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Introduction
The mechanisms ensuring complete duplication of the eukary-
otic genome exactly once per cell cycle are highly conserved 
and coordinated by two mutually exclusive alternating peri-
ods of the cell cycle (Masai et al., 2010). First, during early 
G1 phase, Cdk activity is diminished because of the continu-
ous destruction of cyclins by the anaphase-promoting complex 
(APC). Under these conditions, replication cannot initiate, but 
the origin recognition complex (ORC), along with Cdc6 and 
Cdt1, can load an inactive form of the Mcm2-7 hexameric heli
case onto chromatin to form prereplication complexes (preRCs). 
Second, during late G1 phase, CDK and Dbf4-dependent Cdc7 
kinase (DDK) activities rise and cooperate with a suite of 
other proteins to both prevent any further preRC assembly and  

initiate replication. Initiation of replication continues throughout 
S phase by converting the inactive “loaded” minichromosome 
maintenance protein complexes (Mcms) into active helicases 
(Wei et al., 2010) triggered by DDK (Bousset and Diffley, 1998; 
Donaldson et al., 1998; Pasero et al., 1999; Sheu and Stillman, 
2010). Hence, unlike prokaryotic helicases that are activated 
soon after loading, eukaryotes temporally separate the loading 
and activation of the helicase. In addition to preventing rerepli-
cation, this temporal separation may allow eukaryotes to ensure 
that there are a sufficient number of Mcm complexes loaded to 
replicate large chromosomes in a timely fashion (Remus and 
Diffley, 2009). In fact, checkpoint mechanisms may prevent the 
entry into S phase until sufficient numbers of Mcms are loaded 
(Ge and Blow, 2009; Liu et al., 2009; Nevis et al., 2009).

The separation in time between the loaded and active 
forms of Mcm can be quite prolonged. In mammalian cells, for 

The heterohexameric minichromosome maintenance 
protein complex (Mcm2-7) functions as the eukary
otic helicase during DNA replication. Mcm2-7 

loads onto chromatin during early G1 phase but is not 
converted into an active helicase until much later during 
S phase. Hence, inactive Mcm complexes are presumed 
to remain stably bound from early G1 through the com-
pletion of S phase. Here, we investigated Mcm protein 
dynamics in live mammalian cells. We demonstrate that 
Mcm proteins are irreversibly loaded onto chromatin cu-
mulatively throughout G1 phase, showing no detectable 

exchange with a gradually diminishing soluble pool.  
Eviction of Mcm requires replication; during replication 
arrest, Mcm proteins remained bound indefinitely. More-
over, the density of immobile Mcms is reduced together 
with chromatin decondensation within sites of active rep-
lication, which provides an explanation for the lack of co-
localization of Mcm with replication fork proteins. These 
results provide in vivo evidence for an exceptionally stable 
lockdown mechanism to retain all loaded Mcm proteins 
on chromatin throughout prolonged cell cycles.

Highly stable loading of Mcm proteins onto 
chromatin in living cells requires replication  
to unload
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associated form and become released during initiation, leaving 
behind a small number of helicase-competent Mcms that are diffi-
cult to detect by immunofluorescence (Dimitrova et al., 1999).

To address these questions, we performed quantitative live 
cell imaging of fluorescent Mcm proteins in CHO cells. We de-
tected only two populations of Mcm molecules in the cell: an 
unbound population consistent with freely diffusing molecules 
and a completely immobile or bound population. Remarkably, 
we could not detect any exchange between these two pools of 
molecules. From G2 phase through mitosis, all Mcm molecules 
were in the unbound form. During G1 phase, the bound fraction 
of Mcm proteins increased gradually until the majority of Mcm 
proteins were bound just before S phase. After DNA synthesis 
began, Mcm proteins were gradually converted to an unbound 
form at a rate accounted for by the progression of S phase.  
Importantly, when DNA synthesis was arrested, the bound 
Mcm fraction remained immobile for >24 h. Our results provide  
in vivo evidence for a “lockdown, kickoff” mechanism in which 
Mcm2-7 complexes loaded during G1 phase remain irreversibly 
bound throughout the cell cycle until they are released by the 
act of replication. In addition, our results suggest that the lack of 
colocalization of Mcms with replication fork proteins is caused 
by the decondensation of chromatin and consequent dilution of 
Mcm proteins at sites of DNA synthesis.

Results
Establishment of a system for live cell 
cycle analysis of Mcm dynamics
We constructed C-terminal fusions of all six mouse Mcm sub-
units to monomeric Emerald (mEm), one of the brightest fluor
escing variants of GFP (Fig. S1; Rothbauer et al., 2008). All 
fusions were also epitope-tagged at the C terminus of mEm 
with an optimized peptide substrate for the Escherichia coli  
biotin ligase (BirA) enzyme (Fig. 1 A) to facilitate efficient avi-
din affinity purification (Beckett et al., 1999; de Boer et al., 
2003). Each Mcm-mEm was first transiently transfected into 
CHO cells to verify fluorescence and nuclear localization.  
Consistent with prior work (Kimura et al., 1996), Mcm2 and Mcm3 
localized to the nucleus, whereas Mcm4-7 required cotransfec-
tion with either Mcm2 or Mcm3 to enter the nucleus (unpub-
lished data). To construct stable cell lines that express Mcm- 
mEm at physiological levels, Mcm-mEms were expressed under 
the control of a tetracycline (tet)/doxycycline (dox)-regulatable 
promoter. This allows cell lines to be established under re-
pressed conditions, followed by controlled induction before ex-
perimentation (Izumi and Gilbert, 1999; McNairn et al., 2005).

Each Mcm fusion construct was transfected into a CHO 
cell line stably expressing both the tet transactivator tTA and the 
BirA enzyme. Individual clonal cell lines were selected and ex-
panded in the presence of dox, and aliquots of each cell line 
were passaged in the absence of dox to evaluate Mcm-mEm ex-
pression. Only stable cell lines in which all cells in the popula-
tion expressed homogeneous, inducible levels of Mcm-mEm 
were selected for further characterization (Fig. 1 B). Mcm2- 
and Mcm3-mEm were exclusively nuclear independent of dox 
concentration, whereas Mcm4-7–mEm all had a cytoplasmic 

those Mcm complexes destined to be activated near the end of  
a normal cell cycle, as well as any Mcms whose activation is  
delayed by checkpoint mechanisms, the separation can be days. 
With the exception of core histones (Manser et al., 1980; Kimura 
and Cook, 2001), and possibly cohesins (G2 phase residence 
time >6 h; Gerlich et al., 2006), no chromatin proteins have 
been demonstrated to remain associated this long, and even his-
tones can be evicted from specific regions by remodeling or 
transcription (Deal et al., 2010). All other chromatin proteins 
examined have residence times of seconds to minutes (Phair  
et al., 2004; Mueller et al., 2010), including the preRC proteins 
ORC (McNairn et al., 2005) and Cdt1 (Xouri et al., 2007). The 
longest reported residence time for any replication protein is 
10–20 min for the processivity factor proliferating cell nuclear 
antigen (PCNA; Essers et al., 2005).

