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Introduction
Synaptotagmins comprise a family of type I membrane proteins 
characterized by a short N-terminal region, a single transmembrane 
domain, a variable spacer region, and two highly conserved cyto-
solic C2 domains. Most synaptotagmins bind Ca2+ through their 
C2 domains, and the two most abundantly expressed isoforms, 
synaptotagmin I (Syt I) and synaptotagmin VII (Syt VII), were 
shown to directly confer Ca2+ sensitivity to membrane fusion reac-
tions (Bhalla et al., 2005). Syt I expression is largely restricted to 
neurons (Li et al., 1995), where it regulates Ca2+-triggered exocyto-
sis of synaptic vesicles and neurotransmitter release (Chapman, 
2008). Syt VII is more broadly expressed (Li et al., 1995), being lo-
calized on secretory granules of pancreatic cells (Gao et al., 2000; 
Gauthier et al., 2008; Gustavsson et al., 2009) and on lysosomal 
compartments of several cell types, from fibroblasts and epithe-
lial cells to macrophages and dendritic cells (Martinez et al., 2000; 
Fukuda et al., 2004; Czibener et al., 2006; Monterrat et al., 2007; 
Zhao et al., 2008; Becker et al., 2009).

Functional inhibition or genetic ablation experiments 
showed that Syt VII regulates Ca2+-dependent insulin and gluca-
gon secretion by pancreatic cells (Li et al., 2007; Gauthier et al., 
2008; Gustavsson et al., 2008, 2009) and the exocytosis of conven-
tional lysosomes in several cell types (Martinez et al., 2000;  
Andrews and Chakrabarti, 2005; Czibener et al., 2006). Ca2+- 
triggered lysosomal exocytosis is a major component of the pro-
cess by which eukaryotic cells repair lesions on their plasma 
membrane (Reddy et al., 2001; Keefe et al., 2005; Idone et al., 
2008). Ca2+-regulated delivery of lysosomal membranes to the cell 
surface is also involved in the phagocytic uptake of particles by 
macrophages (Braun et al., 2004; Czibener et al., 2006). Mutations 
in the Ca2+-binding residues of the C2 domains inhibit Syt VII 
mobilization to nascent phagosomes and abolish a Ca2+-dependent 
component of the phagocytic process (Czibener et al., 2006). 
These findings led to the hypothesis that Syt VII–containing micro
domains might have unique properties that favor their rapid  
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An earlier study showed that bone marrow macrophages 
(BMMs) from Syt VII–deficient mice (Syt VII/) are impaired 
in the phagocytosis of large particles (Czibener et al., 2006). 
Phagocytosis was restored to control levels by expression of 
wild-type Syt VII–YFP, but a Syt VII (D/N)–YFP construct car-
rying mutations in the Ca2+-binding sites did not rescue the pheno
type (Czibener et al., 2006). We further investigated this role  
of Syt VII in phagocytosis by examining the effect of mutations 
in the Syt VII palmitoylation sites. Adenoviral-mediated ex-
pression of the mutated Syt VII (C/S)–YFP construct in Syt 
VII/ BMMs did not restore the phagocytosis of zymosan par-
ticles to the same levels observed after expression of wild-type 
Syt VII–YFP (Fig. 1 B). The lack of complementation of the 
phagocytosis phenotype was not caused by lower expression 
levels because similar amounts of Syt VII–YFP, Syt VII (D/N)–
YFP, and Syt VII (C/S)–YFP were detected in the transduced 
BMMs (Fig. 1 C). Imaging experiments revealed a markedly  
altered localization of the palmitoylation-defective Syt VII  
(C/S)–YFP construct in BMMs. Although Syt VII–YFP, as ex-
pected, was targeted to Lamp1-positive tubular lysosomal com-
partments (Czibener et al., 2006), Syt VII (C/S)–YFP did not 
colocalize with Lamp1, being detected in centrally located 
globular compartments (Fig. 1 D). These results indicate that 
palmitoylation is required for Syt VII to reach lysosomes and to 
participate in the phagocytic process.

Syt VII palmitoylation sites are required for 
Syt VII delivery to nascent phagosomes, 
simultaneously with the lysosomal 
tetraspanin CD63
Three-color live spinning-disk confocal microscopy was used to 
follow the distribution of the Syt VII–YFP or Syt VII (C/S)–YFP 
in relation to two lysosomal proteins, Lamp1-RFP and CFP-
CD63, during the uptake of zymosan particles by Syt VII/ 
BMMs. Whereas Syt VII–YFP and the two other lysosomal pro-
teins colocalized in BMM lysosomal compartments, only Syt 
VII–YFP and CFP-CD63 were rapidly translocated to nascent 
phagosomes. Lamp1-RFP, as previously shown (Czibener et al., 
2006), was delivered to phagosomes with a delayed kinetics  
after the initial extension of Lamp1-positive tubules around 
newly formed phagosomes (Fig. 2 A and Video 1). In contrast, 
Syt VII (C/S)–YFP accumulated in a perinuclear compartment 
that did not contain lysosomal markers and was not targeted 
along with CFP-CD63 to nascent phagosomes. The tubular ex-
tensions containing Lamp1-RFP observed around recent phago-
somes also appeared to be less abundant in BMMs expressing 
Syt VII (C/S)–YFP, although Lamp1 was detected on phago-
somes at later time points (Fig. 2 B and Video 2). These observa-
tions demonstrate that the lysosomal membrane proteins Syt VII 
and CD63 traffic rapidly and simultaneously to phagosomes, but 
in the absence of palmitoylation, Syt VII fails to reach lysosomes 
and to be delivered along with CD63 to nascent phagosomes.

Syt VII is retained in the Golgi apparatus  
in the absence of palmitoylation
To facilitate characterization of the perinuclear compartment where 
the palmitoylation-defective Syt VII (C/S)–YFP accumulated,  

mobilization to the cell surface during Ca2+-triggered phagocyto-
sis and plasma membrane repair.

