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Release of Mps1 from kinetochores is crucial for

timely anaphase onset
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ps1 kinase activity is required for proper chro-

mosome segregation during mitosis through

its involvements in microtubule—chromosome
attachment error correction and the mitotic checkpoint.
Mps1 dynamically exchanges on unattached kinetochores
but is largely removed from kinetochores in metaphase.
Here we show that Mps1 promotes its own turnover at
kinetochores and that removal of Mps1 upon chromo-
some biorientation is a prerequisite for mitotic checkpoint
silencing. Inhibition of Mps1 activity increases its half-
time of recovery at unattached kinetochores and causes

Introduction

To prevent chromosome missegregations, the onset of ana-
phase is inhibited by coordinated actions of the error correc-
tion and mitotic checkpoint machineries until all chromosomes
have stably bioriented. The mitotic checkpoint directs formation
of a mitotic checkpoint complex, which is catalyzed on un-
attached kinetochores and inhibits the anaphase-promoting
complex/cyclosome (APC/C; for review see Musacchio and
Salmon, 2007). As soon as all kinetochores have attached to
microtubules in a stable fashion, the mitotic checkpoint is si-
lenced and inhibition of APC/C is released, ultimately causing
anaphase initiation and mitotic exit (for review see Musacchio
and Salmon, 2007). Checkpoint silencing in human cells re-
quires dynein-mediated removal of Spindly-RZZ-Mad1/Mad?2
from attached kinetochores (Howell et al., 2001; Barisic et al.,
2010; Gassmann et al., 2010), p31°°™"-mediated inhibition of
Mad2 conformational activation (Xia et al., 2004; Mapelli
etal., 2006), and APC/C-assisted disassembly of the inhibitory
complex (Reddy et al., 2007).
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Abbreviations used in this paper: APC/C, anaphase-promoting complex/
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accumulation of Mps1 protein at these sites. Strikingly,
preventing dissociation of active Mps1 from kinetochores
delays anaphase onset despite normal chromosome
attachment and alignment, and high interkinetochore
tension. This delay is marked by continued recruitment
of Mad1 and Mad? to bioriented chromosomes and is
attenuated by Mad2 depletion, indicating chronic en-
gagement of the mitotic checkpoint in metaphase. We
propose that release of Mps1 from kinetochores is essen-
tial for mitotic checkpoint silencing and a fast metaphase-
to-anaphase transition.

The kinase Mpsl is an important player in prevention of
chromosomal instability (Jelluma et al., 2008b; Tighe et al.,
2008), as its activity is crucial for chromosome biorientation by
promoting attachment error correction as well as for APC/C in-
hibition by the mitotic checkpoint. In human cells, Mps1 regu-
lates error correction (Jelluma et al., 2008b; Santaguida et al.,
2010; Sliedrecht et al., 2010) by enhancing Aurora B activity
through direct phosphorylation of Borealin (Jelluma et al.,
2008b; Bourhis et al., 2009; Kwiatkowski et al., 2010; Sliedrecht
etal., 2010), and may in addition use other mechanisms (Espeut
et al., 2008; Maciejowski et al., 2010; Santaguida et al., 2010).
Mitotic checkpoint regulation by Mps1 has been observed in
many model systems (Hardwick et al., 1996; Weiss and Winey,
1996; He et al., 1998; Abrieu et al., 2001; Fisk and Winey, 2001;
Stucke et al., 2002; Liu et al., 2003; Fischer et al., 2004; Jelluma
et al., 2008b), and its enzymatic activity, at least in humans,
directs a number of checkpoint proteins including Madl to
unattached kinetochores (see Lan and Cleveland, 2010 for a
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recent summary), allows Mad2 conformational activation (Hewitt
et al., 2010), and stabilizes the cytoplasmic APC/C inhibitory
complex(es) (Maciejowski et al., 2010).