Recently, it was shown that purified preRC proteins  
assemble Mcms as a closed double-hexameric ring around  
double-stranded DNA (Evrin et al., 2009; Remus et al., 2009), 
which predicts a highly stable topologically linked Mcm–DNA 
interaction. However, the existence of a double hexamer has 
yet to be demonstrated in living cells. In addition, two states of 
chromatin-associated Mcm have been distinguished biochemi-
cally by high-salt extraction (Edwards et al., 2002; Evrin et al., 
2009; Francis et al., 2009; Remus et al., 2009; Rowles et al., 
1999; Tsakraklides and Bell, 2010). Both states require ORC, 
Cdc6, and Cdt1 to assemble, but the high-salt resistant state 
requires the ATP-dependent dissociation of these other preRC 
components, and is the preferred substrate for DDK. These 
studies have led to a model whereby Mcm loading is a two-step 
process beginning with ATP-bound ORC and Cdc6 recruiting 
Mcm2-7-Cdt1 heptamers to form the associated complex, fol-
lowed by ATP hydrolysis–driven loading of an Mcm2-7 double 
hexamer topologically linked to dsDNA and release of ORC, 
Cdc6, and Cdt1.

These in vitro findings raise several intriguing questions 
regarding the in vivo behavior of Mcm proteins. First, can one 
detect an unusually stable Mcm–chromatin interaction that can 
persist for an entire cell cycle? Second, can one distinguish an 
associated versus loaded complex based on in vivo residence 
times, and how long after association does Mcm loading occur? 
To date, experiments extracting Mcm proteins from cellular 
chromatin have not detected changes in Mcm binding during 
G1 phase, but important changes in the in vivo on/off rates of 
chromatin proteins are frequently not reflected in chromatin  
extraction assays (Mueller et al., 2010). Third, what fraction of 
associated Mcm complexes are loaded and have helicase poten-
tial? For example, there is evidence that some Mcm subunits 
perform nonreplicational roles (Ferguson and Maller, 2008) 
such as transcription (Zhang et al., 1998; Yankulov et al., 1999; 
DaFonseca et al., 2001; Snyder et al., 2005), and when perform-
ing such roles Mcm molecules may interact differently with 
chromatin. Moreover, Mcm2-7 proteins do not colocalize with 
sites of DNA synthesis or replication proteins that presumably 
share the replication fork with the active helicase (Todorov  
et al., 1995; Krude et al., 1996; Romanowski et al., 1996; 
Dimitrova et al., 1999). One explanation for this longstanding 
paradox is that the majority of Mcms exist in a more loosely  
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component in the absence of dox but could be rendered exclu-
sively nuclear by titrating the concentration of dox (unpublished 
data). These results, together with those from transient transfec-
tion (described in the previous paragraph), are consistent with 
chaperoning of Mcm4-7 proteins into the nucleus by endoge-
nous Mcm2 or -3 (Kimura et al., 1996), the quantities of which 
become saturated at high Mcm4-7–mEm expression.

Next, we compared the intranuclear distribution of chromatin- 
bound and soluble Mcm-mEms to endogenous Mcms during the 
cell cycle. After extraction of soluble protein, Mcm-mEms were 

found to colocalize with endogenous Mcm2 early in the cell  
cycle (Fig. S2 A) and to clear off chromatin together in the ap-
propriate cell cycle–regulated fashion during the progression of 
S phase (Fig. 1 C and Figs. S2 A). To determine the relative levels 
of expression of endogenous and exogenous Mcm proteins at 
various levels of dox, we performed Western blots of whole cell 
extracts from Mcm-mEm–expressing cells grown in the pres-
ence of varying levels of dox. Surprisingly, Mcm3-, Mcm4-, 
and Mcm7-mEm, but not Mcm6-mEm, displayed a marked  
reduction of the endogenous Mcm subunit in the absence of 

Figure 1.  Characterization of cell lines.  
(A) Structure of Mcm-fluorescent protein (Mcm- 
mEm) fusion proteins. Each Mcm-mEm con
tains a full-length Mcm2-7 cDNA (Kimura  
et al., 1996), followed by a flexible linker, the 
fluorescent protein, a second flexible linker, 
and an optimized peptide substrate (BLT) 
for the E. coli biotin ligase enzyme (BirA).  
(B) Homogenous expression of Mcm4-mEm. 
After transfection of the expression cassette 
shown in A, cells were selected in the pres-
ence of dox to establish cell lines in the ab-
sence of Mcm-mEm expression. Dox was then 
removed from aliquots of each cell line for 48 h  
to induce tagged protein. Shown is Mcm4-
mEm fluorescence merged with a phase 
contrast image. Bar, 10 µm. (C) Cell cycle 
regulation of soluble and insoluble fractions 
of endogenous and tagged Mcm4-mEm. Cells 
were synchronized in mitosis by shake-off 
and detergent-extracted at the indicated times 
after replating. Aliquots of cells were plated 
into aphidicolin for 16 h to arrest cells at the  
G1/S phase border (G1/S Aph), and a por-
tion of those cells were released into S phase 
for 6 h (G1/S+6). The soluble and insoluble 
fractions (Fig. S4 A) were subjected to immuno
blotting with the indicated antibodies. Both 
tagged and endogenous Mcm4 are com-
pletely soluble and exhibit a molecular weight 
shift during mitosis, as expected (Pereverzeva 
et al., 2000; Okuno et al., 2001). During G1, 
both tagged and endogenous Mcm4 present 
as a doublet band when sufficient care is  
taken to inhibit phosphatases, as expected  
(Komamura-Kohno et al., 2006). Insoluble PCNA 
tracks S phase; note that aphidicolin arrest 
results in increased detergent extractability 
of PCNA. -Tubulin and LaminB are used as 
loading controls for the soluble and insoluble 
fractions, respectively. Both tagged and en-
dogenous Mcm4 are reduced in the insoluble 
fraction 6 h after release from aphidicolin, as 
expected (Okuno et al., 2001). (D) Autoge-
nous regulation of Mcm4-mEm. Mcm4-mEm– 
expressing cells were grown in the indicated 
concentrations of dox, and whole cell extracts 
were subjected to immunoblotting with an 
anti-Mcm4 antibody. Anti–-tubulin was used 
as a loading control. (E) Coprecipitation of 