Despite the limited amount of unique sequence information 
within the synaptotagmin family, different isoforms are sorted to 
distinct subcellular sites. There is still very little information about 
the mechanisms responsible for this differential intracellular tar-
geting. Trafficking of the neuronal isoform Syt I to synaptic vesi-
cles (Matthew et al., 1981; Kabayama et al., 1999) was attributed 
to a dihydrophobic methionine-leucine motif within its extreme  
C terminus (Blagoveshchenskaya et al., 1999), although posttrans-
lational modifications at the N terminus such as N-glycosylation 
(Han et al., 2004), O-glycosylation (Fukuda, 2002; Kanno and 
Fukuda, 2008), and palmitoylation (Heindel et al., 2003; Kang 
et al., 2004) were also proposed to play a role. The trafficking of 
Syt II (Geppert et al., 1991) to neurite terminals was also linked to 
a C-terminal two-residue motif (Krasnov and Enikolopov, 2000), 
whereas a unique region within the spacer domain of Syt IV was 
found to be necessary for Golgi targeting in PC-12 cells (Fukuda 
et al., 2001a). Syt IX, an isoform reported to control the exocytosis 
of -cell granules (Iezzi et al., 2004) and dense core vesicles in 
PC-12 cells (Fukuda et al., 2004), is sorted to recycling endosomes 
in RBL-2H3 and CHO cell lines by a mechanism dependent on 
PKC-mediated phosphorylation (Haberman et al., 2005).

Given the absence of classical lysosomal targeting motifs 
(Braulke and Bonifacino, 2009) in the Syt VII sequence, the steady-
state localization of this isoform on lysosomes has been particularly 
puzzling. An insight into this issue was provided by the detection of 
Syt VII on discrete microdomains of lysosomal compartments in 
macrophages, which are rapidly translocated to the cell surface at 
sites of phagocytosis (Czibener et al., 2006). These findings led us 
to investigate a possible role for dynamic tetraspanin-enriched  
microdomains (TEMs) in the intracellular trafficking of Syt VII. Our 
results demonstrate that palmitoylation-dependent association with 
the lysosomal tetraspanin CD63 is a requirement for the intracellular 
trafficking of Syt VII from the Golgi complex to lysosomes.

Results
Syt VII palmitoylation sites are required for 
lysosomal targeting and efficient 
phagocytosis in macrophages
Cysteine residues located close to the boundary between trans-
membrane and cytoplasmic regions were identified as serine 
palmitoylation sites in numerous membrane proteins (for review 
see Charollais and Van Der Goot, 2009). With the exception of 
Syt XII, all the 17 known synaptotagmin isoforms contain at 
least one cysteine in this region (Heindel et al., 2003; Prescott et al., 
2009). Syt VII has three cysteines within and adjacent to the 
transmembrane domain, C35, C38, and C41 (Fig. 1 A). Earlier 
work showed that replacement of these three cysteines by ala-
nine abolishes Syt VII palmitoylation, which was determined by 
[3H]palmitate incorporation assays (Kang et al., 2004). Because 
mutations in individual cysteines can result in alternative acyl
ation of neighboring cysteines (Abrami et al., 2006), to assess the 
role of palmitoylation in Syt VII localization, we first generated 
a fluorescently tagged construct in which all the three putative pal-
mitoylation sites were replaced by serines (Syt VII (C/S)–YFP).
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galactosyltransferase 1 (GalT; Schaub et al., 2006) fused to RFP 
(GalT-RFP) fully colocalized when coexpressed in NRK cells 
(Fig. 3 B), confirming a Golgi localization of the palmitoylation-
defective Syt VII. The same was observed in transduced BMMs 
(Fig. S1). Colocalization was also observed in NRK cells between 
Syt VII (C/S)–YFP and antibodies to endogenous TGN38, a 
TGN marker (Fig. 3 C).

The effect of individually mutating each of the three cysteines 
adjacent to the transmembrane domain was also investigated.  

we performed colocalization experiments in normal rat kidney 
(NRK) cells. Unlike in BMMs where the lysosomal compart-
ment is extensively tubulated, in NRK cells, lysosomes appear 
as well-defined vesicular compartments. In agreement with ear-
lier studies (Martinez et al., 2000; Caler et al., 2001; Jaiswal et al., 
2002), Syt VII–YFP colocalized with Lamp1-RFP in live NRK 
cells, whereas Syt VII (C/S)–YFP was mistargeted to a peri
nuclear compartment resembling Golgi cisternae (Fig. 3 A). The 
palmitoylation-deficient Syt VII construct and the Golgi enzyme 

Figure 1.  Mutations in Syt VII palmitoylation sites cause defects in lysosomal targeting and BMM phagocytosis. (A) Schematic model of Syt VII depicting 
in red the three cysteines (C35, C38, and C41) adjacent to the transmembrane domain (highlighted in yellow) that were mutated to serines in Syt VII 
(C/S)–YFP. (B) Phagocytosis levels were quantified in Syt VII/ BMMs transduced with adenovirus expressing Syt VII–YFP, Syt VII (D/N)–YFP, and Syt VII 
(C/S)–YFP after exposure to 25 zymosan particles per cell for 1 h. The reduced phagocytosis that is observed in Syt VII/ BMMs was rescued by wild-
type Syt VII–YFP, but not by Syt VII (D/N)–YFP (the Ca2+-binding mutant) or Syt VII (C/S)–YFP (the palmitoylation mutant). The asterisk indicates statistically 
significant differences from the control construct Syt VII–YFP (Student’s t test, P < 0.05). The data represent the means, and the error bars represent the stan-
dard deviation of triplicate determinations. (C) Western blot of the transduced Syt VII/ BMM cell lysates with anti-GFP antibodies showing comparable 
amounts of expressed Syt VII–YFP, Syt VII (D/N)–YFP, or Syt VII (C/S)–YFP. The bottom panel shows the loading control, which was probed with antiactin 
antibodies. The values on top reflect the ratio of Syt VII/actin quantified by ImageJ software. (D) Live confocal images of Syt VII/ BMMs transduced with 
adenovirus encoding Syt VII–YFP or Syt VII (C/S)–YFP and Lamp1-RFP. Syt VII–YFP colocalizes with Lamp1 on tubular lysosomes, but Syt VII (C/S)–YFP 
does not. Bars, 6 µm.
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Consistent with the mutagenesis results, treatment of NRK 
cells with the potent palmitoylation inhibitor 2-bromopalmitate 
(2-BP) also caused Golgi retention of Syt VII–YFP (Fig. 5,  
A and B) without further disrupting the mislocalization of  
Syt VII (C/S)–YFP (Fig. 5 C). Although CD63 is also palmi-
toylated (Yang et al., 2002), 2-BP treatment did not affect  
its colocalization with Lamp1 on lysosomes (Fig. 5 D). The 
retention of Syt VII–YFP in the Golgi induced by 2-BP was 
reversible, with full colocalization with Lamp1-RFP being 

