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piRNAs, transposon silencing, and Drosophila
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Transposons are prominent features of most eukaryotic
genomes and mobilization of these elements triggers
genetic instability. Transposon silencing is particularly
critical in the germline, which maintains the heritable ge-
netic complement. Piwi-interacting RNAs (piRNAs) have
emerged as central players in transposon silencing and
genome maintenance during germline development.
In particular, research on Drosophila oogenesis has pro-
vided critical insights into piRNA biogenesis and trans-
poson silencing. In this system, the ability to place piRNA
mutant phenotypes within a well-defined developmental
framework has been instrumental in elucidating the mo-
lecular mechanisms underlying the connection between
piRNAs and transposon control.

Introduction

Transposons are major structural elements of essentially all
eukaryotic genomes, and mobilization of these elements can
lead to genetic instability and cause deleterious mutations
(McClintock, 1953). Mobile genetic elements also carry tran-
scriptional enhancers and insulators, thus transposition can alter
expression of nearby genes and potentially large chromatin do-
mains, triggering coordinated changes in gene transcription that
could disrupt development or drive evolution (Feschotte, 2008).
Transposon silencing is particularly important in the germline,
which maintains the genetic information that will be inherited
by future generations. Recent studies indicate that transposon
silencing during germline development is imposed by Piwi-
interacting RNAs (piRNAs), which guide a small RNA-based
immune response related to RNA interference (RNAi; Malone
and Hannon, 2009). Here we review piRNA biogenesis and
function during Drosophila female germline development,
where recent molecular and biochemical observations have pro-
vided significant insight into the mechanism of piRNA produc-
tion and transposon silencing, and where the developmental
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defects associated with piRNA mutations can be evaluated
within a well-established genetic, cellular, and developmental
framework (Spradling, 1993).

Gene silencing by microRNAs (miRNAs) and small inter-
fering RNAs (siRNAs) is well established (Filipowicz et al.,
2005; Ghildiyal and Zamore, 2009), and studies on these small
regulatory RNAs have guided work on the more recently identi-
fied piRNAs. The 21- and 22-nucleotide siRNAs and miRNAs
are generated from double-stranded precursors by the RNase III
enzyme Dicer and bind to Argonaute proteins (Ghildiyal and
Zamore, 2009). The Argonaute—-miRNA complexes direct
sequence-specific translational silencing or target destruc-
tion. siRNAs in animals, in contrast, appear to primarily induce
target destruction. However, endogenous siRNAs (endo-siRNAs)
direct chromatin assembly and transcriptional silencing in the
fission yeast Schizosaccharomyces pombe, and endo-siRNAs
have been implicated in repressing transposons and other repet-
itive sequences during somatic development in flies (Volpe et al.,
2002; Verdel et al., 2004; Czech et al., 2008; Ghildiyal et al., 2008;
Kawamura et al., 2008; Okamura et al., 2008; Hartig et al., 2009).
miRNAs and siRNAs, in complexes with Argonautes, can there-
fore silence transcription, trigger target destruction, or inhibit
translation. The piRNAs are less well understood, but may be
equally versatile.

piRNA identification and genomic origins

piRNAs were first identified through studies on the Drosophila
Stellate locus, which is composed of repeated copies of a gene
encoding a casein kinase I 3-subunit homologue (Livak, 1990).
The Drosophila Stellate protein has no known biological func-
tion, but mutations in the suppressor of stellate [su(ste)] locus
lead to Stellate protein overexpression during spermatogenesis,
which leads to Stellate crystal formation and reduced fertility
(Livak, 1990). It is now clear that su(ste) encodes piRNAs that
are homologous to sfe and silence this locus in trans (Aravin
et al., 2001). Small RNA cloning and sequencing studies sub-
sequently showed that related 22-30-nucleotide-long RNAs,
derived largely from retrotransposons and other repetitive se-
quence elements, are abundant in the male and female germline
(Aravin et al., 2003). These novel small RNAs were therefore
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initially named repeat-associated siRNAs (rasiRNAs; Aravin et al.,
2003). In some other systems, however, the majority of small
RNAs in this class are not enriched in transposon sequences.
In addition, these RNAs bind a germline-enriched PIWI clade of
Argonaute proteins that are distinct from the Argonautes that bind
miRNAs and siRNAs (Aravin et al., 2006; Girard et al., 2006;
Grivna et al., 2006a; Lau et al., 2006). As a result, this new small
RNA family was subsequently renamed Piwi-interacting RNAs
(piRNAs; Brennecke et al., 2007; Yin and Lin, 2007).