Mpsl activity rises during mitosis (Stucke et al., 2002), at
which time Mps1 dynamically localizes to kinetochores (Howell
et al., 2004), dimerizes (Hewitt et al., 2010), and auto-activates
by cross-phosphorylation of its activation loop (Kang et al.,
2007; Mattison et al., 2007; Jelluma et al., 2008a). The under-
lying mechanisms of Mps1 kinetochore recruitment and dynam-
ics, however, remain elusive. Mps|1 requires the Hec1 component
of the microtubule-binding NDC80 complex to reach kineto-
chores (Martin-Lluesma et al., 2002; Meraldi et al., 2004),
likely through a localization signal intrinsic to its N-terminal
300 amino acids that are also required for mitotic checkpoint
function (Liu et al., 2003). Interestingly, a mutant lacking the
N-terminal 100 amino acids also doesn’t reach kinetochores
but still supports a mitotic checkpoint in cells that also express
full-length, inactive Mps1 (Maciejowski et al., 2010). GFP-Mps1
only transiently associates with prometaphase kinetochores
in PtK2 cells, and this association decreases as chromosomes
establish attachments, reaching its lowest levels after chro-
mosomes have aligned on the metaphase plate (Howell et al.,
2004). We here address the regulation of Mpsl1 levels at ki-
netochores and investigate the reason for its fast turnover at
these sites.

Results and discussion

Mps1 auto-regulates its dissociation

from kinetochores

Mpsl1 exchanges on kinetochores during mitosis in PtK2 cells,
showing monophasic recovery of 99% with a half-life of 9 s
(Howell et al., 2004). To investigate the role of Mps1 kinase ac-
tivity in recruitment and release of Mps| at kinetochores, kineto-
chore levels of active and inactive Mpsl were examined by
immunofluorescence. As noted by others (Hewitt et al., 2010),
exogenous kinase-dead (KD, D664A) Mpsl (LAP-Mps1-KD)
was found at much higher levels on unattached kinetochores of
cells depleted of endogenous Mpsl than its active, wild-type
(WT) counterpart (LAP-Mps1-WT; Fig. 1 A, Fig. S1 A). Short-
term chemical inhibition of endogenous Mpsl or LAP-Mpsl
with the specific inhibitor Mps1-IN-1 (Kwiatkowski et al., 2010)
in HeLa cells, or of analogue-sensitive Mpsl (Mpsl-as) with
23dMB-PP1 in U20S-derived cells (Sliedrecht et al., 2010) cor-
roborated this, causing a two- to tenfold increase in kinetochore-
bound Mpsl (Fig. 1 B; Fig. S1, B and C). This is in excellent
agreement with a recent study using another Mpsl inhibitor,
AZ3146 (Hewitt et al., 2010). Together, these results show that
the levels of Mpsl at kinetochores in prometaphase increase
when Mps|1 kinase activity is impaired.

We next addressed what substrates of Mps1 could affect
Mps1 localization to kinetochores. Mps1 modifies itself in trans
and in cis by autophosphorylation (Kang et al., 2007; Mattison
et al., 2007; Jelluma et al., 2008a; Hewitt et al., 2010), phos-
phorylates the inner-centromere protein Borealin (Jelluma
et al., 2008b; Bourhis et al., 2009; Sliedrecht et al., 2010), and
likely phosphorylates many kinetochore-localized proteins
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(Espeut et al., 2008; and see Lan and Cleveland, 2010 for re-
view of kinetochore proteins affected by Mps1 activity). Bore-
alin phosphorylation and subsequent increase in Aurora B
activity was not involved, as addition of the Aurora B inhibi-
tor ZM447439 (Ditchfield et al., 2003) did not cause mislocal-
ization of active Mps1 (Fig. S1, D and E). Interestingly, however,
LAP-Mps1-KD levels at kinetochores were increased twofold
upon depletion of endogenous Mps1 by RNAi compared with
control (Fig. 1 C). This increase could be reduced by coexpres-
sion of LAP-Mps1-WT, which was, in turn, prevented by Mps1-
IN-1 (Fig. 1 D). These results indicate that LAP-Mps1-KD
could be displaced from kinetochores by the action of endoge-
nous or exogenous active Mpsl. A similar influence of Mps1
activity on its localization was observed when Mps1 was artifi-
cially targeted to peroxisomes via a C-terminal peroxisomal
targeting sequence (PTS1; Gould et al., 1989). Only inactive
Mps1-PTS1 was found in peroxisomes of interphase cells but
its localization was prevented by coexpression of active Mps1-
PTS1 (Fig. S1 F). These data thus show that Mps1 activity could
also regulate its own localization when artificially targeted to a
different location in a different phase of the cell cycle. Although
the mechanism of auto-regulation at peroxisomes might be dif-
ferent from what happens on kinetochores, structural rearrange-
ment of Mpsl by in trans autophosphorylation could account
for delocalization from both sites.