The C35S, C38S, or C41S Syt VII–YFP constructs behaved simi
larly, being partially retained in the perinuclear area (Fig. 4). 
When pairs of cysteines were mutated (C35/41S, C35/38S, or 
C38/41S), full retention in the Golgi was observed, similar to 
what occurs when all three cysteines are replaced (Syt VII  
(C/S)–YFP; Fig. 4). These results strongly suggest that C35, 
C38, and C41 can all be palmitoylated and contribute in a dose- 
dependent manner to the trafficking of Syt VII out of the Golgi 
and into lysosomes.

Figure 2.  Time-lapse imaging of the recruitment of Syt VII, Syt VII (C/S), CD63, and Lamp1 to nascent phagosomes. Syt VII/ BMMs transduced with 
adenovirus expressing CFP-CD63, Lamp1-RFP, and Syt VII–YFP or Syt VII (C/S)–YFP were exposed to 10 zymosan particles per cell and imaged by live 
confocal time-lapse microscopy. (A) Selected video frames showing that Syt VII–YFP and CFP-CD63 are simultaneously recruited to nascent phagosomes, 
followed by membrane tubules containing Lamp1-RFP (Video 1). (B) Selected video frames showing that CFP-CD63 is recruited to nascent phagosomes, 
but Syt VII (C/S)–YFP is not (Video 2). The differential interference contrast (DIC)–, YFP-, CFP-, and RFP-dissociated images for each highlighted phagosome 
(inset boxes) are shown on the right. Bars, 6 µm.
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observed 24 h after washing out the inhibitor (Fig. 6 A).  
Live spinning-disk confocal microscopy detected vesicles 
containing Syt VII–YFP leaving the Golgi region and merg-
ing with Lamp1-RFP–positive lysosomes shortly after 2-BP  
removal from the culture medium (Fig. 6 B and Video 3). 
Thus, mutations or drugs that abolish palmitoylation disrupt 
Syt VII trafficking to lysosomes, resulting in its accumulation 
in the Golgi.

Syt VII is targeted to lysosomes through 
formation of a palmitoylation-dependent 
complex with the lysosomal  
tetraspanin CD63
Time-lapse live imaging of phagocytosis in BMMs revealed 
that Syt VII and CD63 are rapidly and simultaneously mobi-
lized to the membrane of nascent phagosomes, whereas Lamp1 
is delivered with slower kinetics (Fig. 2 A and Video 1).  
Together with earlier evidence that Syt VII forms micro
domains on lysosomes that fully colocalize with CD63, but 
only partially with Lamp1 (Czibener et al., 2006), these ob-
servations suggested that the tetraspanin CD63 might play a 
role in the intracellular transport of Syt VII. We investigated 
this possibility by coexpressing Syt VII–YFP with CFP-CD63 
carrying or not carrying a mutation in the critical tyrosine res-
idue of its lysosomal targeting motif (Rous et al., 2002). As 
previously described (Rous et al., 2002), CFP-CD63 (Y/A) 
accumulated in the plasma membrane instead of trafficking to 
lysosomes. Importantly, when Syt VII–YFP was coexpressed 
with CFP-CD63 (Y/A), it was largely detected on the plasma 
membrane instead of lysosomes (Fig. 7 A). These results di-
rectly demonstrate that the lysosomal targeting motif of CD63 
can direct the trafficking of Syt VII to lysosomes. The small 
fraction of Syt VII that reached lysosomes in cells expressing 
CFP-CD63 (Y/A) is likely to be a consequence of the pres-
ence of low levels of endogenous wild-type CD63 in NRK 
cells (Video 4).

Evidence has been accumulating that members of the 
tetraspanin family, which include CD63, engage in abundant 
lateral associations with each other and with other membrane-
associated molecules, forming functional platforms known as 
tetraspanin “webs” or TEMs (Yang et al., 2002, 2004). The 
fact that trafficking of Syt VII to lysosomes depends on sorting 
signals present on CD63 suggests that these molecules interact 
as part of a palmitoylation-dependent TEM (Fig. 8). To inves-
tigate this possibility, we lysed cells expressing tagged con-
structs of both proteins under the low stringency detergent 
lysis conditions that are known to preserve TEM (Yang et al., 
2002). We found that Syt VII–YFP and FLAG-CD63 are co-
immunoprecipitated from 1% Brij-97 extracts when Syt VII 
palmitoylation sites are intact (Syt VII–YFP) but not when 
those sites are mutated (Syt VII (C/S)–YFP; Fig. 7 B). The 
FLAG-CD63 (Y/A) mutant that is incapable of trafficking to 
the lysosome was also coimmunoprecipitated with Syt VII–
YFP, but not with Syt VII (C/S)–YFP (Fig. 7 C). Thus, the 
palmitoylation-dependent association of Syt VII with CD63, 
which is required for Golgi exit and lysosomal targeting, has 
the properties expected of a TEM. Mutation of the lysosomal 

Figure 3.  Palmitoylation-site mutations lead to Syt VII retention in the 
TGN. (A) NRK cells were transduced with adenovirus expressing Lamp1-
RFP and Syt VII–YFP or Syt VII (C/S)–YFP and imaged by live confocal 
microscopy. Syt VII–YFP colocalizes with the lysosomal marker Lamp1-RFP, 
but Syt VII (C/S)–YFP does not. (B) NRK cells were transduced with adeno-
virus expressing GalT-RFP and Syt VII–YFP or Syt VII (C/S)–YFP and imaged 
by live confocal microscopy. Syt VII (C/S)–YFP colocalizes with the Golgi 
marker GalT-RFP, whereas Syt VII–YFP does not. (C) NRK cells were trans-
duced with adenovirus expressing Syt VII (C/S)–YFP, fixed, labeled with 
antibodies to TGN38, and imaged by confocal microscopy. Syt VII (C/S) 
colocalizes with the trans-Golgi marker TGN38. Bars, 6 µm.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/191/3/599/1570122/jcb_201003021.pdf by guest on 09 February 2026

http://www.jcb.org/cgi/content/full/jcb.201003021/DC1
http://www.jcb.org/cgi/content/full/jcb.201003021/DC1