Many of the piRNAs expressed in Drosophila ovaries are
derived from transposons and other repeats, and thus cannot be
assigned to specific chromosomal loci (Brennecke et al., 2007,
Gunawardane et al., 2007; Yin and Lin, 2007). piRNAs that map
to unique sites, however, are clustered in large pericentromeric
or subtelomeric domains of up to 240 kb that are rich in trans-
poson fragments (Brennecke et al., 2007). Most of these clus-
ters produce piRNAs from both genomic strands, but a subset of
clusters produce unique piRNAs almost exclusively from one
strand (Aravin et al., 2006; Girard et al., 2006; Brennecke et al.,
2007; Gunawardane et al., 2007; Houwing et al., 2007). The
Drosophila flamenco locus falls into this second class, and ge-
netic and molecular studies on flamenco have provided im-
portant insights into piRNA function (Brennecke et al., 2007;
Malone et al., 2009). Single P-element insertion mutations in
the telomere-proximal side of flamenco disrupt piRNA produc-
tion and down-regulate expression of longer transcripts from
across the entire 60-kb locus, suggesting that transposition has
disrupted a transcriptional promoter for this cluster (Brennecke
et al., 2007). flamenco contains fragments of active transposons
that are located throughout the genome; therefore, mutations in
this locus lead to overexpression of these dispersed elements
(Brennecke et al., 2007; Mével-Ninio et al., 2007). These obser-
vations strongly suggest that piRNAs derived from flamenco si-
lence transposon expression in trans.

The flamenco locus appears to function primarily in
ovarian somatic cells, while the major piRNA-producing dual-
strand cluster at cytological position 42AB appears to be
germline specific. Mutations in 42AB and other dual-strand
clusters have not been reported, but mutations in the rhino (rhi)
locus lead to both dramatic reductions in piRNAs from these
clusters and to 10-150-fold overexpression of ~20% of trans-
poson families (Klattenhoff et al., 2009). piRNAs derived from
dual-strand clusters thus appear to act in the germline to silence
target transposons in trans.

piRNA clusters represent ~1% of the genome, and it is
unclear how these limited chromatin domains are specified. Most
clusters are located in heterochromatin and contain complex
arrays of transposon fragments, but only a subset of transposon-
rich heterochromatic regions produce piRNAs. These observa-
tions suggest that piRNA clusters are epigenetically defined.
However, single P-element insertions disrupt flamenco locus
function, suggesting that, at a minimum, cluster promoters are
hard-wired. The rhi locus is required for accumulation of puta-
tive piRNA precursor RNAs from the 42AB cluster, and the
heterochromatin protein 1 (HP1) homologue encoded by this
locus binds to this cluster (Vermaak et al., 2005; Klattenhoff
et al., 2009). HP1a, the founding member of the HP1 family,
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binds to methylated lysine 9 on histone H3 (Bannister et al.,
2001; Lachner et al., 2001; Nakayama et al., 2001). HP1 then
recruits histone methyltransferase, which methylates neighbor-
ing H3 to extend an epigenetic structure that is generally associ-
ated with transcriptional silencing (Nakayama et al., 2001). Rhi
binding may therefore promote histone modifications that dif-
ferentiate piRNA clusters from surrounding chromatin.

Transposons and other repetitive elements are among the
most divergent components in the genome. This calls for a se-
lection for advantageous changes in host genes involved in
transposon targeting. Thus, the host and parasite are in a con-
stant genetic conflict inside the cell and coevolve with each
other. Intriguingly, rhi is rapidly evolving and appears to be
under strong positive selection, which is a hallmark of genes in-
volved in host—pathogen interactions. This led Vermaak et al.
(2005) to speculate that rhi evolution is driven by a germline-
specific genomic conflict. The role for Rhino in piRNA biogen-
esis strongly suggests that the conflict between transposons and
the host genome drives rhi evolution (Klattenhoff et al., 2009).
Brennecke et al. (2007) speculated that piRNA clusters actively
attract transposons, which would presumably lead to production
of homologous piRNAs capable of trans-silencing active ele-
ments throughout the genome. Within this appealing model,
Rhino protein could interact directly with transposon-encoded
integration proteins, and thus drive adaptive silencing by pro-
moting transposition into clusters.