Inhibition of Mps1 increases its residence
time at kinetochores

Because short-term inhibition of Mps1 had no overt effects on
its total cellular protein levels (Fig. S1 A), we examined if a de-
creased exchange rate at unattached kinetochores upon inacti-
vation was causing Mpsl to accumulate at these sites by
measuring FRAP. After photobleaching, LAP-tagged Mps1-as
(Sliedrecht et al., 2010) recovered rapidly to 99% (Fig. 1 E).
Addition of 23dMB-PP1 caused Mps1 half-life at kinetochores
to increase ~1.5-fold (95% confidence intervals: uninhibited
0.88—1.36; inhibited 1.38—1.67 s) and recovery was reduced to
94% (Fig. 1 E; see Materials and methods for more details).
Similar exchange and recovery kinetics of inhibited Mps1 was
observed on kinetochores of PtK2 cells (Fig. S1 G). Although
these analyses show a shorter Mps1 half-time of recovery at ki-
netochores than previously reported (Howell et al., 2004), tech-
nical limitations (see Materials and methods) prohibited us from
drawing conclusions on the absolute recovery times of LAP-
Mpsl on kinetochores, but did allow comparison of kinetics
between uninhibited and inhibited Mps1. The small but signifi-
cant change in half-life and in the size of stable, nonexchang-
ing pool of kinetochore-bound Mps1 may underlie the higher
protein levels detected by immunofluorescence (Fig. 1, A and B;
Fig. S1, B and C). Nevertheless, inactive Mps1 still had a high
exchange rate at the kinetochore, indicating that the exchange
of Mpsl, although influenced by it, is not fully dependent on its
kinase activity.

To examine in what circumstances Mpsl is recruited to
kinetochores, cells were treated with Mps1-IN-1 but without
spindle drugs, allowing accumulation of Mps1 on kinetochores
of aligned and misaligned chromosomes that are nevertheless
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Figure 1. Mps1 accumulates on kinetochores when inhibited. (A) Immunolocalization of LAP-Mps1 in U20S cells cotransfected with Mps1 shRNA and
LAP-Mps1-WT or LAP-Mps1-KD and treated with nocodazole and MG132. Immunoblot shows expression of LAP-Mps1-WT and -KD in whole-cell lysates.
(B) Immunolocalization of Mps1 and Mad?2 in Hela cells treated as indicated. Graph represents quantitation of fluorescence intensities (+SEM, 5 cells
per condition, 22 kinetochores/cell). (C and D) Quantitation of fluorescence intensities at kinetochores of U20S cells transfected and treated as indicated
(+SEM, 8 cells per condition, 22 kinetochores/cell). (E) UTRM-LAP-Mps1M¢°2¢ cells were treated as indicated, and 0.81-pm? areas around single kineto-
chores (green squares in top panel) or in the cytoplasm (white squares) were bleached at t = 1 s. Graphs show average fluorescence intensities, shaded
areas indicate SDs, and percentages indicate average recovery between 10 and 12 s. (F) Mps1 localization on bioriented and mono-oriented kinetochores
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attached (Jelluma et al., 2008b). Under this condition, Mps1
was present at kinetochores of misaligned chromosomes, but
its levels were strongly reduced on bioriented chromosomes
(Fig. 1 F). Inhibiting Aurora B prevented the accumulation
of inhibited Mpsl on non-bioriented chromosomes (Fig. S1
H; Santaguida et al., 2010). Thus, recruitment of Mps1 to ki-
netochores is strongly diminished as soon as chromosomes
have bioriented. In agreement with this, Mps1 levels dimin-
ish on attached prometaphase kinetochores of PtK2 cells
compared with unattached prometaphase kinetochores, and
diminish further on late metaphase kinetochores (Howell
et al., 2004).