JCB • VOLUME 191 • NUMBER 3 • 2010� 604

lysosomes. When expressed in siRNA-treated HeLa cells, 
which showed a marked down-regulation of CD63 expression 
(Fig. 9, A and B), Syt VII–YFP was not able to reach lyso-
somes (Fig. 9 C, Lamp1-RFP) and was retained in the Golgi 
(Fig. 9 D, GalT-RFP). In contrast, a construct containing silent 
mutations that render the transcript resistant to silencing by 

targeting motif of CD63 does not disrupt its TEM-like associ-
ation with palmitoylated Syt VII, consistent with the ability of 
CD63 (Y/A) to cause mislocalization of wild-type Syt VII to 
the plasma membrane (Fig. 7 A).

siRNA-mediated silencing confirmed that CD63 is re-
quired for the exit of Syt VII from the TGN and targeting to 

Figure 4.  The Syt VII membrane proximal 
cysteines C35, C38, and C41 are required for 
complete lysosomal localization. NRK cells 
transduced with adenovirus expressing Lamp1-
RFP and either Syt VII–YFP, Syt VII (C35S)–YFP, 
Syt VII (C38S)–YFP, Syt VII (C41S)–YFP, Syt 
VII (C35/38S)–YFP, Syt VII (C35/41S)–YFP, 
Syt VII (C38/41S)–YFP, or Syt VII (C/S)–YFP 
(green) were imaged by live confocal micros-
copy. Images represent maximum-intensity 
projections of 16 Z sections. Cells expressing 
Syt VII single-cysteine mutants display partial 
Syt VII localization to lysosomes and Golgi, 
whereas cells expressing Syt VII double- and 
triple-cysteine mutants display complete Golgi 
retention of Syt VII. Bar, 6 µm.
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Figure 5.  Treatment with the palmitoylation inhibitor 2-bromopalmitate (2-BP) results in Syt VII–YFP retention in the TGN. NRK cells transduced with adeno-
virus expressing Lamp1-RFP (A, C, and D), GalT-RFP (B), Syt VII–YFP (A, B, and D), Syt VII (C/S)–YFP (C), or CFP-CD63 (D) were imaged by live confocal 
microscopy after being treated with 100 µM 2-BP or carrier (Control) for 15 h. (A) Syt VII–YFP is mistargeted to globular structures resembling the Golgi 
apparatus in 2-BP–treated cells. (B) The globular structures containing Syt VII–YFP in 2-BP–treated cells colocalize with the trans-Golgi marker GalT-RFP. 
(C) The localization of Syt VII (C/S)–YFP does not change upon treatment with 2-BP. (D) The localization of CFP-CD63 on lysosomes is not altered by 2-BP 
treatment. Bars, 6 µm.
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Discussion
In this study, we characterize the mechanism by which Syt VII, 
a ubiquitously expressed member of the synaptotagmin family 
of Ca2+ sensors, is targeted to lysosomes in mammalian cells. 

the CD63 siRNA (CFP-resCD63) was targeted normally to 
Lamp1-containing lysosomes and did not cause Syt VII mis-
localization (Fig. 9 E). Thus, Syt VII trafficking out of the 
TGN and into lysosomes specifically requires expression of 
the tetraspanin CD63.

Figure 6.  Syt VII–YFP is targeted to Lamp1-positive compartments upon washout of 2-bromopalmitate (2-BP). NRK cells were transduced with adenovirus 
expressing Syt VII–YFP and Lamp1-RFP, treated with 2-BP for 15 h, and imaged by live confocal microscopy. (A) Syt VII–YFP is detected in the Golgi in 
2-BP–treated cells (top) but fully colocalizes with the lysosomal marker Lamp1-RFP 24 h after washout (bottom). (B) Selected frames of a live-imaging video 
acquired at the rate of 1 frame per minute for 86 min, immediately after 2-BP washout. Arrows indicate vesicles containing Lamp1-RFP that acquire 
Syt VII–YFP over time (Video 3). Bars, 6 µm.
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molecules AP-3 and AP-2, which mediate lysosomal targeting by 
both direct (TGN to lysosomes) and indirect (via the plasma mem-
brane) routes, as well as retrieval from the plasma membrane by 
clathrin-dependent endocytosis (Rous et al., 2002; Bonifacino and 

Our results show that Syt VII leaves the TGN and reaches lyso-
somes as part of a complex with the tetraspanin CD63. The 
GYEVM cytosolic motif that directs CD63 to lysosomes is 
known to be important for its association with the adaptor 

Figure 7.  Palmitoylation-dependent association with 
CD63 determines the localization of Syt VII. (A) Mis
targeting of CD63 affects the localization of Syt VII. 
NRK cells were transduced with adenovirus express-
ing Lamp1-RFP, Syt VII–YFP or Syt VII (C/S)–YFP, and 
CFP-CD63 or CFP-CD63 (Y/A) and imaged by live 
confocal microscopy. Syt VII–YFP and CFP-CD63 co
localize with Lamp1-RFP (top). CFP-CD63 (Y/A) lacking 
a functional lysosomal targeting motif localizes to the 
plasma membrane together with Syt VII–YFP (middle) 
but not with Syt VII (C/S), which is detected in the 
Golgi (bottom; Video 4) and (Video 5). Bars, 6 µm. 
(B and C) Syt VII coimmunoprecipitates with CD63 or 
CD63 (Y/A) only when palmitoylation sites are intact. 
NRK cells were transduced with adenovirus express-
ing FLAG-CD63 (B) or FLAG-CD63 (Y/A) (C) and  
Syt VII–YFP or Syt VII (C/S)–YFP, lysed in 1% Brij-97, 
and immunoprecipitated with anti-FLAG antibodies. 
The lysates and immunoprecipitates were subjected to 
immunoblot analysis with anti-GFP, anti-FLAG, or anti
actin antibodies. Ponceau S staining of the immuno-
globulin light chain was used as a loading control in 
the immunoprecipitates. Coimmunoprecipitation was 
observed between FLAG-CD63 or FLAG-CD63 (Y/A) 
and Syt VII–YFP, but not with the palmitoylation-defective 
Syt VII (C/S)–YFP.
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this view, in neuronal cells, the Golgi palmitoyl acyltransferase 
HIP14 is known to promote palmitoylation of Syt I, but not  
Syt VII (Huang et al., 2004). Expression of HIP14 enhances pal
mitoylation of a subset of synaptic proteins in addition to Syt I,  
reinforcing the view that palmitoylation regulates plasma mem-
brane reorganization and formation of signaling scaffolds in 
neurons (Gauthier-Campbell et al., 2004; Huang et al., 2004). 
Our present results suggest that TEMs enriched in palmitoylated 
CD63 and Syt VII may play a similar role in several cell types.

