarboxylase (Psd2) is present outside of mitochondria
in yeast (but not in mammals; Trotter and Voelker, 1995), the
majority of the catalytic activity occurs within mitochondria. PE
produced via the Kennedy pathway or by the action of Psd2 is
poorly assimilated into mitochondria and insufficient to meet the
requirements for respiration. The PE produced in mitochondria
is actively exported to other organelles (Voelker, 1984).

One major consequence of this PE export is the synthesis
of PC in the ER by the sequential methylation of the primary
amine of PE, catalyzed by the yeast methyltransferases Pem1 and
Pem?2 (originally named Cho2 and Opi3; Kuchler et al., 1986;
Kodaki and Yamashita, 1987, 1989). In the majority of mam-
malian tissues, PC is produced via the Kennedy pathway (Fig. 2),
but in the liver, PE methyltransferase activity is significant and
can provide adequate levels of PC during periods of choline
deficiency (Li and Vance, 2008).

In many eukaryotes, the aminoglycerophospholipids PS, PE,
and PC comprise 75-80% of the total glycerophospholipids found
within the cell (van Meer et al., 2008). As mitochondria have the
synthetic capacity to synthesize the entire PE pool required for cell
growth (Birner et al., 2001), the flux of PS into the mitochondria,
and its subsequent decarboxylation and export as PE, can account
for the biosynthesis of the majority of the glycerophospholipids
present in all cellular membranes. This dynamic role of mitochon-
dria as a major source of phospholipids is widely underappreciated.
The role of mitochondria in exporting phospholipids is true for eu-
karyotes other than yeast. Mammalian cells can also produce the
majority of all PE via the mitochondrial pathway (Voelker, 1984).

Mitochondrial phospholipid trafficking
The differential localization of enzymes of phospholipid bio-
synthetic pathways among different organelles and different mem-
brane compartments within one organelle implicitly defines a
requirement for extensive intracellular lipid trafficking (Fig. 2,
B and C). Specific mechanisms must exist to ensure the trans-
port of phospholipids from the ER to mitochondria and between
outer and inner mitochondrial membranes. However, we are
only beginning to understand how these transport processes
occur and how they are regulated.

Phospholipid transport to and within mitochondria ap-
pears to proceed via close membrane contacts rather than