piRNA biogenesis

Deep sequencing and genetic studies suggest that two spatially
and mechanistically distinct processes drive piRNA biogenesis
(for review see Siomi et al., 2010). As noted above, the major-
ity of unique piRNAs are derived from transposon-rich hetero-
chromatic clusters (Brennecke et al., 2007; Yin and Lin, 2007).
The most abundant piRNAs are antisense to mRNAs from
active transposons, and these antisense RNAs preferentially
associate with Piwi and Aubergine (Aub), two PIWI clade Ar-
gonautes (Brennecke et al., 2007; Gunawardane et al., 2007,
Yin and Lin, 2007). Sense-strand piRNAs, in contrast, prefer-
entially associate with Argonaute 3 (Ago3; Brennecke et al.,
2007; Gunawardane et al., 2007). In vitro, all three Drosophila
PIWI proteins, when programmed with piRNAs, cleave target
RNAs between positions 10 and 11 of the guide strand (Saito
et al., 2006; Gunawardane et al., 2007; Nishida et al., 2007).
Significantly, Drosophila piRNAs from opposite strands tend to
have a 10-nt 5'-end overlap, and antisense piRNAs bound to
Piwi and Aub show a strong bias toward a Uracil (U) at the
5’ end, whereas sense-strand piRNAs bound to Ago3 tend to
have an Adenine (A) at position 10 (Brennecke et al., 2007;
Gunawardane et al., 2007). These findings suggest that anti-
sense piRNAs derived from piRNA clusters bind to Aub and
Piwi and direct cleavage of sense-strand transcripts from ac-
tive transposons, generating RNA fragments with an A 10 nt
from the 5’ terminus (Fig. 1 A). These sense-strand cleavage
products are proposed to associate with Ago3, after 3’ trim-
ming by an undefined mechanism producing mature sense-
strand piRNAs. The resulting piRNA—-Ago3 complexes then
cleave antisense piRNA precursors from clusters to produce
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Figure 1. piRNA biogenesis and transposon silencing in the germline and soma. The mechanisms that drive piRNA biogenesis and transposon silencing
are not well understood. Here we summarize speculative models based on the available data. (A) Ping-pong amplification in the germline. Transcripts from
functional transposons (blue) and piRNA clusters (blue and red) are exported from the nucleus. Aub, preprogrammed with piRNAs generated through the
primary biogenesis pathway, cleaves complementary transposon and cluster transcripts (blue), yielding randomly sized RNA fragments that bind Ago3.
3'-end trimming produces mature Ago3-sense strand piRNA complexes, which cleave anti-sense cluster transcripts (red). The resulting fragments bind to
Aub and 3’-end processing generates anti-sense piRNAs, completing the amplification cycle. (B) Primary piRNA biogenesis in the soma. Anti-sense precur-
sor transcripts (red) from flam and other uni-strand clusters are cleaved by Zuc to produce intermediate species that bind to Piwi. 3’ processing generates
mature anti-sense piRNAs. (C) Primary piRNA biogenesis in the germline. Long-sense (blue) and anti-sense (red) precursor transcripts from piRNA clusters
are cleaved by sequence-independent nucleases, which could include Zucchini (Zuc) and/or Squash (Squ), producing intermediates that bind Ago3 and
Aub. Processing and modification of the 3’ ends generates mature piRNA complexes that drive that ping-pong amplification loop. (D) Potential modes of
piRNA-mediated transposon silencing. (1) Transcriptional silencing of target transposons. piRNAs bound to Piwi, which accumulates in the nucleus, direct
heterochromatin assembly at target elements. (2) Posttranscriptional target destruction. Transposon transcripts are recognized by Aub—piRNA complexes in

the nuage, which catalyze homology-dependent cleavage. (3) Aub—piRNA complexes bind transposon transcripts and repress translation.

RNA fragments that associate with Aub and Piwi (Fig. 1 A).
Trimming generates mature antisense piRNAs, completing the
cycle. In this model, reciprocal cycles of PIWI-mediated cleav-
age thus amplify the pool of sense and antisense piRNAs. This
“ping-pong” amplification cycle thus obviates the need for an
RNA-dependent RNA polymerase (RdRp), which is needed to
amplify siRNA triggers in plants, nematodes, and yeast (Verdel
et al., 2009). The ping-pong model was developed from obser-
vations in Drosophila, but a similar mechanism appears to
function in other animal groups (Aravin et al., 2007; Houwing
et al., 2007; Grimson et al., 2008; Palakodeti et al., 2008; Lau
et al., 2009a).

The ping-pong model requires preexisting “primary”
piRNAs, presumably derived from clusters, to initiate the amplifi-
cation cycle. How these primary piRNAs are produced remains
to be determined, but piRNA production from the flamenco
cluster has been proposed as a model for this process. piRNAs
from this locus appear to be expressed primarily in the somatic
follicle cells, which express only one PIWI Argonaute, Piwi.
In addition, this locus produces unique piRNAs from only one
genomic strand and complementary piRNAs drive biogenesis
in the ping-pong model (Brennecke et al., 2007). Somatic
piRNA production by flamenco may provide a model for primary
piRNA biogenesis. However, somatic follicle cells surround the

germline cells in the ovary, and the mixture of germline and
somatic tissue complicates interpretation of studies on intact
tissue. Recently, homogenous cell lines derived from the ovar-
ian somatic sheets (OSSs) and ovarian somatic cells (OSCs)
have been used to circumvent this limitation (Niki et al., 2006;
Lau et al., 2009b; Robine et al., 2009; Saito et al., 2009). These
cells express Piwi but do not express Ago3 or Aub, and produce
piRNAs from one strand of the flamenco cluster (Lau et al.,
2009b; Saito et al., 2009). Piwi thus appears to drive ping-pong—
independent piRNA production in somatic cells. The putative
nuclease encoded by the zucchini locus is also required for
piRNA production in the soma (Malone et al., 2009; Robine et al.,
2009; Saito et al., 2009). Transcripts encoded by flamenco could
be cleaved by Zucchini, producing RNA fragments that bind to
Piwi (Fig. 1 B). Each of the PIWI-clade proteins binds piRNAs
with a unique length distribution, suggesting that processing
takes place after binding (Brennecke et al., 2007). Precursor RNA
fragments bound by Piwi could be trimmed to produce mature
primary piRNAs (Fig. 1 B).

