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HDM2 ERKs PCNA
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In this issue, a study by Groehler and Lannigan (2010.
J. Cell Biol. doi:10.1083/cb.201002124) sheds light on
the regulation of proliferating cell nuclear antigen (PCNA)
turnover and how it is counteracted by the small chromatin-
bound kinase ERK8 (extracellular signal-regulated kinase 8).
Importantly, inactivation of ERK8 results in genome insta-
bility and is associated with cell transformation.

Almost 30 yr ago, proliferating cell nuclear antigen (PCNA) was
first identified in dividing cells using sera derived from patients
suffering from systemic lupus erythematosus (Takasaki et al.,
1981). A few years later, the “mother” of all cancer markers had
been associated with DNA synthesis (Madsen and Celis, 1985),
but it wasn’t until 1988 that Bauer and Burgers (1988) and Prelich
and Stillman (1988) discovered that the homotrimeric clamp
served as a processivity factor for DNA polymerases. In 1992,
Shivji et al. (1992) showed that PCNA was required for DNA re-
pair, and 10 yr later, it was identified as a target of ubiquitin and
SUMO (small ubiquitin-like modifier) conjugation after exposure
to ultraviolet light (Hoege et al., 2002). For a protein that has been
in the spotlight of modern biochemistry, it is quite remarkable
that almost nothing is known about its normal cellular turnover.
Insight into this process comes now from the study of an
unlikely regulator. In this issue, Groehler and Lannigan (2010)
demonstrate that the relatively poorly characterized ERKS (extra-
cellular signal-regulated kinase 8) takes center stage in the
regulation of PCNA stability in primary mammary epithelial cells.
The ERK family of kinases belongs to the mitogen-activated
protein kinase superfamily and carries a Thr-Glu-Tyr (T-E-Y)
activation motif that needs to be phosphorylated to enable ki-
nase activity (Abe et al., 2002). Interestingly, ERKS8 also needs
to bind to chromatin to become active. The authors identified
a highly conserved PXXXP motif in the C-terminal half of
ERKS that appeared to confer autoinhibition, an activity which
is relieved upon chromatin binding. Relatively close by, in the
middle of ERKS, resides a PCNA-interacting peptide (PIP) box
required for the interaction with PCNA (Warbrick, 1998). Curi-
ously, only the chromatin-bound fraction of ERK8 bound to the
chromatin-bound fraction of PCNA. However, a functional PIP
box was not required for ERKS8 to associate with nuclear DNA in
the cell. These results argue that ERKS is not anchored to chro-
matin by PCNA but associates with it independently. Moreover,
they strongly suggest that ERK8’s PIP box binds to PCNA only
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when the kinase is associated with chromatin. Importantly, over-
expression of an ERK8 PIP box mutant resulted in destabiliza-
tion of PCNA. The effect on PCNA stability seemed to be highly
specific, as depletion of ERK8 caused codepletion of PCNA but
did not lead to a decrease in steady-state levels of a variety of
other cell cycle regulators.

Why is the interaction with PCNA confined to chromatin? The
reason is likely due to the fact that ERK8’s PIP box is buried in the
middle of the protein. Most PCNA-interacting proteins carry their
PIP box either at the N or C terminus (Vivona and Kelman, 2003).
One other well-studied example for a protein with an internal PIP
box is the essential replication factor MCM10 (minichromosome
maintenance protein 10). MCM10 undergoes cell cycle-regulated
modification, which probably induces a conformational switch
that is necessary for the PIP box—mediated interaction with PCNA
(Das-Bradoo et al., 2006). In the same vein, it is conceivable that
chromatin association and the accompanying relief of autoinhibi-
tion of ERK8 cause the middle portion of the kinase to change
its configuration, thereby assuming a functional PIP box domain
that can be recognized by PCNA. In situations in which the rapid
unloading of PCNA is required, regulation of ERKS8 may be the
most effective way to dispose of chromatin-bound PCNA, which is
known to have an exceedingly low exchange rate (Sporbert et al.,
2002). Despite the fact that interaction with ERK8 is necessary
to stabilize chromatin-bound PCNA, it remains unclear whether
PCNA is a direct target of ERK8-mediated phosphorylation.