JCB « VOLUME 192 « NUMBER 1 « 2011

vesicular pathways. A close apposition of two membranes may
facilitate direct lipid flipping between bilayers at regions of posi-
tive membrane curvature or may allow lipid trafficking by yet to
be identified soluble lipid carriers or by protein complexes that
bridge both membranes (Voelker, 2009). Intermembrane lipid
exchange might also be mediated via a stabilized hemifusion
state, which would result in continuity between leaflets of both
membranes, but evidence for such a mechanism is still lacking.
Tethering of ER and mitochondrial mem-
branes. Transport of phospholipids between membranes of
the ER and mitochondria occurs at specialized fractions of the
ER that are tightly associated with mitochondria (Voelker, 1990)
and were therefore termed mitochondria-associated membranes
(MAMs; Vance, 1990; Ardail et al., 1993; Gaigg et al., 1995;
Shiao et al., 1995). MAMs are enriched in certain lipids and vari-
ous phospholipid biosynthetic enzymes, including PSS-1 (PS
synthase-1), FACL4 (long-chain fatty acid-CoA ligase type 4;
Vance, 1990; Rusifiol et al., 1994; Gaigg et al., 1995), and Alel
acyltransferase (Riekhof et al., 2007). Direct evidence that phospho-
lipid transport involves MAMs came from in vitro assays that
showed that transport of PS from MAMs to mitochondria occurs
more efficiently when MAMs, rather than bulk ER membranes,
are mixed with mitochondria (Gaigg et al., 1995). Although in-
dependent of ATP, transport appears to be regulated by ubiqui-
tination. A genetic screen in yeast for mutants affecting PS
transport into mitochondria led to the identification of the F-box
protein Met30, an E3 ubiquitin ligase (Schumacher et al., 2002).
Met30 ubiquitinates and thereby inactivates the transcription
factor Met4, leading to an increased transport of PS from MAMs
to mitochondria (Schumacher et al., 2002; Voelker, 2009). How-
ever, the downstream targets of Met4 remain elusive.
Phospholipid transport from MAM-derived vesicles to
mitochondria proved to be partially protease sensitive, indicat-
ing that membrane proteins of the ER or mitochondria exposed
to the cytosol mediate the interaction between both organelles
(Vance, 1991; Achleitner et al., 1999). Electron tomography of
intact cells revealed close appositions of ER membranes and
mitochondria with a relatively defined, separating distance
of ~10-25 nm (Csordas et al., 2006). Several proteins were
proposed to be involved in ER—mitochondria membrane tether-
ing in mammalian cells (Szabadkai et al., 2006; de Brito and
Scorrano, 2008), but evidence for a direct role in phospholipid
trafficking has not yet been reported for any of these proteins.
In contrast, direct evidence supporting the role of a macro-
molecular protein bridge for interorganellar phospholipid trans-
port was recently obtained in yeast (Fig. 3). A synthetic biology
approach using an artificial membrane tethering protein led to
the identification of Mdm12 as an essential component for the
interaction of ER and mitochondria (Kornmann et al., 2009).
Mdm12 is associated with the outer membrane of mitochondria
(Berger et al., 1997; Kornmann et al., 2009) and assembles with
Mmml, a glycosylated ER membrane protein, and the mitochon-
drial outer membrane proteins Mdm10 and Mdm34 into a com-
plex (Boldogh et al., 2003; Youngman et al., 2004; Kornmann
et al., 2009). Strikingly, cells lacking individual subunits of this
complex, which was termed ER—mitochondria encounter struc-
ture (ERMES) complex (Kornmann et al., 2009), show reduced
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Figure 3. A multiprotein complex involved in lipid movement and
metabolism between the ER and mitochondria in yeast. A tethering complex
composed of an infegral ER glycoprotein (Mmm1) and three mitochondria-
associated proteins (Mdm34, Mdm10, and Mdm12) promotes and stabilizes
interactions between the two membranes affecting import of PS into mito-
chondria and the export of PE from the mitochondria. Ups1/PRELHike proteins
(UpsT, Ups2, and Ups3) regulate the accumulation of CL and PE within mito-
chondria and might be involved in intramitochondrial lipid movements. IM,
mitochondrial inner membrane; OM, mitochondrial outer membrane.

levels of mitochondrial PE and CL, suggesting that the ERMES
structure is required for the exchange of phospholipids at ER—
mitochondria contact sites. Consistently, the conversion of PS
to PE and PC was slowed down in cells lacking ERMES com-
ponents (Kornmann et al., 2009). It will be of interest to deter-
mine whether the ERMES complex only functions exclusively
as a membrane tether ensuring the close apposition of ER and
mitochondrial membranes or whether components of this com-
plex actively contribute to the transport of phospholipids.

Notably, the role of the ERMES complex for ER-
mitochondrial juxtaposition raises questions about functions
previously associated with subunits of this complex (Boldogh
et al., 2003; Meeusen and Nunnari, 2003; Meisinger et al., 2004).
All components were originally reported to be required for
mitochondrial inheritance and the maintenance of mitochondrial
morphology. It is conceivable that these phenotypes are caused
by disturbances in the levels of mitochondrial phospholipids,
which affect mitochondrial structure and transport. Similarly,
ER-mitochondria contact sites appear to control other mitochon-
drial functions such as mitochondrial DNA (mtDNA) stability.
The localization of the ER-localized ERMES subunit Mmm1
overlaps with that of mtDNA nucleoids (Hobbs et al., 2001),
and cells lacking the ERMES complex lose mtDNA (Meeusen
and Nunnari, 2003). However, it should be noted that subunits
of the ERMES complex can be part of other protein complexes
and exert independent functions. Indeed, Mdm10 has also been
found as a constituent of the sorting and assembly machinery
(SAM) complex that mediates the insertion of (3-barrel proteins
in the mitochondrial outer membrane (Meisinger et al., 2004).
The presence of Mdm10 in both ERMES and SAM complexes
may provide the means to balance the accumulation of phospho-
lipids and protein biogenesis in mitochondria.