Mcm4-mEm with endogenous Mcm subunits in chromatin from late G1 phase cells. Cells either expressing (+) or not expressing () Mcm4-mEm were syn-
chronized in mitosis and collected 8 h after release into G1 phase, and Mcm4-mEm (indicated with a black arrow) was precipitated from the solubilized 
chromatin fragments (Chromatin-Bound; Fig. S4 A). Whole cell extracts (WCE) from the same cells are also shown. Mcm4-mEm–expressing cells were 
grown in 0.5 ng/ml dox for 24 h before harvesting to eliminate all cytoplasmic Mcm4-mEm expression. Note that endogenous Mcm4 did not pull down 
with the tagged Mcm4, which indicates that double hexamers containing both tagged and untagged subunits are rare under these conditions, but this does 
not imply that they do not exist. Their abundance may depend on the ratio of tagged and untagged proteins bound to chromatin (e.g., see Fig. S4 C).  
(F) RFP-PCNA displays cell cycle–dependent punctate patterns in Mcm-mEm cell lines. Shown are cells in very early (initial appearance of PCNA foci), 
early, mid, or late S phase displaying the characteristic spatial patterns of PCNA (red) at sites of ongoing DNA synthesis. Note that Mcm4-mEm (green) is 
distributed heterogeneously in very early S phase but more homogeneously as S phase proceeds. PCNA is distributed uniformly in both G1 and G2 phase 
(Fig. 2, B and C). Bars, 10 µm.
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G1 phase was defined as the time at which Mcm-mEm entered 
the nucleus (between 5 and 10 min in Fig. 2 A and at 2 s in 
Video 3). Cells were then bleached at times between 1 and 5 h 
after the onset of G1 phase (S phase began 7–12 h after mitosis). 
Cells in late G1 were identified by their homogeneous PCNA 
and heterogeneous Mcm fluorescence, whereas cells in early 
G1 or G2 showed homogenous fluorescence for both proteins. 
The time from the photobleaching until the first appearance of 
PCNA foci (30–60 min in Fig. 2 B and at 26 min in Video 4) 
further verified their precise position in late G1. Cells in differ-
ent stages of S phase were identified by the spatial pattern of 
PCNA foci (Fig. 1 F). Finally, cells in G2 phase were identified 
by marking cells with late S phase PCNA spatial patterns and 
photobleaching those cells after the completion of S phase, as 
indicated by the absence of PCNA foci (135 min after cell iden-
tification in Fig. 2 C).

Using these protocols, we performed FRAP experiments on 
cells expressing Mcm4-mEm at various stages of the cell cycle. 
Representative FRAP recovery curves are shown in Fig. 3. Recover-
ies immediately after entry of Mcm in the nucleus were rapid and 
complete, lasting <1 min, whereas FRAP recoveries in G1 revealed 
an immobile fraction (IF) that lasted many hours. In early G1, the 
IF was 34%, and steadily increased during progression through 
G1. After the onset of S phase, as determined by the appearance 
of PCNA foci, no further loading of Mcm4 was observed. Instead, 
cells exhibited a slow and gradual FRAP recovery that coincided 
very closely with the initial appearance of PCNA foci (Fig. 3, gray 
bars). In mid to late S-phase cells, the IF decreased from <10% 
to barely detectable in late S and G2 phase (Fig. 3 and Video 5). 
Together, these results suggest that Mcm4 is loaded gradually 
throughout G1 phase and unloaded throughout S phase, which is 
consistent with prior studies with fixed cells (Todorov et al., 1995; 
Dimitrova et al., 1999).

Loaded Mcm4 does not exchange and 
requires replication to unload
Surprisingly, the results in Fig. 3 did not conform to any of our 
existing models for steady-state chromatin protein exchange 
(Mueller et al., 2010; Stasevich et al., 2010). Instead, they were 
most closely fit to a model in which bound Mcm4 does not ex-
change at all with the soluble pool. We reasoned that the FRAP 
recovery observed after S phase begins could arise exclusively 
from an increased soluble pool of unbleached molecules as they 
are evicted during replication. To test this hypothesis, we took 
several approaches. In the first approach, a series of short FRAP 
experiments (<1 min each) were conducted to measure the IF at 
various time points after the entry into S phase. As shown in 
Fig. 4 A, the IF of Mcm4 was found to decay as S phase pro-
gressed, and this decay could be fit with a single linear or weak 
exponential function that yielded a decay time of 13.5 h, ap-
proximately the length of S phase. Next, we identified 10 cells 
in which long FRAP experiments (>150 min each) were initi-
ated in late G1, 100 min before the beginning of S phase.  
If Mcm4 is not exchanging, FRAP recoveries should equal the 
IF decay time and reflect the unloading of unbleached mole-
cules that subsequently diffuse freely throughout the nucleus. 
However, if Mcm4 is exchanging, then FRAP recoveries should 

dox (Fig. 1 D and Fig. S3, A and B). Thus, cells appear to strin-
gently regulate the levels of at least some Mcm subunits such 
that when the tagged protein is induced, the amount of endoge-
nous protein is reduced. This demonstrates that cells can sur-
vive with the tagged protein as their primary Mcm subunit, 
which provides compelling evidence for their functionality 
without the need to perform knockdown.

To confirm that Mcm-mEm fusion proteins interact with 
the other endogenous subunits of the Mcm2-7 complex, avidin 
coprecipitation experiments were performed with whole cell 
extracts of Mcm-mEm–expressing cells. Precipitated proteins 
were subjected to Western blotting with antibodies to endoge-
nous Mcm2-7 proteins (Fig. S3, C–E). All Mcm-mEm except 
Mcm5-mEm were found to form complexes with endogenous 
subunits. For reasons we do not understand, Mcm5-mEm could 
pull down Mcm2 and -3 but not -4 or -7. In addition, Mcm5-
mEm localized to centrosomes, as shown by others for transient 
transfections of epitope-tagged Mcm5 (Ferguson and Maller, 
2008). Hence, we did not pursue further studies of Mcm5-mEm. 
To verify that the Mcm-mEm–containing complexes could load 
onto chromatin, detergent-extracted nuclei were digested with 
nuclease to release chromatin fragments (Méndez and Stillman, 
2000), which were then precipitated with avidin beads to pull 
down Mcm-mEm. Results confirmed that Mcm-mEm formed 
complexes with endogenous subunits bound to chromatin during 
G1 phase (Fig. 1 E and Fig. S4).

To relate Mcm dynamics to the progression of cells 
through S phase, Mcm-mEm–expressing cell lines were further 
stably transfected with a red fluorescent protein (RFP)-tagged 
PCNA (Leonhardt et al., 2000). RFP-PCNA was homogenously 
distributed throughout the nucleus in non–S phase cells (Fig. 2,  
B and C), but during S phase, they displayed punctate spatial 
patterns of replication foci characteristic of very early, early, 
middle, or late S phase (Fig. 1 F), as previously characterized for 
endogenous PCNA by immunohistochemistry (O’Keefe et al., 
1992; Dimitrova et al., 1999). RFP-PCNA colocalized with  
endogenous PCNA replication foci (Fig. S2 B) and did not  
interfere with the progression of cells through the cell cycle, as 
measured by flow cytometry (Fig. S2 D) or by long-term imag-
ing of cells through the cell cycle (Videos 1 and 2). In contrast 
to PCNA, Mcm-mEm proteins were homogenously distributed 
throughout the nucleus at all cell cycle time points except during 
late G1 and very early S phase, when they displayed a hetero
geneous pattern (Fig. 1 F) consistent with an accumulation of 
Mcm-mEm proteins on chromatin.