The next goal of Groehler and Lannigan (2010) was to dis-
sect the mechanism underlying the ERK8-regulated degradation
of PCNA. Based on the consideration that physical contact be-
tween the kinase and PCNA was an integral part of the protection,
they hypothesized that ERK8 might compete with an E3 ubiquitin
ligase that may target PCNA via its own PIP box. This turned out
to be a smart guess because the only candidate to test was the E3
ligase HDM2, the human homologue of murine double minute 2
(Momand et al., 1992). In a set of well-controlled experiments,
the authors not only demonstrate that HDM?2 interacts directly
with and degrades PCNA when ERKS is absent, but they also ex-
clude indirect effects by p53 and retinoblastoma (Rb) on this pro-
cess. p53 is a direct target of HDM2 and is stabilized when their
interaction is inhibited (Tao and Levine, 1999). Elevated levels of
p53 trigger cell cycle arrest concomitant with hypophosphoryla-
tion of Rb, but none of these changes affect the stability of PCNA.
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Figure 1. Role of ERK8 in maintaining genome stability. (A) In normal cells, chromatin-bound ERK8 interacts with the chromatin fraction of PCNA, which
resides at the replication fork (here just shown at the leading strand for simplicity). ERK8 binding inhibits the E3 ubiquitin ligase HDM2 from interacting
with PCNA. (B) In cancer cells, inactivation of ERK8 enables HDM2 to interact with and ubiquitinate PCNA, targeting it for degradation. A decrease in
PCNA levels causes an increase in DNA damage, resulting in the accumulation of new mutations. These new mutations may render HDM2 nonfunctional
(rectangular form), which ultimately results in an increase of PCNA stability and facilitates cell proliferation. The homotrimeric PCNA structure (Protein Data

Bank ID 20D8) was generated using the Chimera software program (Pettersen et al., 2004).

It is not hard to imagine that the loss of chromatin-bound PCNA
has severe consequences for the functionality of DNA replication
and repair, resulting in chromosome breakage. The authors ar-
gued that a similar level of genome instability should be visible in
ERKS-depleted cells. This was indeed the case as visualized by
the accumulation of y-H2AX foci and broken DNA (Rogakou
et al., 1998). Importantly, Groehler and Lannigan (2010) observed
similar effects in the ERK8 PIP box mutant, further lending cre-
dence to their model. It is worthwhile pointing out that the turn-
over of PCNA expands the spectrum of replication factors whose
degradation is tightly linked to chromatin. CDT1, a member of
the prereplication complex (Cook, 2009), is rapidly degraded in
the face of DNA damage. Its degradation occurs exclusively on
the chromatin-associated fraction of the protein pool and is de-
pendent on CDT1 binding to PCNA (Arias and Walter, 2005; Hu
and Xiong, 2006; Senga et al., 2006).

An important question that this study raises is of course to
what extent, if at all, is PCNA turnover deregulated in cancer
cells? The commonly high levels of PCNA in transformed cells
would be most compatible with a deregulation of ERK8 and/or
HDM2 to provide a significant growth advantage. Indeed, the
authors show in the last part of their study that in at least two
transformed cell lines, PCNA is rendered inert to the presence of
ERKS. They speculate that the underlying reason is a defect in
HDM2, and although this is the most likely explanation, it still
needs to be validated. It will be interesting to see how common
the misregulation of PCNA turnover is in cancer tissues. At this
point, it is intriguing to envision a dynamic scenario in which
a two-step mechanism facilitates cell transformation (Fig. 1).
Initially, deregulation of ERK8 may cause PCNA levels to
decrease. This would contribute to genome instability and the
accumulation of new mutations, including those affecting proper
function of HDM2. In step two, deregulation of HDM2 may
turn things around and result in an increase of PCNA, support-
ing rapid proliferation.
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