However, the available data on primary piRNA produc-
tion are very limited and the proposed model is therefore highly
speculative. In addition, several observations suggest that pri-
mary piRNA production in the germline may be independent of
Piwi. For example, mutations that disrupt piRNA production in
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the germline lead to severe defects in axis specification and
oocyte nuclear organization (Chen et al., 2007; Klattenhoff
et al., 2007, 2009; Pane et al., 2007), but germline depletion of
Piwi does not disrupt egg chamber development or axial pat-
terning (Cox et al., 2000). In addition, piwi mutations reduce,
but do not eliminate piRNAs mapping to the major germline-
specific 42AB cluster (Malone et al., 2009). Because a loss of
primary piRNAs should lead to a collapse of the entire piRNA
biogenesis cycle, these findings suggest that primary piRNA
production in the germline does not require Piwi. The mecha-
nism of primary piRNA production in the germline thus remains
to be explored, and could be distinct from piRNA production in
ovarian somatic tissue.

The majority of germline piRNAs appear to be produced
by the ping-pong amplification cycle, and a simple modification
of this cycle could explain primary piRNA biogenesis during
germline development (Fig. 1 C). During ping-pong amplifica-
tion, primary piRNAs are generated by Ago3 or Piwi-mediated
cleavage of piRNA precursor transcripts derived from clusters,
which produces longer fragments that bind to Aub and are sub-
sequently trimmed to final length (Fig. 1 C). During primary
piRNA biogenesis, piRNA cluster transcripts could be cleaved
by sequence-independent endonuclease producing long RNA
fragments that enter the biogenesis cycle by binding to Aub or
Ago3. Subsequent processing by the same mechanisms em-
ployed using the ping-pong cycle could then generate the mature
primary piRNAs that initiate the amplification loop (Fig. 1 A).

Mutations that eliminate primary piRNAs are predicted to
lead to a collapse of the ping-pong cycle. However, mutations
that only reduce primary piRNA production should allow re-
duced piRNA production by the ping-pong cycle. Intriguingly,
mutations in squash and zucchini, which encode putative nucle-
ases that localize to the perinuclear nuage, reduce piRNA levels
without blocking ping-pong bias (Malone et al., 2009). As noted
above, Zucchini has been implicated in ping-pong—independent
piRNA biogenesis in somatic cells (Robine et al., 2009; Saito
et al., 2009). Zucchini and/or Squash could therefore cleave cluster
transcripts to produce RNAs that bind to PIWI-clade proteins and
generate the primary piRNAs that initiate the germline ampli-
fication loop (Fig. 1, B and C).

Modification of piRNAs and Piwi proteins
Like siRNAs, the 3’ ends of most mature piRNAs are 2'-O-
methylated, whereas the 5’ end carries a phosphate group
(Girard et al., 2006; Grivna et al., 2006a; Vagin et al., 2006;
Horwich et al., 2007; Houwing et al., 2007; Saito et al., 2007).
The 2'-O-methylation is performed by DmPimet (piRNA methyl-
transferase)/DmHENT, the Drosophila homologue of Arabi-
dopsis HEN1 (Horwich et al., 2007; Saito et al., 2007). Dmhenl
mutants eliminate 2'-O-methylation and reduce average piRNA
size and abundance, suggesting that this modification protects
mature piRNA from degradation (Horwich et al., 2007; Saito
et al., 2007). These mutations also lead to a modest loss of
transposon silencing, although mutants are viable and fertile
(Horwich et al., 2007; Saito et al., 2007). These findings suggest
that 3’-end modification is not essential to piRNA function, but
existing Dmhenl alleles may not be null.
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The Piwi proteins Aub and Ago3 have recently been
shown to be modified by the methyltransferase PRMTS, which
generates symmetrical dimethyl arginines (SDMAs), which cre-
ates a binding site for Tudor domains (Kirino et al., 2009). There
are 23 Tudor domain proteins in Drosophila, including the
founding member of the family, Tudor (Tud), which is required
for assembly of germ plasm and Aub localization in the germ-
line (Boswell and Mahowald, 1985; Nishida et al., 2009). In addi-
tion, the Tudor domain proteins Krimper, Spindle-E, and Tejas
have been implicated in PIWI localization, piRNA production,
and transposon silencing (Vagin et al., 2004; Lim and Kai, 2007,
Malone et al., 2009; Patil and Kai, 2010). These findings sug-
gest that Piwi family protein dimethylation leads to assembly
of higher order complexes that promote piRNA biogenesis and
transposon silencing.