Cell cycle–regulated dynamics of Mcm4
We focused our initial studies on the Mcm4 subunit because of 
its presumed importance in activation by Cdc7 (Masai et al., 
2006) and its interaction with the GINS complex (Ilves et al., 
2010). To identify the position of individual cells in the cell  
cycle without the use of drug synchronization regimes that 
could alter preRC protein dynamics, we devised the protocols 
shown in Fig. 2 (and Videos 3 and 4). Cells in early G1 phase 
(Fig. 2 A) were identified by first marking cells undergoing 
mitosis and then returning to those cells at various time points 
thereafter. For the purposes of these experiments, the onset of 
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be considerably faster than the IF decay time because freely  
diffusing, unbleached Mcm4 would replace bound, bleached 
Mcm4 before active unloading. As shown in Fig. 4 B, when the 
long FRAP experiments in late G1 were averaged together, a 
clear biphasic recovery was apparent. The fast initial recovery 
lasted just a few seconds, which is consistent with the diffusion 
of the mobile, unbleached fraction of Mcm4 into the bleach 
strip. This fast recovery was then followed by an extended pla-
teau that lasted until the onset of S phase (appearance of PCNA 
foci; Fig. 4 B, gray bar aligned to time 0), after which a slow, 
gradual recovery began. This slow, “secondary” recovery was 

well fit with a line or single weak exponential function that 
yielded a binding time of 13.6 h, nearly equivalent to the  
decay time of the IF. This agreement between the rate of decay 
of the bound fraction for cells at different times during S phase 
and the rate of fluorescence recovery for cells monitored during 
their progression through S phase, both of which match the 
length of S phase, strongly suggests that Mcm4 FRAP recover-
ies involve little to no exchange, instead reflecting the unload-
ing of Mcm4 during S phase.

To directly test whether unloading of Mcm4 requires rep-
lication, cells were treated with either roscovitine, an inhibitor 

Figure 2.  Protocols for cell cycle–specific 
FRAP in the absence of drug synchrony.  
(A) A cell expressing Mcm4-mEm was imaged 
emerging from mitosis (top). FRAP experiments 
were conducted on both sister cells 5 h later 
(bottom). (B) A late G1 cell expressing Mcm4-
mEm was imaged before a FRAP bleach 
(Pre-bleach), and at different time points after 
the bleach to measure recovery. PCNA foci 
appear between 30 and 60 min, which indi-
cates entry into S phase. (C) A late S phase 
cell expressing Mcm4-mEm was imaged until 
all PCNA foci had cleared, followed by a 
FRAP experiment in the subsequent G2 phase. 
PCNA foci disappear between 70 and 135 min,  
which indicated entry into G2 phase. Note 
that for live cell images, exposure time is mini-
mized to 1/10th of a second, so resolution is 
compromised. Bars, 10 µm.
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soluble Mcm4-mEm fluorescence within cells near the middle of 
S phase, a population of Mcm4-mEm proteins was revealed that 
was still bound to later replicating chromatin at the nuclear periph-
ery and around the nucleoli. These post-FLIP cells were then sub-
jected to FRAP and the photobleached strip was tracked for >6 h 
in the continued presence of aphidicolin or roscovitine, revealing 
no detectable fluorescence recovery of the IF (Fig. 4, E and F).  
Together, these results demonstrate that Mcm4 remains irrevers-
ibly bound to chromatin for >24 h with negligible subunit exchange, 
and that DNA replication is required to evict fluorescent molecules 
from unbleached areas of the nucleus into the soluble pool.

Mcm4 is cumulatively loaded onto 
chromatin during G1 phase
The FRAP experiments in Fig. 3 suggest that Mcm4 loads cu-
mulatively during the course of G1. However, it was also possible 
that most Mcm4-mEm proteins were tightly bound to chroma-
tin throughout G1 phase, with the increased recovery observed 
early in G1 phase resulting from chromatin movements (Video 6) 
that are prevalent during early G1 (Dimitrova and Gilbert, 1999; 
Chubb and Bickmore, 2003; Cremer and Cremer, 2010). To ad-
dress this possibility, we established a cell line that stably co
expressed Mcm4-mEm and a histone H2B-mCherry fusion 
protein, 90% of which incorporates stably into chromatin 

of Cdk activity necessary for initiation of replication during  
S phase, or aphidicolin, a direct inhibitor of DNA polymerase. 
After 24 h of drug treatment, cells in late G1 phase (PCNA foci–
negative cells displaying heterogeneous Mcm4-mEm distribution) 
or very early S (early PCNA foci with heterogeneous Mcm4-
mEm distribution), were subjected to FRAP (Fig. 4, C and D).  
Results revealed undetectable Mcm4-mEm fluorescence re-
covery of the IF even >3 h after the bleach (Fig. 4 F). Further-
more, FRAP of cells arrested by aphidicolin or roscovitine during 
S phase indicated an Mcm4-mEm IF consistent with the time at 
which they were arrested during S phase (as determined by PCNA 
focal pattern), which is also consistent with Fig. 3 (not depicted).

Finally, we addressed whether the Mcm4-mEm IF within 
S phase–arrested cells was still irreversibly bound 24 h after cell 
cycle arrest. Because S phase cells have a large soluble pool of 
Mcm4-mEm that obscures direct observation of immobilized 
molecules, we reduced the fluorescence of this soluble pool by 
subjecting S phase cells to fluorescence loss in photobleaching 
(FLIP) followed by FRAP (Fig. 4 E). In FLIP, a repeating bleach 
pulse focused on a small area within the cell nucleus (Fig. 4 E, 
circles) irreversibly photobleaches most of the mobile Mcm4-
mEm (and RFP-PCNA) proteins as they enter the bleaching 
area, whereas immobilized proteins outside the bleaching area 
retain their fluorescence. Remarkably, after FLIP erasure of the 