Combined, the data support a model in which Mpsl
is recruited to non-bioriented chromosomes where it is
rapidly released through a mechanism that involves Mpsl-
dependent phosphorylation. Upon biorientation Mpsl is no
longer recruited, causing its depletion from kinetochores in
metaphase cells.

Preventing dissociation of Mps1 from
kinetochores prolongs metaphase

To address the functional relevance of rapid release of Mpsl
in prometaphase and its depletion in metaphase, a pool of
Mps1 was prevented from leaving the kinetochore by fusion
to the Mis12 protein. Mis12 is a constitutive kinetochore pro-
tein in mitosis (Cheeseman et al., 2004; Obuse et al., 2004)
and fusion to INCENP was previously shown to efficiently
recruit INCENP/Aurora B to metaphase kinetochores (Liu
et al., 2009). LAP-tagged Mis12-Mpsl (LAP-Mis12-Mps1-
WT) was readily visible on kinetochores in prophase, pro-
metaphase, and metaphase (Fig. 2 A) at a similar location as
wild-type Mpsl (nocodazole-treated; Fig. S2 A). Misl2-
Mpsl fully supported mitotic checkpoint activity in Mps1-
depleted cells, showing the fusion did not prevent Mpsl
functioning (Fig. 2 B). Please note that ~60% of Mis12-
Mps1 associated transiently with kinetochores (Fig. S2,
B and C), indicating that this approach could not tether all
cellular Mpsl1 to kinetochores and thus maintained essential
cytoplasmic pools of Mpsl (Maciejowski et al., 2010). We
speculate that Mps1 dimerization (Hewitt et al., 2010) and/or
targeting via the Mps!l-intrinsic kinetochore localization do-
main may have been responsible for recruitment and release
of this exchanging pool of Mis12-Mps1. Nevertheless, a sig-
nificant fraction (~40%) of Mis12-Mps1 was stably associ-
ated with kinetochores (Fig. S2 B), allowing evaluation of the
effect of sustained presence of Mpsl at kinetochores on chromo-
some segregation.

Strikingly, expression of Mis12-Mps1-WT but not -KD or
LAP-Mps1-WT in U20S cells caused pronounced extension of
metaphase in more than 70% of cells, even up to 10 h in some
cases (Fig. 2 C; Fig. S2, D and E). Treatment with Mps1-IN-1
showed that these prolonged metaphases were due to sustained
Mpsl activity on kinetochores (Fig. 2 C). Removal of Mad2 by
expression of Mad2 shRNA effectively prevented the delays in
anaphase onset in cells expressing Mis12-Mps1, showing Mad2
and thus mitotic checkpoint activity was responsible for the de-
lays (Fig. 2 D).