Despite its steady-state late endosomal/lysosomal localiza-
tion in most cells, CD63 also transits through the plasma membrane 
(Pols and Klumperman, 2009). Thus, by exiting the Golgi as a com-
plex with CD63, Syt VII may also follow this tetraspanin when it 
traffics to the plasma membrane. Whether CD63 and Syt VII are 
reinternalized together is likely to depend on the stability of the 
palmitoylation modifications upon arrival at the plasma membrane. 
Very little is currently known about palmitoyl protein thioesterases, 
the enzymes responsible for reversing palmitoylation, and their 
subcellular localization, but this issue may soon become amenable 
to investigation (for review see Charollais and Van Der Goot, 2009). 
It was reported that the reinternalization of Syt VII from the plasma 
membrane is regulated by at least two distinct internalization sig-
nals and one inhibitory motif located in the C2 domains (Dasgupta 
and Kelly, 2003), implying that retrieval of this Ca2+ sensor may be 
subject to complex regulation, perhaps involved in coupling exo
cytosis and compensatory endocytosis (Dasgupta and Kelly, 2003).

Most members of the tetraspanin family, including CD63, 
are also palmitoylated in the Golgi complex (Yang et al., 2002). 
Palmitoylation is thought to play a central role in the ability of 
tetraspanins to organize themselves and other palmitoylated 
molecules into dynamic signaling microdomains called TEMs 
(Yang et al., 2004; Israels and McMillan-Ward, 2010). Our 
ability to coimmunoprecipitate CD63 and Syt VII, but not  
palmitoylation-defective Syt VII, under the mild detergent extrac-
tion conditions known to preserve TEMs (Yang et al., 2004) is 
consistent with the possibility that Syt VII and CD63 assemble 
into such dynamic membrane scaffolds (Fig. 7). The presence 
of Syt VII within CD63-containing TEMs that can be trans
located to the cell surface in response to Ca2+ raises the intriguing 
possibility that additional components of the exocytic machin-
ery may also be recruited to these microdomains through pal
mitoylation. In agreement with this possibility, the Ca2+ sensor 

Traub, 2003). We found that replacement of the critical tyrosine 
residue in the GYEVM motif by alanine caused the expected 
accumulation of CD63 on the plasma membrane (Rous et al., 
2002) and an identical mistargeting pattern for Syt VII. Further-
more, we found that CD63 expression is required for the trafficking 
of Syt VII out of the TGN and that palmitoylation of Syt VII is 
essential for its association with CD63.

Interactions with CD63 were previously shown to influ-
ence the intracellular trafficking of some membrane proteins, 
but most examples reported involve regulation of the internal-
ization of plasma membrane–resident proteins (Skubitz et al., 
2000; Duffield et al., 2003; Codina et al., 2005) or targeting for 
lysosomal degradation (Takino et al., 2003; Yoshida et al., 
2008). Our present results indicate that association with CD63 
is required for the exit of Syt VII from the TGN and its subse-
quent steady-state localization on lysosomes. Interestingly, there  
is evidence that CD63 participates in the transport of neutrophil 
elastase to secretory granules (Källquist et al., 2008), indicating 
that this pathway may also be important for the trafficking of 
luminal lysosomal hydrolases.

Our finding that palmitoylation is required for the traffick-
ing of Syt VII out of the TGN points to the Golgi complex as the 
likely site where association with CD63 occurs. This conclu-
sion is in agreement with the increasingly prevalent view that 
the Golgi apparatus is a palmitoylation “hot spot.” Of the 23 
known human palmitoyl transferases, 12 localize to the Golgi 
(Fernández-Hernando et al., 2006; Ohno et al., 2006; for review 
see Charollais and Van Der Goot, 2009). Accumulation of the 
Syt VII palmitoylation–defective mutant in the Golgi is consis-
tent with earlier studies of the retention of membrane proteins 
lacking palmitoylation in the Golgi complex, such as the linker 
for activation of T cells protein (Tanimura et al., 2006) and the 
G heterotrimeric G protein subunit (Michaelson et al., 2002). 
Importantly, wild-type Syt VII also failed to exit the TGN when 
cells were depleted in CD63, demonstrating that other tetra
spanin proteins that traffic through the Golgi cannot compen-
sate for the absence of CD63. This finding suggests the existence 
of a mechanism to ensure the specific association of Syt VII 
with CD63, as both proteins traffic through the secretory path-
way. One possibility is that this is achieved through the colocal-
ization of Syt VII and CD63 with a specific palmitoyl transferase 
at a particular site within the Golgi complex. In agreement with 

Figure 8.  Model of CD63-mediated traffick-
ing of Syt VII. Upon acylation by a Golgi-
resident palmitoyl acyltransferase (PAT), Syt VII  
associates with CD63 within a TEM, being 
targeted to lysosomes through the lysosomal 
trafficking motif of CD63.
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seen in experiments on phagosomes containing Cryptococcus 
neoformans, which required acidification for the recruitment of 
CD63, but not of Lamp1 (Artavanis-Tsakonas et al., 2006). These 
observations reinforce our hypothesis that Syt VII and CD63 
coassemble into unique, dynamic lysosomal TEMs that can be 
rapidly translocated to the plasma membrane upon Ca2+ stimu-
lation. The palmitoylation-dependent complexes containing  
Syt VII and CD63 that we identify in this study should now facil-
itate further characterization of the molecular machinery respon-
sible for the mobilization and fusion of lysosomal compartments 
with the plasma membrane.