Figure 3.  Cell cycle dependence of Mcm4 recovery. Mcm4 FRAP recoveries vary significantly throughout the cell cycle. The IF, calculated from the FRAP 
intensity 30–60 s after bleaching, is minimal after mitosis, but gradually increases to >60% as G1 phase progresses. Once S phase begins, the IF begins to 
drop, returning to 0% by G2 phase. Inset graphs show the time (x axis) in log scale. n, number of cells analyzed to calculate the IF and standard deviation 
of the mean. The gray bars indicate the initial appearance of PCNA foci.
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Figure 4.  Mcm4 recovery results from eviction during replication. (A) The IF was measured from a set of short FRAP experiments (each lasting <1 min) on 
a pool of cells at various stages of progression through S phase. The mean IF gradually decreased and was well fit by a line or single weak exponential 
decay (broken line), yielding a decay time of 13.5 h. The number of cells analyzed for each time interval is shown above the bar. (B) Long FRAP experi-
ments (>150 min each) were performed on 10 cells in G1 phase that were all 100 min from entering S phase. The mean FRAP recovery after S phase 
entry was well fit with a line or single weak exponential (broken line), yielding a recovery time of 13.6 h. The consistency of this recovery time and the IF  
decay time suggests that Mcm4 undergoes little or no exchange throughout S phase. The gray bar indicates the appearance of PCNA foci. (C–F) Replication 
arrest prevents Mcm4 unloading. (C) Cells were cultured in roscovitine for 24 h, and a cell lacking PCNA foci but displaying heterogeneous Mcm4-mEm 
distribution (indicating G1 arrest) was subjected to FRAP and tracked for 403 min with no detectable IF recovery. (D) Cells were cultured in aphidicolin for 
24 h, and a cell displaying PCNA foci characteristic of very early S phase as well as heterogeneous Mcm4-mEm distribution (Fig. 1 F) was subjected to 
FRAP and tracked for 296 min with no detectable IF recovery. (E) A cell cultured in aphidicolin for 24 h and displaying PCNA foci characteristic of early  
S phase and homogeneous Mcm distribution was subjected to FLIP/FRAP, as described in the text. The FLIP laser was directed in the broken yellow circle, 
and the FRAP bleach was directed along the solid yellow line. Similar results were obtained with roscovitine-arrested cells. Note that, although we observed 
a substantial reduction in the intensity of PCNA foci during aphidicolin arrest, as described previously (Görisch et al., 2008), characteristic focal patterns of 
PCNA were still discernable. Bars, 10 µm. (F) Quantification of the average bound fractions for groups of cells treated and analyzed as illustrated in C–E, 
and imaged for a minimum of 200 min. The number of cells analyzed and the standard deviation of the mean are shown above each bar (error bars). FRAP 
curves similar to those shown in Fig. 3 showed no recovery of the IF throughout the imaging period, so the bound fraction at the end of the entire imaging 
period is shown for simplicity. Note that for FLIP/FRAP of cells in early to mid S phase (ES/MS), the IF is actually considerably lower, but is measured after 
a significant fraction of the soluble molecules have been bleached.
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throughout the cell cycle (Kimura and Cook, 2001). FRAP ex-
periments were performed on cells at different times during G1 
(Video 7), and the recovery of Mcm4-mEm versus H2B fluores-
cence was compared (Fig. 5). When Mcm first entered the nucleus 
(Fig. 5 A, i), it did not immediately colocalize with H2B but was 
excluded from chromatin and exhibited little or no IF (Fig. 5 B, i), 
whereas 80% of H2B remained immobile. Hence, the degree of 
chromatin mobility during the very early G1 phase period is not 
sufficient to explain the rapid and nearly complete Mcm4 FRAP 
recovery at this time. During the course of G1 phase, however, 
there was a gradual and cumulative increase in the Mcm4-mEm 
IF (Fig. 5, B and C), accompanied by an increased colocaliza-
tion of Mcm4 with H2B (Fig. 5 A, i–iii). In fact, some cells 
could be identified that showed a high degree of colocalization 
between Mcm4 and H2B, and within these cells, the Mcm4 IF 
was nearly as high as H2B (Fig. 5 A, iv; Fig. 5 B, iv; Fig. S5; 
and Video 7). We did not have PCNA to track cells through  
S phase and into G2 phase, but we could identify cells in early 
mitosis (prophase) based on the condensation of chromatin 
(which was confirmed by entry into mitosis after FRAP; Fig. S4). 
In prophase cells, Mcm4-mEm did not colocalize with H2B but 
was excluded from chromatin and exhibited little or no IF, 
whereas H2B remained tightly bound (Fig. 5 A, v; Fig. 5 B, v; 
Fig. S5; and Video 8). Together, these results indicate that Mcm4 

is loaded onto chromatin gradually and cumulatively through-
out G1 phase and reaches a maximum of >70% (Fig. S5) bound 
just before the entry into S phase.

We next asked whether the continuous loading of Mcm 
proteins during G1 phase required progression through defined 
G1 phase hallmarks. For example, the origin decision point 
(ODP) is a time when specific sites are selected for initiation of 
replication (Wu and Gilbert, 1996; Sasaki et al., 2006) and the 
restriction point (R point) marks the commitment to initiate  
replication independent of mitogenic stimuli (Wu and Gilbert, 
1997). Cells treated with roscovitine or the protein synthesis in-
hibitor cycloheximide as they exit from mitosis will arrest either 
before the ODP or between the ODP and the R point, respec-
tively (Keezer and Gilbert, 2002). Neither treatment had any effect 
on FRAP recovery of Mcm4-mEm or the cumulative loading of 
Mcm4-mEm throughout G1 phase (Fig. S5, C and D).

Lack of colocalization of Mcm4 with PCNA 
coincides with chromatin decondensation
As mentioned in the Introduction, a longstanding paradox has 
been why Mcm helicase subunits do not colocalize with other 
replication fork proteins (Todorov et al., 1995; Krude et al., 1996; 
Romanowski et al., 1996; Dimitrova et al., 1999). These results 
were obtained with cells that were first detergent-extracted, 

Figure 5.  Mcm4 is cumulatively loaded onto 
chromatin throughout G1 phase. (A) A cell 
line stably expressing Mcm4-mEm and H2B-
mCherry fusion proteins was established, and 
FRAP experiments were conducted at various 
times after mitosis (operationally defined here 
as the time at which Mcm4 was observed to 
reenter the cell nucleus after nuclear mem-
brane reformation). H2B, Mcm4, and over-
lay images are shown for five representative 
cells (i–v) at different time points after mitosis. 
Bars, 10 µm. (B) FRAP curves and IFs for H2B-
mCherry and Mcm4-mEm are shown for the 
five representative cells in A. (C) Using the 
Mcm4-mEm/H2B-mCherry cell line, 71 cells 
underwent FRAP experiments between 0 and 
500 min after mitosis, and the IF was calcu-
lated for both Mcm4 and H2B. Although it is 
difficult to track the entire length of G1 phase 
by this method, a linear slope fit (broken line) 
to all 71 data points would extrapolate to 
70% Mcm4 loaded by 700 min, which is 
close to the length of G1 phase and is con-
sistent with cells deemed to be in very late  
G1 phase by H2B colocalization (Fig. S5 B).
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whereas a close colocalization between Mcm4 and H2B was ob-
served during late G1/early S phase (Fig. 6 C).