JCB « VOLUME 191 « NUMBER 2 « 2010

Sustained Mps1 activity at kinetochores
prevents mitotic checkpoint silencing

The previous data suggest that removal of Mpsl1 is required for
efficient checkpoint silencing, or, alternatively, that persistent
kinetochore Mps1 might have caused unstable attachments that
engaged the mitotic checkpoint, for instance by increasing local
Aurora B activity or otherwise affecting kinetochore function.
Five lines of evidence strongly argued against the presence of
unstable attachments. First, if Aurora B—mediated destabiliza-
tion of kinetochore microtubules promoted checkpoint activity
in Mis12-Mpsl-expressing cells, stabilization of these attach-
ments by inhibition of Aurora B is predicted to revert the ex-
tension of metaphase in these cells, much like in the case of
monastrol- or taxol-treated cells (Hauf et al., 2003; Yang et al.,
2009). However, addition of ZM447439 to cells expressing
Mis12-Mpsl did not prevent the mitotic extension (Fig. 3 A).
Second, attachment defects that can engage the checkpoint for
hours are expected to have at least some effect on ability of cells
to quickly biorient all chromosomes (see Hanisch et al., 2006;
Gaitanos et al., 2009; Liu et al., 2009; Raaijmakers et al., 2009;
and Fig. S2, F and G for examples). Mis12-Mpsl—expressing
cells did not show any significant increase in prometaphase time
(Fig. S2 H). Third, forced anaphase initiation in Mis12-Mps1—
expressing, metaphase-arrested cells via addition of Mps1-IN-1
showed no increase in segregation errors compared with control
cells (~v10%; Jelluma et al., 2008a,b; Videos 1 and 2; Fig. 3 B).
Such increase would be expected if metaphase cells with (minor)
attachment defects are induced to undergo anaphase. Fourth,
interkinetochore distances of chromosomes in Mis12-Mpsl1 cells
were similar to control cells, with no sisters that were under less
tension than any of the sister pairs in control cells (Fig. 3 C).
Fifth, overall microtubule density and appearance of cold-stable
kinetochore fibers upon Mis12-Mps1 expression was indistin-
guishable from that of normal cells (Fig. 3 D).

Kinetochore-tethered Mps1 maintains
Mad1 and Mad2 on attached,

bioriented kinetochores

Despite normal attachment and alignment, Madl and Mad2
were localized to kinetochores of bioriented chromosomes in
metaphase cells expressing Mis12-Mpsl, but not LAP-Mpsl
(Fig. 4 A and Fig. S3), and this depended on Mps1 kinase activ-
ity (Fig. 4 B). Strikingly, high levels of Mad2, similar to those
in nocodazole-treated cells, were apparent on kinetochore pairs
that were under full tension (Fig. 4, C and D) and that had nor-
mal, cold-stable k-fibers (Fig. 3 D). Importantly, Mis12-Mps1—
expressing metaphase cells with kinetochore-bound Mad2
contained Mad2 on all kinetochores (Fig. 4 A). In contrast,
metaphase figures of cells with slight destabilization of k-fibers
or other attachment defects that allow alignment but signifi-
cantly prolong prometaphase and metaphase had no or very few
kinetochores with detectable Mad1 or Mad2 (Fig. S2 G; Hanisch
et al., 2006; Daum et al., 2009; Liu et al., 2009). The results
strongly suggest that preventing Mpsl from leaving kineto-
chores is sufficient to cause persistent mitotic checkpoint-mediated
APC/C inhibition, independent of the attachment status of
kinetochores, and argue that Mps1 removal is a prerequisite for
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Figure 2. Tethering Mps1 to kinetochores extends metaphase. (A) Immunolocalization of LAP-Mis12-Mps1(-WT) in U20S during indicated phases of cell
cycle. (B) Percentage of mitotic (Mpm?2 positive) U20S cells that were transfected and treated as indicated, as determined by flow cytometry. Immunoblot
shows levels of LAP-Mps1 and LAP-Mis12-Mps1 in total cell lysate. (C and D) Time spent in prometaphase and metaphase of transiently transfected U20S
cells with indicated plasmids and treated as indicated. Each horizontal bar represents a single cell.
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mitotic checkpoint silencing. Interestingly, prolonged metaphases
with high levels of Mad1 and Mad2 on bioriented chromosomes
were also observed when Spindly—Dynein interaction was in-
hibited but not when Spindly was depleted (Barisic et al., 2010;