lipid trafficking. Relatively
little is known about how newly imported phospholipids or lipid
precursors are transported within mitochondria. As phospho-
lipids are either imported from the ER or synthesized at the outer
or inner surface of the inner membrane, mechanisms must exist
allowing trans-bilayer movements from one leaflet to the other.
These movements, which are energetically disfavored because
of the presence of polar head groups, are generally facilitated by
dedicated enzymes commonly referred to as flippases. How-
ever, the only known mitochondrial flippase is PLS3 (phospho-
lipid scramblase 3; Liu et al., 2003), which catalyzes trans-bilayer
flipping of CL in vitro (Liu et al., 2008). PLS3 modulates CL
levels exposed at the mitochondrial surface and may play an im-
portant role during the apoptotic response (Fig. 4 C; Liu et al.,
2008; Ndebele et al., 2008; see CL and apoptosis).

Phospholipid transport between the outer and inner mito-
chondrial membranes has been proposed to occur, similar to
protein transport, at contact sites between mitochondrial inner
and outer membranes (Ardail et al., 1991; Simbeni et al., 1991).
Experiments with CHO cell mutants have identified a variant
with a lesion in PS transport between the outer and inner mito-
chondrial membranes, but the gene responsible for this defect
has yet to be identified (Emoto et al., 1999). Two proteins, mito-
chondrial creatine kinase (MtCK) and nucleotide diphosphate
kinase (NDPK-D) facilitate CL transport between liposomes
with a lipid composition resembling those of contact sites
(Epand et al., 2007). However, the in vivo relevance of this path-
way remains to be established.

The recent identification of conserved proteins in the inter-
membrane space, which regulate the accumulation of CL and
PE in mitochondria, may provide new clues about the mecha-
nism of phospholipid transport across this compartment. Upsl
was originally identified to affect the processing of the dynamin-
like GTPase Mgml in yeast (Sesaki et al., 2006) and later shown
to regulate CL level in mitochondria (Osman et al., 2009a;
Tamura et al., 2009). Upsl belongs to the conserved Upsl1/
PRELI protein family, which is characterized by the presence of
a conserved MSF” domain (originally identified in yeast Msf”)
of unknown function (Dee and Moffat, 2005). A homologue of
Upsl, termed Ups2 or Gepl, regulates the accumulation of PE
within mitochondria (Osman et al., 2009a; Tamura et al., 2009).
Although PE levels are decreased in the absence of Ups2, over-
expression of Ups2 reduces CL, pointing to a coordinated regu-
lation of PE and CL by these conserved regulatory proteins.
Consistently, deletion of UPS2 restores normal CL levels in
Upsl-deficient yeast cells. Two recent studies in yeast identified
Mdm35 as a common binding partner of both Upsl and Ups2
in the intermembrane space, providing a molecular explanation
for the coordinated regulation of CL and PE within mitochon-
dria (Potting et al., 2010; Tamura et al., 2010). Mdm35 binding
ensures mitochondrial import of Upsl and Ups2 and protects
both proteins against proteolysis. Notably, both Ups1 and Ups2
are intrinsically unstable proteins and are degraded by the i-AAA
protease Ymel and Atp23 in wild-type cells even under normal
growth conditions (Potting et al., 2010). It is therefore conceiv-
able that the mitochondrial quality control system affects the
accumulation of CL and PE within mitochondria by regulating