To confirm this result using a method that did not require 
bleaching out the soluble pool of molecules, we performed FRAP 
experiments in cell lines containing each of the pairwise combina-
tions of these three proteins and correlated the locations of the im-
mobilized fractions of these proteins across the bleached area  
(Fig. 6 D). We found that although the IFs of Mcm4 and H2B were 
strongly correlated, the immobilized fraction of PCNA negatively 
correlated with either Mcm4 or H2B (Fig. 6 D), which indicates that 
immobile Mcm4-mEm is depleted in areas of PCNA that are also 
depleted of chromatin. Altogether, our results suggest that replica-
tion foci are regions of decondensed chromatin that consequently 
reduce the density of chromatin-bound Mcm relative to the remain-
ing unreplicated chromatin throughout the nucleus. PCNA (and 
other replication proteins), in contrast, is bound exclusively at the 
sites of DNA synthesis and shows strong enrichment at those sites.

Behavior of the other Mcm subunits
Similar FRAP experiments were performed with Mcm-mEm/
RFP-PCNA cell lines expressing tagged Mcm2, -3, -6, and -7. 
As summarized in Fig. 7, Mcm2 and -6 behaved qualitatively 
and quantitatively similar to Mcm4, whereas Mcm3 and -7 were 
qualitatively similar but had a lower IF compared with Mcm 2, 
-4, and -6. This quantitative difference for Mcm3 and -7 may be 
caused by an impaired ability of the tagged Mcm3 and -7 pro-
teins to incorporate into chromatin-bound Mcm complexes.  
In fact, tagged Mcm3 and -7 were more detergent-extractable 
than endogenous Mcms (Fig. S4 E), unlike tagged Mcm4 
(Fig. 1 C). Nonetheless, all five subunits show similar cell cycle 
regulation of a tight chromatin binding fraction, which strongly 
suggests that our detailed analysis of Mcm4-mEm is representa-
tive of the hetero-hexameric Mcm complex.

which is necessary to remove soluble Mcm and PCNA pro-
teins that obscure efforts to localize these proteins (Dimitrova 
et al., 1999; Dimitrova and Gilbert, 2000) before fixation and 
immunohistochemistry. We wished to confirm whether a lack 
of colocalization could also be observed in living cells without 
detergent extraction and fixation. As expected, the soluble 
Mcm and PCNA proteins obscured our ability to evaluate co-
localization, but the fluorescence of the soluble pool could be 
reduced by FLIP (as in Fig. 4), which showed that Mcm4-
mEm and RFP-PCNA proteins do not colocalize even in living 
cells (Fig. 6 A).

A hypothesis to explain this paradox is that a large amount 
of excess “loosely bound” Mcm complexes might be cleared 
from chromatin upon the assembly of replication forks, leaving 
behind only a few active Mcm helicases at the replication fork  
and giving the appearance of a lack of colocalization (Dimitrova  
et al., 1999). However, this hypothesis is inconsistent with the 
need to retain those excess Mcm complexes to function as dor-
mant origins under conditions of replicational stress (Ge et al., 
2007; Gilbert, 2007; Ibarra et al., 2008). Our results demonstrat-
ing a tight linkage between Mcm4-mEm and chromatin suggest 
an alternative hypothesis. Sites of active replication visualized by 
electron microscopy have been observed to contain a very low 
density of DNA (Philimonenko et al., 2004). We reasoned that 
if the assembly of replication forks, visualized by the appearance 
of PCNA foci, were to result in a local but extensive decondensa-
tion of chromatin, then the tightly bound Mcm proteins would 
also decondense and be considerably reduced in concentration. 
To test this hypothesis, we constructed a cell line coexpressing 
RFP-PCNA and H2B-EGFP and performed FLIP/colocalization 
experiments in both this cell line and our Mcm4-mEm/H2B-
mCherry cell line described in Fig. 5. Results revealed that PCNA 
foci did not correlate with the density of chromatin (Fig. 6 B),  

Figure 6.  Sites of DNA synthesis are sites of 
low chromatin and Mcm4 density. (A) Lack of 
colocalization of PCNA and Mcm proteins in 
living cells. Mcm4-mEm/RFP-PCNA–expressing 
cells in very early S phase were subjected to 
FLIP to reduce the fluorescence of the soluble 
pool of molecules as in Fig. 4. After FLIP, colocal
ization analysis of the immobile Mcm4-mEm 
and RFP-PCNA fractions was performed, and 
the correlation coefficient is indicated in the 
Post-FLIP overlay. (B and C) Similar FLIP colocal-
ization analysis for RFP-PCNA/H2B-mCherry (B)-  
and Mcm4-mEm/H2B-mCherry (C)-expressing 
cells. The yellow circles represent where the 
FLIP laser (488 nm) was directed. (D) Strip 
FRAP was performed in cells stably expressing 
Mcm4-mEm/RFP-PCNA (top), Mcm4-mEm/H2B-
mCherry (middle), and H2B-eGFP/RFP-PCNA 
(bottom) in early S and G2 phase. In each 
experiment, the IF was measured along the 
length of the bleach strip (third column), and 
this was correlated (via Pearson’s correlation 
coefficient, fourth column) with the prebleach 
fluorescence along the bleach strip (first two 
columns). Mean results are shown together 
with the standard error of the mean (error bars 
with number of cells for each displayed) in the 
bar plot below. Bars, 10 µm.
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preRC components ORC (McNairn et al., 2005) and Cdt1 
(Xouri et al., 2007) and replication fork proteins PCNA and 
RPA (Fig. S2 E; Görisch et al., 2008). Only histones (Kimura 
and Cook, 2001) and cohesins (Gerlich et al., 2006) have resi-
dence times approaching what we find for Mcms. Once replica-
tion begins, the Mcm complexes are unloaded into a soluble 
form, and our results suggest that the passage of replication 
forks is necessary to actively remove bound Mcm proteins from 
chromatin. During S phase, the decrease in bound Mcm fit to a 
linear or weak single exponential decay, yielding a decay time 
and recovery time of roughly the same value, which was equiva-
lent to the mean length of S phase. The consistency of the IF  
decay time and recovery time suggests that Mcm4 undergoes 
little or no exchange throughout S phase, and that Mcm clearing 
requires replication. In fact, when DNA synthesis was inhibited, 
loaded Mcm complexes remained bound indefinitely. This indi-
cates that the myriad chromatin activities that continue during 
normal G1 phase or during a replication arrest, such as chroma-
tin remodeling and transcription, do not displace the Mcm com-
plexes to any significant extent.