Materials and methods
Cell culture
Mouse BMMs were prepared from C57BL/6 Syt VII/ mice (Chakrabarti 
et al., 2003) as previously described (Roy et al., 2004). Macrophages 
were seeded on 24-well plates (0.5 ml of a 1.5 × 105–BMM/ml suspen-
sion) for phagocytosis assays or 35-mm glass-bottom dishes (2.0 ml of a 

Syt I and the SNARE molecules syntaxin 1, SNAP25, and 
VAMP2 are palmitoylated in neurons (Prescott et al., 2009). 
Interestingly, the cysteines that serve as palmitoylation sites in 
Syt I are also required for its oligomerization (Fukuda et al., 
2001b), suggesting that the self-association properties reported 
for Syt VII (Fukuda and Mikoshiba, 2000) might be related to 
their ability to assembly into TEMs.

The lysosomal membrane proteins Lamp1 and Lamp2 are 
predominantly located on the limiting membrane of lysosomal 
organelles, whereas CD63 and other tetraspanins are enriched in 
intraluminal vesicles (Escola et al., 1998; Trajkovic et al., 2008). 
There is also evidence for partitioning between Lamp1 and Syt VII 
localization within lysosomal membranes, particularly within 
the extensive tubular compartments of primary macrophages 
(Czibener et al., 2006). In this study, we show that Syt VII and 
CD63 move rapidly and simultaneously from lysosomes to 
nascent phagosomes before the delivery of Lamp1. Such differ-
ences in dynamic behavior between CD63 and Lamp1 were also 

Figure 9.  CD63 is required for Syt VII trafficking to lysosomes. (A) HeLa cells were treated with Lipofectamine alone, control siRNA, or CD63 siRNA. 
Immunoblotting was performed with anti-CD63 antibodies. Antiactin antibodies were used as loading controls. (B) Fluorescence confocal images of cells 
treated with control or CD63 siRNA after fixation, permeabilization, immunofluorescence with antibodies to CD63, and DNA staining with DAPI. (C and D)  
HeLa cells treated with control or CD63 siRNA were transduced with adenovirus expressing Syt VII–YFP and Lamp1-RFP or GalT-RFP and imaged by  
live confocal microscopy. CD63 transcriptional silencing abolished the colocalization of Syt VII–YFP with Lamp1-RFP (C), causing its retention in the Golgi (D).  
(E) HeLa cells treated with control or CD63 siRNA were transduced with adenovirus expressing Syt VII–YFP, Lamp1-RFP, and CFP-resCD63, encoding silent 
mutations rendering the transcript resistant to CD63 siRNA-mediated silencing. CFP-resCD63 expression was not inhibited by CD63 siRNA, allowing  
normal colocalization of Syt VII–YFP with Lamp1-RFP. Bars, 6 µm.
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purified adenovirus encoding Syt VII–YFP or Syt VII (C/S)–YFP and Lamp1-RFP 
at a 100:1 MOI for each strain of adenovirus. For NRKs, cells were trans-
duced for 18 h by replacing the culture media with NRK-imaging media 
(DME without phenol red [10% FBS, 1% penicillin/streptomycin, and 1 mM 
sodium pyruvate]) containing purified adenovirus encoding Syt VII–YFP or 
Syt VII (C/S)–YFP in addition to adenovirus encoding either Lamp1-RFP or 
GalT-RFP at a 50:1 MOI. For HeLa, cells were transduced for 18 h by replac-
ing the culture media with HeLa-imaging media (DME without phenol red 
[10% FBS and 1% penicillin/streptomycin]) containing purified adenovirus 
encoding Syt VII–YFP in addition to adenovirus encoding either Lamp1-RFP or 
GalT-RFP at a 10:1 MOI. For the siRNA rescue experiments, HeLa cells were 
also transduced with adenovirus encoding CFP-resCD63 at a 10:1 MOI.

For imaging, dishes were placed in a chamber (LiveCell System;  
Pathology Devices, Inc.) at 37°C with 5% CO2 attached to an inverted 
microscope with a 60× NA 1.4 objective (Eclipse Ti; Nikon). Spinning-disk 
confocal images were acquired using the UltraVIEW VoX system (Perkin
Elmer) equipped with a camera (C9100-50; Hamamatsu), analyzed, and 
edited using the Volocity Software Suite (PerkinElmer). Final image  set-
tings were changed to 1.4.

Phagocytosis assays
Microscopy-based phagocytosis assays were conducted as previously re-
ported (Czibener et al., 2006). In brief, Syt VII/ BMMs were transduced 
with adenovirus encoding Syt VII–YFP, Syt VII (C/S)–YFP, or Syt VII  
(D/N)–YFP at an MOI of 100:1 for 24 h. After transduction, zymosan red 
bioparticles (Invitrogen) were incubated for 1 h at a ratio of 25 particles 
per cell. The cells were washed four times with PBS and fixed for 15 min 
in 4% PFA. Coverslips were mounted with antifade reagent (ProLong 
Gold; Invitrogen) and analyzed on a microscope (Axiovert 200; Carl 
Zeiss, Inc.) equipped with a camera (CoolSNAP HQ; Roper Industries) 
controlled by Metamorph software (MDS Analytical Technologies). The 
number of zymosan particles within 300–350 BMMs was determined micro
scopically for each construct. For live-cell imaging of zymosan uptake, 
BMMs were transduced with adenovirus encoding Syt VII–YFP or Syt VII 
(C/S)–YFP in addition to Lamp1-RFP and CFP-CD63 as described in the 
previous section. After 24 h, unlabeled zymosan particles were added to 
the glass-bottom dishes at a ratio of 10 particles per cell, and images 
were acquired at one frame every 10 s on the spinning-disk confocal 
microscope system as described in the previous section. All videos were 
analyzed and edited using the Volocity software suite and exported as 
video files (QuickTime; Apple).