Gassmann et al., 2010), showing that Spindly removal, like
Mps1 removal, is a prerequisite for checkpoint silencing. It may
be of interest to examine whether Mps| influences Spindly func-
tion or vice versa.
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Figure 5. A model for mitotic checkpoint regulation by Mps1. Prophase:
Mps1 is recruited in an Aurora B-dependent manner to unattached and/or
tensionless kinetochores, where its activity is stimulated (red), possibly
through dimerization. At kinetochores, Mps1 promotes error correction
by enhancing Aurora B activity, ensures kinetochore binding of Mad1,
inhibits checkpoint silencing mechanisms, and replenishes an interphasic
pool of cytoplasmic Mps1 that stabilizes APC/C%42 inhibitory complexes.
Prometaphase: After establishing Mad1 localization, Mps1 promotes
kinetochore-dependent catalysis of APC/C®2° inhibitory complexes via
conformational activation of Mad2, and contributes to its own removal
from kinetochores. Dotted arrow indicates possibility that Mps1 contributes
to maintenance of Mad1 at unattached kinetochores. The unknown details
of what pools of Mps1 are dimers is represented by the question mark.
Metaphase: The fast turnover of Mps1 at kinetochores allows its removal
from kinetochores after stable, bioriented attachment, causing checkpoint
silencing and ultimately APC/C¥2° qctivity toward Cyclin B and Securin.
Mis12-Mps1-induced prolonged metaphase: When Mps1 is not removed
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A model for mitotic checkpoint regulation
by Mps1

Combining the present and recent studies (Howell et al., 2001,
2004; Jelluma et al., 2008a,b; Tighe et al., 2008; Hewitt et al.,
2010; Maciejowski et al., 2010; Santaguida et al., 2010; Sliedrecht
etal., 2010), we propose the following model for the roles of
Mpsl in the control of the metaphase-to-anaphase transition
(Fig. 5): in prophase and prometaphase, Mpsl is recruited to
unattached and/or tension-less kinetochores where its activity,
possibly aided by dimerization, promotes error correction and
ensures kinetochore-dependent catalysis of APC/C“*? inhibi-
tory complexes via establishing kinetochore binding of Madl,
via conformational activation of Mad2, and via inhibition of
checkpoint silencing mechanisms. Once activated, Mps1 con-
tributes to its own release from kinetochores to ensure cytoplas-
mic stabilization of APC/C—Cdc20 inhibitory complexes and to
allow its removal from kinetochores for efficient checkpoint si-
lencing once stable, bioriented attachment has been achieved.
Deep understanding of how Mps1 promotes these various pro-
cesses will require the identification of the direct Mpsl sub-
strates and elucidation of the recruitment mechanisms of Mpsl
and the checkpoint machinery.

Materials and methods

Cell culture, plasmids, and transfections
U20S and Hela cells were grown in DME with 8% FBS, supplemented with
penicillin/streptomycin. UTRM10-WT cells (Jelluma et al., 2008a) and
UTRM-LAP-Mps 1M692¢ cells (Sliedrecht et al., 2010) were grown in DME
with 8% FBS, supplemented with penicillin/streptomycin, and 1 mg ml™!
doxycycline (Sigma-Aldrich) for continuous knockdown of the endogenous
protein (Jelluma et al., 2008a). PtK2 cells (a gift from Jagesh Shah, Har-
vard Institutes of Medicine, Boston, MA) were grown in EMEM with 10%
FBS, supplemented with glutamine, nonessential amino acids, and
penicillin/streptomycin.