We did not detect any transiently immobilized fraction  
of Mcm4-mEm in our analyses despite a rigorous search for  
exchange. This indicates that if Mcm2-7 complexes are loaded  
via a “docked” or “associated” intermediate, as suggested from  
in vitro studies (Evrin et al., 2009; Francis et al., 2009; Remus  
et al., 2009; Tsakraklides and Bell, 2010), then the fraction of 
such complexes in this intermediate state is too small (<5%) to 
be detected in our experiments. This suggests that this inter
mediate is short-lived in the living cell environment. Further inves-
tigation will be needed to determine whether culture conditions 
or mutations in fluorescent Mcm proteins can be identified that 
are capable of trapping this intermediate. In addition, we found 
that Mcm proteins load continuously during G1 phase, and we 
did not find any evidence of a change in the stability of the 
Mcm–chromatin interaction during origin choice at the ODP or 

Discussion
Here we have studied, in vivo, the interactions of the Mcm2, -3, 
-4, -6, and -7 proteins with chromatin. We show that these five 
subunits exhibit static interactions with chromatin, in contrast 
to the dynamic interactions seen with other replication proteins 
(McNairn et al., 2005; Xouri et al., 2007) and almost all non-
histone proteins (Phair and Misteli, 2000; Misteli, 2001; Hager 
et al., 2009). This is consistent with the in vivo existence of 
an Mcm complex topologically linked to DNA as previously 
demonstrated in vitro (Evrin et al., 2009; Remus et al., 2009). 
Our data also suggest that the lack of colocalization of Mcm 
proteins with other replication fork proteins results from a de-
condensation of chromatin and a relative dilution of immobi-
lized Mcm proteins at sites of DNA synthesis. We propose that 
the nondynamic state of Mcm2-7 interaction on chromatin from  
G1 phase through initiation during S phase permits the reten-
tion of Mcm complexes during the long temporal separation 
between replication licensing and initiation, and is necessary 
to ensure complete and timely duplication of the genome while 
preventing any possibility of rereplication.

Lockdown/kickoff: a topologically linked 
liaison that is unlinked by replication?
We previously demonstrated that the physical association of 
Mcm with chromatin during telophase is sufficient to license 
chromatin for a round of replication in Xenopus laevis egg ex-
tracts that lack either Mcm proteins or are inhibited for the as-
sembly of preRCs (Okuno et al., 2001; Dimitrova et al., 2002), 
which provided direct evidence that this in vivo association is 
functional. Here, we present evidence that the association of 
Mcms during early G1 phase represents an irreversible link. 
This result alone is significant, as virtually all previously stud-
ied chromatin-binding proteins exchange on and off chromatin 
in seconds or minutes (Phair and Misteli, 2000), including the 

Figure 7.  Other Mcm subunits also display a cell cycle dependence of the IF. Mcm2-, Mcm3-, Mcm4-, Mcm6-, or Mcm7-mEm cells were tracked out of 
mitosis, and FRAP experiments were conducted at various times in the cell cycle. The immobile Mcm fraction was calculated from each FRAP curve, and the 
data were binned according to the subunit and the number of minutes after mitosis. The number of cells analyzed for each cell cycle stage and the standard 
deviation of the mean are shown at the top of each bar (error bars).
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acids, 400 µg/ml Zeocin (for Mcm selection), 400 µg/ml G418 (for PCNA 
or H2B selection), 500 µg/ml Hygromycin B (for tTA selection; Invitrogen), 
and 2.5 µg/ml Blasticidin (for BirA selection).

To synchronize cells in mitosis for biochemical studies, 0.05 µg/ml 
nocodazole was added to the media for 4 h followed by mechanical 
shake-off. Metaphase spread analysis indicated that >95% mitotic cells 
were routinely obtained. 40 µM roscovitine (EMD) and 10 µg/ml aphidi-
colin (EMD) were used, where indicated.

Indirect immunofluorescence microscopy
Cells of each of the Mcm/PCNA-expressing stable cell lines were grown 
on coverslips, washed with cold 1× PBS (10× PBS: 137 mM NaCl,  
2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4) followed by ice-cold 
CSK buffer (10 mM Hepes-KOH, pH 7.4, 300 mM sucrose, 100 mM 
NaCl, and 3 mM MgCl2), and extracted with 0.5% Triton X-100 in CSK 
supplemented with protease inhibitors (1:50, Cocktail III, No. 539134; 
VWR) for 2 min on ice. Coverslips were washed with PBS three times  
and fixed for 20 min at room temperature with 2% paraformaldehyde in  
PBS. After fixation, coverslips underwent the following ordered washes: PBS,  
0.5% NP-40 in PBS, 0.5% Tween-20 in PBS, and 0.5% Tween-20 in PBS 
with 3% BSA. Coverslips were then incubated with BM28 (Mcm2) primary 
antibody at a 1:50 dilution for 1 h at room temperature. Coverslips were 
next washed three times with 0.5% Tween-20 in PBS, and incubated in 
secondary antibody in PBS, 0.5% Tween-20, and 3% BSA for 1 h at room 
temperature. Coverslips then underwent the following ordered washes: 
0.5% Tween-20 in PBS, PBS and DAPI, and distilled water. Coverslips 
were then mounted on slides with Celvatol for viewing with the microscope 
(Ti-U Eclipse; Nikon). Images (Figs. 2 B and S2 A) were viewed using a 
60×, 1.4 NA oil immersion lens, and captured with NIS Elements using a 
digital camera (model No. C4742-95; Hamamatsu Photonics), and ad-
justed with only contrast and brightness adjustments. For Mcm/RFP-PCNA 
extraction photos, BM28 antibody staining was omitted. CoLocalizer Ex-
press (CoLocalization Research Software) was used for all quantitative 
colocalization analysis.

Western blotting and coimmunoprecipitation
Streptavidin–Sepharose 4B beads (Invitrogen) and/or the GFP-Trap  
(Rothbauer et al., 2008) from ChromoTek were used to show coimmuno-
precipitation of the fluorescently tagged Mcm proteins with endogenous 
Mcm subunits. For soluble coimmunoprecipitation, 107 cells were resus-
pended in 200 µl of lysis buffer (10 mM Tris/Cl, pH 7.5, 150 mM NaCl, 
0.5 mM EDTA, 0.5% NP-40, 1 mM PMSF added freshly, and 1× protease 
inhibitors Cocktail III) and placed on ice for 30 min with extensive pipet-
ting every 10 min. The cell lysates were spun for 10 min at 13,000 g at 
4°C. The supernatant was transferred to a precooled tube, and the volume  
was adjusted to 500 µl with dilution buffer (10 mM Tris/Cl, pH 7.5, 150 mM  
NaCl, 0.5 mM EDTA, 1 mM PMSF freshly added, and 1× protease inhibi-
tor Cocktail III). 20 µl of equilibrated beads (which had been blocked over-
night at 4°C with rotation in 0.1 mg/ml BSA) were added to the cell lysate 
and incubated with gentle end-over-end mixing for 1 h at 4°C. Beads were 
washed with 250 µl of cold dilution buffer three times, and the beads 
were resuspended in 100 µl of hot 2× SDS sample buffer (125 mM Tris, 
pH 6.8, 4% SDS, 10% glycerol, 0.006% bromophenol blue, and 1.8% 
-mercaptoethanol) and boiled. Sample input, supernatant (unbound), 
and final sample (bound) were analyzed by Western blotting (Rothbauer  
et al., 2008). For chromatin pull-down, the Nuclear Complex Co-IP kit 
(catalog No. 54001; Active Motif) was used with the accompanying pro-
tocol. Antibodies used were as follows: BM28 (material No. 610700; BD) 
at 1:10,000 in 1% BSA/0.3% nonfat dry milk (NFDM); Mcm3 (catalog 
No. 4012; Cell Signaling Technology) at 1:10,000 in 5% BSA; Mcm4  
(sc-48407; Santa Cruz Biotechnology, Inc.) at 1:200 in 1% NFDM; Mcm5 
(sc-22780; Santa Cruz Biotechnology, Inc.) at 1:20,000 in 5% NFDM; Mcm6 
(sc-55577; Santa Cruz Biotechnology, Inc.) at 1:200 in 5% NFDM; Mcm7 
(sc-9966; Santa Cruz Biotechnology, Inc.) at 1:15,000 in 1% NFDM;  
-tubulin (Sigma-Aldrich) at 1:10,000 in 5% NFDM; LaminB (sc-6216; 
Santa Cruz Biotechnology, Inc.) at 1:1,000 in 5% NFM; and anti-PCNA 
(Oncogene) at 1:3,000 in 1% BSA/0.3% NFDM.