Transposon silencing

The majority of Drosophila piRNAs map to transposons and
other repetitive elements, and piRNA mutations lead to massive
transposon overexpression. piRNA-PIWI complexes are there-
fore assumed to directly control transposon activity. piRNAs
bound to PIWT proteins direct homology-dependent target cleav-
age in vitro, suggesting that transposons are silenced through
post-transcriptional transcript destruction (Saito et al., 2006;
Gunawardane et al., 2007; Nishida et al., 2007). Intriguingly, a
number of the piRNA pathway components, including Aub and
Ago3, localize to Nuage, an evolutionarily conserved perinuclear
structure associated with germline RNA processing (Eddy, 1974;
Ikenishi, 1998; Saito et al., 2006; Brennecke et al., 2007;
Gunawardane et al., 2007; Nishida et al., 2007). In addition,
protein-coding genes with transposon insertions within introns
escape silencing by the piRNA pathway. These observations sug-
gest that piRNAs bound to Aub and Ago3 direct homology-
dependent cleavage of mature transposon transcripts after
export from the nucleus (Fig. 1 D). In this model, protein-coding
genes containing intronic transposon insertions are not silenced
because piRNA homology is removed by splicing.

However, several lines of evidence raise the possibility that
piRNAs act at several levels. Piwi, the founding member of the
PIWI clade, localizes to the nucleus, binds HP1a, and has been
implicated in heterochromatin assembly in the soma (Pal-Bhadra
et al., 2004; Brower-Toland et al., 2007). In addition, mutations
in spn-E, which encodes a putative helicase required for piRNA
production, reduce HP1a binding to the telomere-specific trans-
poson TART (Klenov et al., 2007). These findings suggest that
piRNA bound to Piwi guide heterochromatin assembly, and thus
impose transcriptional silencing. Consistent with this specula-
tion, piRNA mutations reduce DNA methylation in mouse testes.
However, piRNAs have also been found in polysome fractions
(Grivna et al., 2006b) and the mouse Piwi protein Mili associates
with translation initiation factors and may positively regulate
translation (Unhavaithaya et al., 2009). These findings raise the
possibility that piRNAs also control translation (Fig. 1 D).

piRNA control of gene expression
In many organisms, including poriferans, cnidarians, Caeno-
rhabditis elegans, and mouse, the majority of piRNAs map to
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Axis specification in wild type ovaries

Region 1: Stem cells (red)
and mitotic cystoblasts
(light green). Region 2b (dark green):
Meiosis restricted to pro-oocyte.

Region 2a:
Meiosis initiated (green).

Region 3/stage2 (blue): Microtubules
direct grk mRNA (yellow) to posterior.

Early stage 8. Cortical microtubules and
Kinesin drive osk mRNA (red) to the
interior.

Late stage 8/9. Posterior microtubules
depolymerize. osk mRNA moves to the
posterior.

Axis specification in piRNA mutants

Region 1. piRNA

mutations disrupt stem Region 2b: Transposons mobilized,
triggering DNA breaks. —

cell proliferation.

Region 2a: Meiosis

initiated normally. Region 3/stage2. Chk2 activation

disrupts microtubules/Grk
signaling.

Late stage 8/9. Posterior microtubules
persist. osk mRNA remains internal.

Early stage 8. Cortical microtubules
move osk mRNA (red) to the interior.

Figure 2. Microtubule polarity and axis specification in wild-type and piRNA mutant oocytes. A pair of germline stem cells (red) in region 1 of the
germarium divide to produce cystoblasts (light green), which undergo four divisions with incomplete cytokinesis to generate infer-connected 16-cell cysts.
Meiotic recombination initiates in region 2a (green) and DSBs are formed. Meiosis is restricted to a single pro-oocyte in the center of the cyst in region 2b
(dark green). DSBs are repaired by region3/stage 2 (blue) of cogenesis. A microtubule-organizing center (MTOC) forms in the oocyte where microtubules
direct osk mRNA (yellow) to the posterior pole. In piRNA mutants, meiosis is initiated normally in region 2a (B). However, transposons are overexpressed
and DSBs accumulate in region 2b. DSBs persist in region 3, activating Chk2 signaling, which blocks MTOC formation and grk mRNA localization. Bottom
panel shows early and late stage 8 oocytes in wt (A) and piRNA mutants (B). The oocyte cortex nucleates microtubules (green, arrowheads indicate plus
end). Kinesin moves osk mRNA (red) to the inferior. In the wild type, posterior follicle cells (yellow) signal to the oocyte (blue arrow), triggering depolymer-
ization of cortical microtubules. Osk mRNA moves to the posterior by kinesin-dependent random walk. In piRNA mutants (B, bottom panel), osk mRNA
moves to the inferior, but posterior follicle cell signaling fails, posterior microtubules persist, and osk mRNA is trapped in the inferior.