Intramitochondrial
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Figure 4. The role of CL in mitochondrial processes. (A) CL (depicted in
red) affects mitochondrial energy production and is required for dimer-
ization and optimal activity of the AAC and the formation of respiratory
chain supercomplexes. (B) Assembly and activity of protein translocases
in the outer (TOM) and inner membrane (TIM22 and TIM23 complexes),
the SAM complex in the outer membrane, and the assembly of TIM23
complex with the mitochondrial import motor (PAM complex) is supported
by CL. (C) Various roles of CL during apoptosis. (1) Cytochrome ¢ (Cyt c)
binds to CL in the inner membrane. (2) Release of cytochrome ¢ upon
oxidation of CL. (3) Pro—caspase-8 (pro-8) binds to the surface of mito-
chondria, oligomerizes, and undergoes autocatalytic processing in a
Cl-dependent manner. (4 and 5) Bid cleavage fo truncated Bid (t-Bid)
by pro-caspase-8 (4) and activation and oligomerization of Bax/Bak is
stimulated by CL (5). (6) PLS3 allows export of CL from the inner to the
outer mitochondrial membrane. (D) CL affects fusion of mitochondrial
outer and inner membranes. The phospholipase MitoPLD converts in trans
Cl into PA (depicted in red), triggering the fusion of outer membranes.
CL in the inner membrane stimulates oligomerization and GTP hydrolysis
of short Mgm1/OPA1 isoforms. IM, mitochondrial inner membrane; OM,
mitochondrial outer membrane.
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the stability of Upsl-like proteins. The strong conservation of
all components of the regulatory circuit and the altered PE levels
in i-AAA protease-deficient mitochondria (Nebauer et al., 2007)
point in this direction.

However, the molecular function of Ups1 and Ups2 remains
speculative. Because reduced mitochondrial PE levels in the ab-
sence of Ups2 were caused by decreased stability rather than al-
tered synthesis of PE (Osman et al., 2009a), Ups2 might regulate
the export of PE from mitochondria. It is therefore an intriguing
possibility that lipid trafficking between inner and outer mitochon-
drial membrane controlled by Ups1/PRELI-like proteins deter-
mines the phospholipid composition of mitochondrial membranes.

The role of CL in mitochondria

Although studies examining functional roles of phospholipids
within mitochondria are generally hampered by their broad dis-
tribution among different cellular membranes, the predominant
localization of CL in mitochondria has enabled the identifi-
cation of an increasing number of mitochondrial processes
dependent on this lipid, and the assignment of pathologies
associated with alterations in the CL metabolism to mitochon-
drial dysfunction (Chicco and Sparagna, 2007; Joshi et al., 2009).
The unique, dimerically cross-linked phospholipid structure of
CL affects the stability and activity of various membrane pro-
tein complexes and metabolite carriers (Fig. 4; Houtkooper and
Vaz, 2008). CL molecules are present in crystal structures of the
ATP/ADP carrier (AAC) and the respiratory complexes III and
IV and have been proposed to fulfill important structural roles
(Lange et al., 2001; Pebay-Peyroula et al., 2003; Shinzawa-Itoh
et al., 2007). Indeed, respiratory supercomplexes consisting of
complexes III and IV are destabilized in mitochondria lacking
CL (Pfeiffer et al., 2003; Claypool et al., 2008b). Similarly, dimers
of AAC and other AAC-containing complexes dissociate in
CL-deficient mitochondria (Claypool et al., 2008b). These ex-
amples illustrate the importance of CL for bioenergetic func-
tions; but in addition, recent studies are now revealing that CL
has a much broader impact on mitochondrial physiology.

CL and protein import into mitochondria. The
vast majority of mitochondrial proteins are nuclear encoded and
imported into the organelle via heterooligomeric protein translo-
cases residing in the mitochondrial inner and outer membranes
(Schmidt et al., 2010). Several independent studies revealed that
the assembly and function of these TIM (translocase of the inner
mitochondrial membrane) and TOM (translocase of the outer mi-
tochondrial membrane) complexes depend on CL (Fig. 4 B).