Live cell imaging
Low-power imaging of cells to identify colonies (Fig. 1 B) was done di-
rectly on the cell culture dish with a microscope (Ti-U Eclipse) using a 20×, 
0.4 NA lens in fluorescence and phase-contrast channels. Images were 
captured with NIS Elements using a digital camera (model No. C4742-
95; Hamamatsu Photonics) and adjusted with only contrast and brightness 
adjustments. Long-term imaging Videos 1 and 2 were performed with an 
incubator fluorescence microscope (VivaView; Olympus), with cells growing 

during commitment to S phase at the R point. This favors models 
in which the ODP selects a subset of loaded Mcms for initiation 
(Sasaki et al., 2006). It also implies that Mcms are in the loaded 
form before the decision to enter S phase or exit the cell cycle. 
Hence, it will be interesting to determine how Mcm complex 
disassembly occurs during exit from the cell cycle into quiescence 
and senescence (Stoeber et al., 2001; Harada et al., 2008).

A resolution to the paradox of Mcm 
absence at replication foci
We have confirmed in living cells the lack of colocalization of 
Mcm with replication fork proteins previously observed by  
immunohistochemistry (Todorov et al., 1995; Krude et al., 1996; 
Romanowski et al., 1996; Dimitrova et al., 1999), and our re-
sults suggest a novel hypothesis to explain this paradox. We find 
that sites of DNA synthesis, typified by the formation of punc-
tate foci of transiently immobilized PCNA, colocalize with sites 
of decondensed or low-density chromatin, whereas the density 
of immobilized Mcm proteins tracks closely with chromatin. 
Moreover, Mcm FRAP recovery is most rapid in the regions of 
PCNA foci and decondensed where the Mcm IF is relatively 
low in Fig. 6 D, which suggests that decondensed chromatin at 
sites of ongoing replication provides space for unbleached,  
soluble Mcm proteins to enter by diffusion. Our results demon-
strate that decondensation of chromatin reduces the local con
centration of loaded Mcm complexes, whereas other replication 
proteins are enriched exclusively at these sites, providing a sat-
isfying explanation for the long-observed lack of colocalization 
of Mcms with proteins recruited to the replication fork during 
ongoing DNA synthesis.

Materials and methods
Construction of expression plasmids
An in-frame fusion to the C terminus of mEm was generated as follows: Mus 
musculus Mcm2-7 sequences (provided by H. Kimura, Graduate School of 
Frontier Biosciences, Osaka University, Osaka, Japan) were amplified by 
PCR, and the resulting PCR product was ligated into a vector backbone 
containing the mEmerald (Shaner et al., 2007) sequence, followed by the 
biotin ligase tag (BLT; Beckett et al., 1999). A flexible linker (Leonhardt  
et al., 2000) was inserted between the Mcm DNA and the fluorescent tag, 
and between the fluorescent tag and the BLT, to aid in fusion folding and 
functionality. Each fusion was under the control of a tet promoter (Izumi 
and Gilbert, 1999). Each fusion was verified by sequencing. See Fig. S1 
(A and B) for a listing of plasmid constructs.

Cell line construction and synchrony
CHO cells stably expressing tTA (Izumi and Gilbert, 1999) were grown in 
DME (catalog No. 12100–061; Invitrogen) supplemented with 10% FBS 
(Invitrogen), penicillin/streptomycin (catalog No. 30-002-CI; Cellgro), and 
MEM Nonessential Amino Acids (catalog No. 25-025-CI; Cellgro). BirA 
was transfected into the tTA-expressing cell line using Effectene (catalog 
No. 301427; QIAGEN). A stable BirA-expressing cell line was selected 
with 2.5 µg/ml blasticidin (Invitrogen). pRMCE_Mcm-mEmerald-BLT vectors 
were transfected into the tTA/BirA-expressing cell line using Effectene.  
Stable Mcm cell lines were selected with 400 µg/ml Zeocin (Invitrogen) 
and screened for fluorescence using an inverted fluorescence microscope. 
Mcm-mEmerald–expressing cell lines were transfected with RFP-PCNA (pro-
vided by C. Cardoso, Technische Universität Darmstadt, Darmstadt, Ger-
many; Leonhardt et al., 2000) or H2B-mCherry (Kimura and Cook, 2001), 
and stable cell lines were selected with 400 µg/ml G418 (EMD) and 
screened for fluorescence using an inverted fluorescence microscope. See 
Fig. S1C for a listing of all constructed mEmerald cell lines.

Tet-regulatable fusion protein cell lines were maintained in DME sup-
plemented with 10% FBS, penicillin/streptomycin, MEM nonessential amino 
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Online supplemental material
Fig. S1 shows the plasmids and cell lines constructed. Fig. S2 shows an 
additional characterization of the Mcm4-mEm/RFP-PCNA cell line. Fig. S3 
shows a characterization of total Mcm-mEm. Fig. S4 shows a characteriza-
tion of chromatin-bound Mcm-mEm. Fig. S5 shows additional analyses of  
Mcm4-mEm/H2B-Cherry cell line. Video 1 shows long-term imaging of  
a cell going from mitosis to S phase in 10 h. Video 2 shows long-term  
imaging of a cell going through an entire S phase in 13.5 h. Video 3 
shows that Mcm4-mEm localizes to the nucleus upon exit from mitosis. 
Video 4 shows that Mcm4-mEm displays “chromatin-like” look in late 
G1, before PCNA foci formation. Video 5 shows that the IF of Mcm4 
decreases as S phase progresses. Video 6 shows that chromatin under-
goes many movements in mitosis and early G1, as visualized by H2B-
mCherry. Video 7 show that IFs of Mcm4-mEm and H2B-mCherry mirror 
each other in late G1 and early S phase. Video 8 shows that H2B has a 
high IF in G2/prometaphase, but not Mcm4. Video 9 show that RFP-PCNA 
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ers quickly. Online supplemental material is available at http://www.jcb 
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