the unannotated regions of the genome and only a limited set
match transposons and other repeats (Aravin et al., 2006; Girard
et al., 2006; Ruby et al., 2006; Batista et al., 2008; Grimson
et al., 2008). Drosophila also express piRNAs derived from the
3'-UTRs of a subset of mRNAs (Aravin et al., 2006; Robine
et al., 2009; Saito et al., 2009). These observations suggest that
piRNAs may control gene expression. Several recent studies
support this hypothesis. The most abundant genic piRNAs in
Drosophila somatic cells are linked to the 3'-UTR of a tran-
scription factor, traffic jam (1j) (Robine et al., 2009; Saito et al.,
2009). In cultured somatic cells, #j piRNAs coimmunoprecipi-
tate with Piwi protein, and in ovaries their levels are reduced
in zucchini mutants, but not in ovaries mutant for several
other genes implicated in secondary piRNA amplification (Saito
et al.,2009). Mutations in #j appear to reduce Piwi protein levels
in somatic follicle cells, suggesting that this locus controls Piwi
expression and is the source of piRNAs that bind to it. Muta-
tions in #j and piwi produce similar defects in oogenesis and
lead to two- to fourfold overexpression of FaslIl, a cell adhe-
sion molecule necessary for oogenesis. These changes are mod-
est compared with the 100-200-fold increases in transposon
expression observed in several piRNA pathway mutants. None-
theless, these findings suggest that piRNAs from the # locus
down-regulate fas/II in the somatic follicle cells (Saito et al.,
2009). In fly testes, the vasa and stellate (ste) genes also appear
to be targeted by the piRNA pathway (Aravin et al., 2001; Vagin
et al., 2006; Nishida et al., 2007). The vasa gene encodes a

germline-specific DEAD box protein required for piRNA pro-
duction (Schiipbach and Wieschaus, 1991; Malone et al., 2009),
piRNAs derived from the AT-chX-1 and AT-chX-2 loci are ho-
mologous to the vasa gene, and mutations in aub and ago3 that
disrupt production of these piRNAs lead to Vasa overexpression
(Nishida et al., 2007; Li et al., 2009). During early embryogen-
esis, maternally deposited mRNAs are destroyed as transcrip-
tion is activated, leading to a switch from maternal to zygotic
control of development. Recent studies suggest that the piRNA
pathway may have a role in this developmental switch (Rouget
et al., 2010). However, genome-wide tiling array analyses show
that mutations in the piRNA pathway genes aub, ago3, rhi, and
armi do not significantly alter expression of protein-coding
genes during oogenesis (Klattenhoff et al., 2009; Li et al., 2009).
piRNA control of gene expression may therefore be restricted to
specific tissues or developmental stages.

piRNA function and Drosophila

germline development

In every system studied to date, mutations in piRNA pathway
genes disrupt germline development, often producing complex
and poorly understood phenotypes that are difficult to directly
associate with transposon targets of the pathway. Analyses of
the ovarian phenotypes in Drosophila piRNA mutants, however,
have helped link transposon mobilization to germline develop-
ment and may provide a paradigm for phenotypic analysis of
piRNA mutants in other systems.
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Drosophila oogenesis is initiated by the division of a
germline stem cell within a somatic cell niche at the tip of the
germarium (Fig. 2; Spradling, 1993). Signaling between the
niche and the stem cell controls stem cell division and is likely
to orient division plane (Deng and Lin, 1997; Lin and Spradling,
1997). The latter process is critical to asymmetric cleavage,
which regenerates the stem cell and produces the cystoblast
precursor of the oocyte and nurse cells (Deng and Lin, 1997).
Mutations in piwi, which encodes a founding member of the
PIWI clade of Argonaute proteins, lead to a near complete loss
of germline stem cells (Cox et al., 1998). Genetic mosaic studies
indicate that Piwi protein is required in both the somatic cells of
the niche and in the germline (Cox et al., 1998, 2000). Eliminat-
ing piwi from the soma disrupts stem cell maintenance, but does
not alter the viability of the eggs that are produced (Cox et al.,
2000). In contrast, germline clones of piwi mutations slow stem
cell division and the eggs that are produced do not hatch (Cox
et al., 2000). Unlike mutations in many other piRNA pathway
genes, however, piwi germline clones do not disrupt oocyte pat-
terning, which appears to be a downstream consequence of
transposon overexpression (see below). The function for Piwi
and piRNAs in stem cell maintenance and divisions are not well
understood, and may be distinct from latter functions in trans-
poson control.