Tam41 (translocator assembly and maintenance protein 41)
was identified as a novel mitochondrial matrix protein, which is
required for the integrity of the TIM23 complex in the inner
membrane and its functional interaction with the mitochondrial
import motor PAM (presequence translocase-associated motor;
Gallas et al., 2006; Tamura et al., 2006). A later study attributed
these deficiencies to the loss of CL in the absence of Tam41
(Kutik et al., 2008). Similarly, the interaction of TIM and PAM
complexes is affected in mitochondria that lack the CL synthase
Crd1 or Ups1 (Kutik et al., 2008; Tamura et al., 2009). Interest-
ingly, an altered electrophoretic mobility of another protein
translocase of the inner membrane, the TIM22 complex mediating
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the membrane insertion of metabolite carrier proteins, was
observed when Acrdl and Atam4 1 mitochondria were analyzed,
which may point to an altered assembly of the translocase or to
a specific association of CL molecules with this complex (Kutik
et al., 2008). Regardless, it appears from these studies that the
reduced protein import into CL-deficient mitochondria is not
simply the consequence of altered bioenergetics and a reduced
membrane potential across the inner membrane, but rather re-
flects the specific requirement of CL for the functional integrity
of the mitochondrial import machinery.

This view is supported by the recent observation that CL
levels also regulate protein translocases in the outer membrane
(Gebert et al., 2009), reconciling earlier observations that pro-
tein import into mitochondria can be inhibited by drugs binding
to acidic phospholipids (Eilers et al., 1989) and is impaired in
CL-deficient yeast cells (Jiang et al., 2000). The assembly of the
import receptor Tom20 with the TOM complex as well as the
organization of the SAM complex that mediates the assembly
of B-barrel proteins in the outer membrane are altered in
CL-deficient mitochondria (Fig. 4 B; Gebert et al., 2009). As a
consequence, the biogenesis of [3-barrel proteins in the outer
membrane as well as that of proteins located in other mito-
chondrial subcompartments is impaired.

CL and apoptosis. Further support for a functional
role of CL in the mitochondrial outer membrane came from
studies on the role of mitochondria during apoptosis, which re-
vealed that CL regulates multiple steps of the apoptotic program
(Fig. 4 C). Apoptosis can be induced by activation of the death
receptor (Fas receptor) in the plasma membrane. Ligand-bound
Fas receptor oligomerizes and recruits pro—caspase-8, which in
response undergoes an autocatalytic processing step resulting in
its activation. However, activation of caspase-8 at the plasma
membrane was found to be insufficient for triggering apoptosis
in some cells, and thus completion of the apoptotic program re-
quired a mitochondria-dependent feedback loop (Scaffidi et al.,
1998). A recent study revealed that CL in the mitochondrial
outer membrane provides an anchor and activating platform for
caspase-8, which is processed and translocates to mitochondria
upon Fas receptor activation (Gonzalvez et al., 2008).

Caspase-8—mediated cleavage of the BH3-only BID pro-
tein leads to its translocation to mitochondria. Truncated BID
triggers activation of Bax and Bak, members of the Bcl2-family
which induce outer membrane permeabilization and release of
cytochrome ¢ (Lovell et al., 2008). CL together with the major
facilitator protein MTCH2/MIMP in the outer membrane regu-
lates truncated BID recruitment to contact sites between the inner
and outer membranes (Lutter et al., 2000; Lucken-Ardjomande
et al., 2008; Sani et al., 2009; Zaltsman et al., 2010). Similarly,
membrane insertion of Bax and its oligomerization were found
to proceed more efficiently in the presence of CL (Lutter et al.,
2000; Lucken-Ardjomande et al., 2008; Sani et al., 2009).

Finally, CL affects the release of cytochrome ¢ from mito-
chondria during apoptosis. It binds directly to cytochrome c,
retaining it within the cristae (Choi et al., 2007; Sinibaldi et al.,
2008). The interaction between cytochrome ¢ and CL is weak-
ened upon peroxidation of the unsaturated acyl chains of CL
(Nomura et al., 2000). The release of cytochrome ¢ during

apoptosis has been proposed to be further facilitated by remod-
eling of the mitochondrial cristae that facilitates the redistribu-
tion of cytochrome ¢ molecules from the cristae lumen (Scorrano
et al., 2002). Cristae morphology is controlled by the dynamin-
like GTPase OPA1, a central component of the mitochondrial
fusion machinery, whose activity is affected by CL (see next
section). Thus, CL plays multiple roles during apoptosis in both
mitochondrial membranes and may serve as a factor that coor-
dinates the sequence of apoptotic events in mitochondria.