CD63 transcriptional silencing and complementation with ectopically 
expressed CD63
HeLa cells were transfected with Lipofectamine RNAiMAX (Invitrogen) and 
160 pmol of medium G-C content control (12935300) or CD63 (HSS101615; 
[RNA] 5-GGCCUGCAAGGAGAACUAUUGUCUU-3) Stealth siRNA du-
plexes according to the manufacturer’s instructions (Invitrogen). At 24 h after 
transfection, the cells were transfected again as outlined in the previous 
section. At 48 h after the initial transfection, the cells were transduced with 
adenovirus expressing Syt VII–YFP, Lamp1-RFP, GalT-RFP, and/or CFP-
resCD63 and imaged as outlined in the previous section.

Palmitoylation inhibition, live-cell imaging, and image analysis
NRK cells were seeded in glass-bottom dishes and allowed to attach to the 
dish for 6 h. The NRK media were then replaced with DME without phenol 
red containing 2.5% FBS, 0.25% defatted BSA (Sigma-Aldrich), 1 mM so-
dium pyruvate, and 1% penicillin/streptomycin with or without 2-BP (Sigma-
Aldrich) as previously described (Webb et al., 2000). The cells were 
simultaneously transduced with adenovirus encoding Lamp1-RFP or GalT-RFP 
and either Syt VII–YFP or Syt VII (C/S)–YFP for 15 h and imaged as de-
scribed in the previous section.

For washout experiments, the 2-BP media were replaced with NRK-
imaging media, and the glass-bottom dishes were placed in the LiveCell 
System chamber. Cells were imaged with the spinning-disk confocal  
microscopy system as described in the previous section at one focal plane 
maintained by the Perfect Focus System (Nikon), capturing one image  
every minute. All videos were analyzed and edited using the Volocity soft-
ware suite and exported as QuickTime video files.

Immunofluorescence and confocal imaging
HeLa cells treated with siRNA as described in the previous section were 
washed with PBS, fixed with 5% PFA, washed and incubated with 50 mM 
NH4Cl2 for 30 min, and permeabilized with 0.1% saponin and 1.0% 
BSA in PBS. Permeabilized cells were incubated with blocking buffer 
(5.0% horse serum, 1.0% BSA, and 0.1% saponin in PBS) for 1 h, 

0.5 × 105–BMM/ml suspension; MatTek Corporation) 24 h before experi-
ments and incubated in BMM-imaging media (RPMI without phenol red, 
10% FBS, 20% L cell–conditioned supernatant, and 1% penicillin/strepto-
mycin) at 37°C and 5% CO2.

NRK cells were seeded on 35-mm glass-bottom dishes (2.0 ml of a 
0.5 × 105–cell/ml suspension) 24 h before experiments in DME (10% FBS, 
1% penicillin/streptomycin, and 1 mM sodium pyruvate) and incubated at 
37°C and 5% CO2. HeLa CCL-2 cells (American Type Culture Collection) 
were seeded on 35-mm glass-bottom dishes (2.0 ml of 0.75 × 105 cells/ml) 
24 h before experiments in DME (10% FBS and 1% penicillin/streptomycin) 
and incubated at 37°C and 5% CO2.

Site-directed mutagenesis, adenoviral vector construction,  
and adenoviral amplification
The C35S, C38S, and C41S mutations that result in a palmitoylation-deficient 
Syt VII protein were introduced into the Syt VII–YFP plasmid pLZRS–Syt VII–YFP 
(Czibener et al., 2006) using a site-directed mutagenesis kit (QuikChange; 
Agilent Technologies) to yield the pLZRS–Syt VII (C/S)–YFP plasmid. The  
Syt VII–YFP, Syt VII (C/S)–YFP, and Syt VII (D/N)–YFP constructs (Czibener et al.,  
2006) were cloned into NotI and EcoRV sites of the pShuttle-cytomegalovirus 
(CMV) plasmid (Agilent Technologies) to yield pSCMV–Syt VII–YFP, pSCMV–
Syt VII (C/S)–YFP, and pSCMV–Syt VII (D/N)–YFP. Plasmids encoding the  
Syt VII single- and double-cysteine mutants were generated via site-directed 
mutagenesis using the pSCMV–Syt VII–YFP plasmid as the template to yield the 
constructs pSCMV–Syt VII (C35S)–YFP, pSCMV–Syt VII (C38S)–YFP, pSCMV–
Syt VII (C41S)–YFP, pSCMV–Syt VII (C35/38S)–YFP, pSCMV–Syt VII (C35/
41S)–YFP, and pSCMV–Syt VII (C38/41S)–YFP.

For CFP-CD63, restriction fragments were generated for the CFP-
tagged human CD63 (NotI–EcoRV) from the pLZRS-CFP-CD63 plasmid 
(Czibener et al., 2006) and for RFP-tagged rat Lamp1 (HindIII–EcoRV) from 
the pLZRS-Lamp1-RFP plasmid (Czibener et al., 2006) by PCR using  
primers encoding the aforementioned sites. The restriction fragments were 
cloned into pShuttle-CMV using the same sites to yield pSCMV-CFP-CD63 
and pSCMV-Lamp1-RFP. A plasmid encoding an RNAi-resistant CFP-CD63, 
pSCMV-CFP-resCD63, was constructed by creating silent mutations in the 
coding sequence target of the siRNA (5-GGGGCCTGCAAGGAGAAC-
TATTGTCTT-3 to 5-GGAGCTTGTAAAGAGAATTACTGCCTC-3) by in-
verse PCR using pSCMV-CFP-CD63 as a template. The Y261A mutation in 
CD63 that blocks its lysosomal localization was introduced by a site- 
directed mutagenesis kit (QuikChange) into the plasmid pLZRS-CFP-CD63, 
followed by cloning into the NotI and EcoRV sites of pShuttle-CMV to yield 
pSCMV-CFP-CD63-Y/A. A restriction fragment (SnaBI–NotI) containing 
GalT-RFP was generated directly from pgalT-RFP (a gift from B. Lindenbach, 
Yale University, New Haven, CT; Murata et al., 2006) and cloned into the 
same restriction sites of pShuttle-CMV to yield pSCMV-GalT-RFP.