In the majority of piRNA pathway mutations, the earliest
phenotype is an increase in DNA damage in germline cells of
the germarium (Klattenhoff et al., 2007, 2009). After stem cell
division, the cystoblast proceeds through four incomplete divi-
sions to produce a cyst of 16 interconnected cells that will dif-
ferentiate into a single oocyte and the nurse cells (Spradling,
1993). Region 2a of the germarium contains early 16 cell cysts,
and all 16 cells begin to accumulate double-strand breaks and
initiate synaptonemal complex (SC) assembly (Carpenter, 1975,
1979). The SC is progressively restricted to a single oocyte, lo-
cated at the posterior pole, as cysts progress to region 3, where
they are surrounded by a monolayer of somatic follicle cells and
bud from the germarium to form stage 2 egg chambers (Spradling
et al., 1997). During the progression, meiotic DNA breaks are
first restricted to the pro-oocyte and then repaired in the oocyte
(Jang et al., 2003). Reorganization of the microtubule cytoskel-
eton is coordinated with these nuclear changes. In early region
2a cysts, the microtubule network shows no clear polarity. How-
ever, a single microtubule-organizing center (MTOC), focused
on the pro-oocyte, begins to dominate as cysts progress through
region 2b and into region 3. This polarized microtubule scaffold
is required for asymmetric localization of a TGF-3 homologue
encoded by the grk gene, which signals to posterior follicle
cells that are in contact with the pro-oocyte. This initiates a
reciprocal germline-to-soma signaling cascade that patterns
the oocyte and the surrounding egg shell (Schiipbach, 1987;
Neuman-Silberberg and Schiipbach, 1993). In piRNA mutants,
double-strand breaks form normally in region 2a cysts, but the
breaks persist and appear to increase as egg chambers mature
(Klattenhoff et al., 2007). In addition, the microtubule network
is not polarized, which disrupts Grk signaling and initiation of
oocyte patterning (Chen et al., 2007; Klattenhoff et al., 2007,
2009; Pane et al., 2007).
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The first clear oocyte patterning defects associated with
piRNA mutations are observed in late stage 8 and early stage 9
(Chen et al., 2007; Klattenhoff et al., 2007; Pane et al., 2007).
By early stage 8, most of the oocyte cortex appears to nucleate
microtubules, and the microtubule network shows no clear polarity.
At this stage, osk mRNA, which specifies the posterior pole, is
localized to the anterior and lateral cortex (Kim-Ha et al., 1991).
By stage 9, however, osk mRNA is tightly localized to the poste-
rior cortex. Both fluorescence in situ hybridization and time-lapse
studies using molecular beacons show that osk mRNA transiently
accumulates in the center of the oocyte before moving to the pos-
terior pole (Cha et al., 2002; Bratu et al., 2003). The second step
in osk mRNA localization temporally correlates with loss of cor-
tical microtubules specifically at the posterior pole, and muta-
tions in grk, pka, and parl trap osk mRNA in the interior of the
oocyte and block depolymerization of microtubules at the poste-
rior cortex (Lane and Kalderon, 1993; Roth et al., 1995; Cox
et al., 2001; Benton et al., 2002). In addition, osk mRNA re-
mains uniformly at the cortex in oocytes mutant for khc, which
encodes the plus end—directed microtubule motor kinesin-I
(Brendza et al., 2000; Cha et al., 2002). These findings support a
two-step model in which microtubules nucleated at the cortex and
randomly projecting into the oocyte support kinesin-dependent
movement of osk mRNA toward the interior. Depolymerization
of posterior microtubules, induced by a signal from the posterior
follicle cells and mediated by par-1 and cAMP-dependent pro-
tein kinase in the oocyte, eliminates the cortical exclusion force
specifically at the posterior pole (Fig. 2). The remaining oocyte
microtubules then support a biased random walk toward the pos-
terior (Serbus et al., 2005; Zimyanin et al., 2008). Assembly of a
single MTOC in the oocyte during early oogenesis thus leads to
polarized Grk signaling to follicle cells (Fig. 2, bottom), which
differentiate and signal back to the oocyte during mid-oogenesis,
inducing a second microtubule reorganization that allows osk
mRNA movement to the posterior cortex (Fig. 2 A). At the same
time, grk mRNA localizes to the anterior—dorsal cortex of the
oocyte, leading to Grk/TGF-3 signaling to the dorsal follicle
cells. It is unclear how grk mRNA moves to the dorsal cortex, but
this process requires microtubules and the minus-end motor,
dynein. Mutations that disrupt osk mRNA localization generally
disrupt grk mRNA localization, suggesting that both processes
may be initiated by Grk signaling from the oocyte to the follicle
cells during early oogenesis.

In piRNA pathway mutants, osk mRNA fails to localize
to the posterior pole and grk mRNA fails to localize to the dor-
sal cortex during late stage 9 and early stage 10, and this corre-
lates with persistence of cortical microtubules at the posterior pole
(Fig. 2 B; Cook et al., 2004; Chen et al., 2007; Klattenhoff
etal.,2007; Pane et al., 2007). These patterning defects during mid-
oogenesis lead to production of elongated eggs with reduced or
missing dorsal appendages, which are egg shell structures in-
duced by Grk signaling. These findings suggest that piRNA
mutations disrupt assembly of the MTOC early in oogenesis,
disrupting an early step in oocyte patterning that ultimately
leads to production of spindle-shaped eggs.