CL and mitochondrial dynamics. Early studies
with model membranes demonstrated that the formation of
hexagonal structures induce membrane fusion and suggested a
crucial role of non-bilayer lipids such as CL or PE for membrane
fusion in vivo (Cullis and de Kruijff, 1979). Indeed, reductions
of mitochondrial PE and CL levels were reported to result in
abnormal mitochondrial morphology (Kawasaki et al., 1999;
Steenbergen et al., 2005; Choi et al., 2006; Claypool et al., 2008a)
and high frequency generation of respiratory deficient mito-
chondria (Birner et al., 2003; Zhong et al., 2004). Membrane
fusion is mediated by evolutionarily conserved dynamin-like
GTPases present in both mitochondrial membranes (Hoppins
et al., 2007). In the inner membrane, OPA1 (or Mgml in yeast)
is proteolytically processed, resulting in the balanced accumu-
lation of long and short protein isoforms within mitochondria,
both of which are required for mitochondrial fusion and cristae
morphogenesis (Herlan et al., 2003; Ishihara et al., 2003; Song
et al., 2007). Processing of yeast Mgm1 was affected in the ab-
sence of Upsl or Ups2, which regulate the accumulation of CL
and PE within mitochondria, respectively (Sesaki et al., 2006;
Osman et al., 2009a). Impaired processing of Mgm1 could ex-
plain the aberrant morphology of mitochondria with an altered
membrane lipid composition, but Mgm1 cleavage has so far not
been analyzed in other CL-deficient cells, and other scenarios
are conceivable. The short forms of both Mgm1 and OPA1 bind
to negatively charged phospholipids, in particular CL, that stim-
ulate its oligomerization and its GTPase activity (Fig. 4 D; DeVay
et al., 2009; Meglei and McQuibban, 2009; Rujiviphat et al.,
2009; Ban et al., 2010). It is possible that interaction with CL re-
stricts the function of Mgm1/OPAL to specific membrane domains,
like contact sites between both mitochondrial membranes, which
are known to be enriched in CL (Ardail et al., 1990).

These contact sites have been proposed to be the site of
action of a phospholipase D, termed MitoPLD, which converts CL
in the outer membrane to PA (Fig. 4 D; Choi et al., 2006). Mito-
PLD is required for mitochondrial fusion in vitro, and modula-
tion of its expression in vivo causes morphological abnormalities
(Choi et al., 2006). The formation of PA may allow the recruit-
ment of additional fusion components or render membranes
fusogenic. Such a role of PA would be reminiscent of SNARE-
mediated fusion (Huang et al., 2005) and could point to a crucial
role of local membrane lipid alterations in seemingly unrelated
membrane fusion processes.

Perspectives

Recent discoveries have brought about significant progress in
our understanding of the metabolism of mitochondrial phospho-
lipids. This development was accompanied by a drastically altered
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view of the role that specific phospholipids play in various mito-
chondrial processes and the role of mitochondria in broader as-
pects of the biogenesis of nonmitochondrial membranes. Defined
molecular functions of specific phospholipids, like CL, have
been recognized, and the accumulation of these lipids in specific
membrane domains is emerging as an important property of mito-
chondrial membranes. The recent identification of novel genes in
yeast affecting the phospholipid composition of mitochondria,
many of them conserved in mammals, now promises to provide
insight into some of the mysteries of mitochondrial phospholipid
metabolism and trafficking. Mitochondria may prove once again
to be an excellent model to unravel basic cell biological pro-
cesses that will be relevant to other membrane systems. Undoubt-
edly, exciting discoveries are just around the corner.
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