pSuper-Mock, pSuper-Mps1, pcDNA-LAPMps1, and pSuper-Mad2
have been described previously (Kops et al., 2004; Jelluma et al., 2008b).
pcDNA-LAPMps1-M602G was created by site-directed mutagenesis of
pcDNA-LAPMps1. Endogenous Mps1 replacement assays were done as
in Jelluma et al. (2008b). To add a PTS1 signal to Mps1, point mutations
in pcDNA3-LAP-Mps1 construct were introduced by site-directed mutagen-
esis to alter the last three C-terminal amino acids to Serine-lysine-Leucine
or to Alanine-lysine-leucine (Gould et al., 1989). pcDNA-LAP-Mis12-
Mps1 constructs were created by inserting the full Mis12 sequence in
pcDNA-LAP-Mps1. All sequences were verified by automated sequenc-
ing. Plasmid transfections in U20S cells were done with calcium phos-
phate, and LAP-Mps1-WT was expressed transiently in PtK2 cells via
standard electroporation.

Time-lapse live-cell imaging

U20S cells were grown in 8-well chambered glass-bottom slides (LabTek), and
codransfected with the indicated plasmids and H2B-pEYFP or H2B-pDSRED
for visualization of DNA. Cells were blocked in S phase with 2.5 mM thymi-
dine (Sigma-Aldrich) 24 h after transfection for 24 h. After release from thymi-
dine, mitotic progression was followed with live-cell imaging as described
below. For prometaphase time measurements in Fig. S2 F, stable H2B-EYFP-
expressing Hela cells were treated with 10 or 50 pM noscapine (Sigma-
Aldrich) or with 20 or 660 nM nocodazole (Sigma-Aldrich). See Vasquez
et al. (1997) and Zhou et al. (2002) for effects of noscapine and low
nocodazole on microtubule dynamics. Live-cell imaging was done on a

from kinetochores after biorientation, checkpoint silencing cannot occur.
Question mark indicates the likely contribution of a cycling, and thus also
cytoplasmic, pool of Mis12-Mps1 (~60%) with the uncertainty of whether
this fusion protein functions as a dimer.
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microscope (model IX-81; Olympus), controlled by Cell-M software (Olympus),
in a heated chamber (37°C and 5% CO,) using a 20x/0.5NA UPLFLN
objective. Every 3 min fluorescent images of H2B-EYFP were acquired
(15-msec exposure) with a camera (ORCAER; Hamamatsu Photonics). Images
were processed for analysis to maximum intensity projections of all Z-planes
and using Cell-M software.

Immunoblotting and immunofluorescence
Immunoblotting was performed according to standard procedures; antibodies
used were anti-Mps1-NT (Millipore) and anti—a-tubulin (Sigma-Aldrich).

For immunofluorescence analysis, cells were treated 45 min before
fixation with the indicated compounds: 660 nM nocodazole (Sigma-
Aldrich), 10 pM MG132 (Sigma-Aldrich), 2 pM ZM447439 (Tocris
Bioscience), 1 pM 23dMB-PP1 (a gift from Chao Zhang and Kevan Shokat,
UCSF, San Francisco, CA), and 10 pM Mps1-IN-1 (a gift from N. Gray;
Kwiatkowski et al., 2010). Cold-shock treatments were done by replacing
warm media with iceold media for 15 min before fixation. Fixation and
immunostaining were done as described in Jelluma et al. (2008b). Anti-
Mps1-NT (Millipore), anti-GFP (custom rabbit serum), anti-phospho-(T232)-
Aurora B (Rockland), anti-Mad?2 (custom rabbit serum), anti-Mad1 (a gift from
Andrea Musacchio, IFOMIEO, Milan, ltaly), and anti—a-tubulin (Roche) were
used as primary antibodies and defected with Alexa Fluor 488, 568, or 647
(Invitrogen). Images were acquired at room temperature on a DeltaVision RT
system (Applied Precision) with a 100x/1.40 NA UPlanSApo objective (Olym-
pus) equipped with a CoolSnap HQ camera and using SoftWorx software.
Images are maximum projections of a deconvolved stack and adjusted
(identically within experiments) with SoffWorx and Adobe Photoshop CS3.
Quantitations were done as described previously (Jelluma et al., 2008b).