Insight into the link between piRNA function in transpo-
son silencing and these polarity defects came from studies by
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Figure 3. piRNA mutations trigger Chk2-dependent defects in micro-
tubule polarity. (A) Osk protein (green) localizes to the posterior of wild-
type stage 9 oocytes (wt), but is dispersed in armi mutants (armi). Posterior
localization of Osk protein is restored in ococytes mutant for both armi and
mnk, which encodes the DNA damage signaling kinase Chk2 (mnk;armi).
F-actin is shown in red. Adapted from Klattenhoff et al. (2007) with permis-
sion from Elsevier. The insets show chromatin organization in the oocyte.
(B) During early oogenesis in wildtype females (wt), a prominent micro-
tubule-organizing center (MTOC) forms in the pro-oocyte. The resulting
microtubule scaffold mediates asymmetric grk mRNA localization and Grk
signaling to the follicle cells, initiating axis specification. The MTOC fails
to form in armi mutants. In contrast, a prominent MTOC forms in female
mutants for both armi and mnk.

Ghabrial et al. (1998), who showed that a subset of spindle class
genes encodes meiotic DNA break repair enzymes, and that these
mutations lead to persistent DNA breaks during early oogenesis.
They speculated that these breaks activate damage signaling, which
in turn disrupts oocyte patterning. Supporting this hypothesis, they
showed that mutations in mei-41 and mnk, which encode ATR and
Chk2 kinases that function in DNA damage signaling, suppress the
axis specification defects associated with meiotic DNA repair mu-
tations (Ghabrial and Schiipbach, 1999; Abdu et al., 2002). Transpo-
son mobilization, and particularly the excision of DNA elements,
can lead to DNA breaks (Belgnaoui et al., 2006; Gasior et al.,
2006), and piRNA mutations lead to persistent DNA damage dur-
ing early oogenesis. Significantly, mutations in mnk and mei-41
dramatically suppress the patterning defects associated with these
mutations (Fig. 3 A; Chen et al., 2007; Klattenhoff et al., 2007,
2009; Pane et al., 2007). These observations support a model in
which loss of silencing leads to transposon mobilization and DNA
break accumulation, which in turn triggers Chk2-dependent de-
fects in axis specification (Klattenhoff and Theurkauf, 2008).

As noted above, posterior patterning of the oocyte appears to
require assembly of a single MTOC in the pro-oocyte during
oogenesis. This leads to oocyte-specific localization of grk mRNA
and Grk/TGF-f signaling to the posterior follicle cells. Mutations in
the piRNA genes armi and aub disrupt this MTOC, and the sub-
sequent depolymerization of microtubules at the posterior cortex of
stage 9 oocytes (Cook et al., 2004). Significantly, the mutations in
mnk and mei-41 that suppress defects in patterning also restore
MTOC formation during early oogenesis (Fig. 3 B; Klattenhoff
etal., 2007). In early Drosophila embryos, Chk?2 activation triggers
v-tubulin ring complex dissociation from centrosomes, disrupt-
ing mitotic MTOC formation (Takada et al., 2003). Taken together,

these finding suggest that piRNA pathway mutations lead to
transposon overexpression and mobilization, which triggers
Chk2-dependent defects in MTOC formation early in oogenesis,
thus preventing an early step in the oocyte patterning cascade
(Fig. 3, A and B).

Although this model is appealing, DNA damage in the
piRNA pathway mutations has not been directly linked to transpo-
son mobilization, and the mechanism of Chk2-dependent disrup-
tion of the oocyte MTOC remains to be determined. In addition,
mutations in mnk and mei-41 do not suppress the maternal-effect
embryonic lethality associated with piRNA pathway mutation,
and the essential embryonic functions for this pathway remain to
be explored. Nonetheless, the available data suggest that the axis
specification defects produced by many Drosophila piRNA muta-
tions are an indirect consequence of transposon overexpression
and DNA damage signaling.

Conclusions

Mutations that disrupt the piRNA pathway in mouse and fish lead
to germline-specific cell death and sterility, and are also associated
with increased transposon expression (Aravin et al., 2007; Carmell
et al., 2007; Houwing et al., 2007). Studies in Drosophila suggest
that transposon mobilization represents the primary biological trig-
ger for these phenotypes, and that mobile elements are the primary
targets for the piRNA pathway. However, the vast majority of
piRNAs in the mouse germline map to unique sequences in un-
annotated regions of the genome, a subset of Drosophila piRNAs
is derived from protein-coding genes, and piRNAs appear to control
at least one gene target in Drosophila ovarian somatic cells. The
biological relevance of genic piRNAs remains to be fully explored.
There is also intriguing data implicating the piRNA pathway in
learning and memory and chromatin assembly in the soma (Pal-
Bhadra et al., 2004; Ashraf et al., 2006; Brower-Toland et al., 2007),
and we have recently found that a subset of piRNA pathway muta-
tions disrupt telomere protection and lead to chromosome fusion
segregation during meiosis and mitosis (Khurana et al., 2010). The
biological function for this novel class of small RNAs may there-
fore extend well beyond transposons and germline development.
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