The plasmid encoding a 3×FLAG epitope–tagged CD63 was gener-
ated by first amplifying the CD63 ORF from plasmid pLZRS-CFP-CD63 with 
primers encoding an NruI site immediately after the start codon of CD63 
to yield a fragment flanked by NotI and EcorV restriction sites. The resulting 
fragment was then cloned into the pCR4Blunt-TOPO vector using the Zero 
Blunt TOPO PCR Cloning kit (Invitrogen) to generate the pTopo-NruI-CD63 
plasmid. A blunt-end DNA fragment encoding the 3×FLAG epitope tag 
(Sigma-Aldrich) was amplified and cloned into the NruI site of pTopo-NruI-
CD63. The resulting ORF encoding 3×FLAG-CD63 was cloned into the 
NotI and EcoRV sites of pShuttle-CMV to yield pSCMV-3×FLAG-CD63. The 
Y261A mutation in CD63 that blocks its lysosomal localization was intro-
duced by a site-directed mutagenesis kit (QuikChange) into the plasmid 
pLZRS-CFP-CD63, followed by cloning into the NotI and EcoRV sites of 
pShuttle-CMV to yield pSCMV-CFP-CD63-Y/A. To generate a plasmid  
encoding the 3×FLAG-CD63 Y261A mutant, a site-directed mutagene-
sis kit (QuikChange) was used with pSCMV-3×FLAG-CD63 to yield 
pSCMV-3×FLAG-CD63-Y/A.

The resulting pShuttle-CMV vectors were transformed into BJ5183-
AD-1 cells (Agilent Technologies) and screened for pAdEasy-1 recombinants 
as outlined in the AdEasy XL Adenoviral Vector System manual (Agilent 
Technologies). Adenovirus production and amplification were performed as 
previously described (Luo et al., 2007). Virus purification and concentration 
were accomplished using an adenovirus purification column (Virakit;  
Virapur) according to the manufacturer’s protocol. The purified virus was  
titered by plaque assay and frozen at 80°C.

Adenoviral transduction, live-cell imaging, and image analysis
Before live-cell imaging experiments, BMMs or NRK cells were seeded in 
glass-bottom dishes and allowed to attach for 6 h in BMM or NRK media 
at 37°C and 5% CO2. For Syt VII/ BMMs, the cells were transduced for 
18 h by replacing the culture media with BMM-imaging media containing 
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mouse antibodies (1:10,000; Jackson ImmunoResearch Laboratories, 
Inc.), washed, incubated for 5 min with HRP solution (Immun-Star; Bio-Rad 
Laboratories), and visualized on an imaging system (LAS-3000; Fujifilm). 
Relative protein levels were determined using the ImageJ software  
(National Institutes of Health).

FLAG-CD63 coimmunoprecipitations were performed as previously 
described (Duffield et al., 2003). In brief, NRK cells were seeded in 6-well 
tissue-culture dishes (2 ml of 2.5 × 105 cells/ml) and allowed to attach to 
the dish for 6 h. The cells were transduced with adenovirus encoding Syt 
VII–YFP, Syt VII–YFP/FLAG-CD63, Syt VII (C/S)–YFP/FLAG-CD63, Syt VII–
YFP/FLAG-CD63 (Y/A), or Syt VII (C/S)–YFP/FLAG-CD63 (Y/A) and incu-
bated at 37°C and 5% CO2 for 15 h. The cells were then washed with 
PBS, trypsinized, and resuspended at 1.0 × 106 cells/ml. The 1-ml cell sus-
pensions were incubated in lysis buffer (5 mM MgCl2, 150 mM NaCl,  
25 mM Hepes, pH 7.4, and Complete Protease Inhibitor Cocktail) supple-
mented with 1% Brij-97 (Sigma-Aldrich) at 4°C for 1 h. The lysates were 
cleared by centrifugation at 10,000 g for 30 min at 4°C and incubated 
with a 20-µl bed volume of anti-FLAG M2 affinity gel (EZview red; Sigma-
Aldrich) for 2 h at 4°C. The affinity gel was collected by centrifugation and 
washed four times in 1% Brij-97 lysis buffer at 4°C. After the final wash, 
the resin and samples of the clarified lysates were treated with PNGase F 
(New England Biolabs, Inc.) as directed by the manufacturer. Clarified ly-
sates were then precipitated on ice with 25% TCA, washed with ice-cold 
acetone, and resuspended in SDS-PAGE sample buffer containing 5%  
-mercaptoethanol. The PNGase F–treated resin was incubated in SDS-PAGE 
sample buffer containing 5% -mercaptoethanol and heated to 65°C for 
10 min. The samples were resolved on SDS–10% PAGE and transferred to 
nitrocellulose membranes. To monitor loading levels, membranes were 
stained with Ponceau S stain (Sigma-Aldrich). After blocking with 5%  
dry milk, membranes were incubated for 2 h with mouse anti-FLAG- 
peroxidase (HRP) antibody (1:1,000; Sigma-Aldrich), rabbit anti-GFP anti-
body (1:1,000; Invitrogen), or mouse antiactin (1:1,000; Sigma-Aldrich) 
at room temperature followed by peroxidase-conjugated antibodies and 
visualization as described in the previous section.

Online supplemental material
Fig. S1 shows a live-cell confocal image demonstrating that Syt VII  
(C/S)–YFP colocalizes with the Golgi marker GalT-RFP in bone marrow– 
derived macrophages. Video 1 shows the simultaneous recruitment of 
Syt VII–YFP and CFP-CD63 to nascent phagosomes, followed by Lamp1-
RFP recruitment from dynamic tubular compartments surrounding the 
recently formed phagosome. Video 2 shows CFP-CD63, but not Syt VII 
(C/S)–YFP recruitment to nascent phagosomes. Lamp1 is detected in the 
phagosome, but only at later time points. Video 3 shows the redistribu-
tion of Syt VII–YFP to Lamp1-RFP–positive vesicles upon washout of the  
palmitoylation inhibitor 2-BP. Video 4 shows a stack of 16 confocal  
Z sections at intervals of 0.2 µm from an NRK cell expressing Syt VII–YFP, 
Lamp1-RFP, and either CFP-CD63 or CFP-CD63 (Y/A). Video 5 shows a 
stack of 16 confocal Z sections at intervals of 0.2 µm from an NRK cell 
expressing Syt VII (C/S)–YFP, Lamp1-RFP, and either CFP-CD63 or CFP-
CD63 (Y/A). Online supplemental material is available at http://www 
.jcb.org/cgi/content/full/jcb.201003021/DC1.
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