FRAP

UTRM-LAP-Mps 1M892C cells were grown in glass-bottom dishes (Willco-
Wells), released from a 24-h thymidine block in nocodazole for 16 h. The
media was replaced with Leibovitz L-15 media (Invitrogen) supplemented
with 10% FCS, 2 mM glutamine, and 100 U/ml penicillin/streptomycin,
and cells were transferred to an incubator with atmospheric CO, at 37°C.
Cells were treated with 10 pM MG 132 (Sigma-Aldrich) = 1 yM 23dMB-PP1
30 min before imaging. Samples were imaged on a microscope (LSM 510
META; Carl Zeiss, Inc.) equipped with a heated chamber and lens warmer
(both set at 37°C), using Zeiss LSM software. The EYFP-based LAP-tag of
LAP-Mps 1M02¢ was both excited and bleached using the 514-nm laser line
of an Argon laser (max 30 mW) set to 60% (Tube current 5.5 A). Excitation
was done using 6% laser power and emission was detected on the META
detector set from 529 to 614 nm. Areas of 25 x 25 pixels (0.81 ym?) were
bleached at 100% laser power for 10 iterations once the fluorescence signal
of LAP-Mps 1M¢926 had become stable for a few seconds (after ~6 s). Fluores-
cence intensity in the bleached square was acquired every 125 ms before
and after bleaching. For each measurement, the average fluorescence inten-
sity in the 25 x 25-pixel square during the last second before bleaching was
setto 100% and the measured signal after bleaching was normalized to this
value. Because kinetochores are highly mobile, only those measurements
were taken info account in which the kinetochore remained visible within the
25 x 25-pixel square during the entire measurement. FRAP analysis: Log
transformation of the FRAP data indicates that in our experiments the recov-
ery follows a double exponential (log tfransformation was done by plotting
—In((Finf — F(t))/(Finf — F(O))) vs. time where Finf is the fluorescence reached
at the plateau, F(t) is the fluorescence at a certain time point, and F(0) is the
fluorescence observed immediately after bleaching, as was done in Howell
et al. (2004). The double exponential that we observe consists of a fast com-
ponent that equals the kinetics found for cytoplasmic LAP-Mps 1M92¢, both in
the uninhibited and inhibited states. The slow component in the double expo-
nential represents the LAP-Mps1 kinetics on the kinetochore. Recovery half-
times were determined by double-exponential curve fitting using GraphPad
Prism software that confirmed the log transformation analysis. FRAP measure-
ments of LAP-Mps1 in PtK2 cells, after inhibition with 10 pM MpsT-IN-1,
were done as described above.

Flow cytometry analysis
Cells were released from a 24-h thymidine-induced block into nocodazole
for 16 h and analyzed by flow cytometry as described previously (Kops
et al., 2005). Flow cytometric analysis of transfected cells was based on
Spectrin-GFP expression.

Measurement of sister interkinetochore distances

Cells were grown on coverglasses, transfected, treated, and fixed as de-
scribed above. Centertocenter distances of the ACA dots of sisters within
the same focal plane were measured using SoftWorx software.

Online supplemental material

Figure S1 shows that Mps1 auto-regulates its turnover at kinetochores.
Figure S2 shows that a pool of Mis12-Mps1 is tethered to kinetochores
and causes prolonged metaphases without detectable prior defects in
prometaphase. Figure S3 shows that Mad1 and Mad?2 localize to meta-
phase kinetochores of Mis12-Mps1-expressing cells. Videos 1 and 2 show
two examples of Mis12-Mps1-expressing, metaphase-arrested cells that
were forced to initiate anaphase via addition of Mps1IN-1. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full /jcb
.201003038/DC1.
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