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Introduction
Apoptosis plays an essential role in the development and mainte-
nance of all mammalian tissues. The apoptotic program ensures 
that damaged, aged, or excess cells are deleted in a regulated 
manner that is not harmful to the host. Beyond the cell intrinsic 
apoptotic program initiated after a variety of insults, an integral 
second step in apoptosis is the removal of the cell corpse (Kerr 
et al., 1972). Indeed, the physical removal and subsequent deg-
radation of the corpse via phagocytosis represents the final act 
necessary for the successful removal of a cell fated to die. Recent 
advances in our understanding of apoptotic cell clearance have 
led to the identification of molecules and signaling pathways that 
orchestrate this process (Lauber et al., 2004; Ravichandran and 
Lorenz, 2007; Erwig and Henson, 2008).

The efficiency of the phagocytic clearance of apoptotic 
cells appears enormous when one considers that despite the 
loss of >109 cells per day, the incidence of histologically de-
tectable apoptotic cells is rare in normal tissues (Mochizuki 
et al., 1996; Scott et al., 2001; Schrijvers et al., 2005; Yang 
et al., 2006; Elliott et al., 2009). The engulfment of apoptotic 
cells is performed by both professional phagocytes (such as 
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macrophages and dendritic cells) and by nonprofessional 
“neighboring” phagocytes (such as epithelial cells, endothelial 
cells, and fibroblasts). Current evidence suggests that the steps 
involved in the phagocytic clearance of apoptotic cells are similar 
between professional and nonprofessional phagocytes (Fig. 1), 
although the kinetics may differ, with professional phagocytes 
exhibiting higher rates and capacity for phagocytosis (Parnaik 
et al., 2000).

Based on work from many laboratories over the past decade, 
several broadly defined steps have been identified in the recogni-
tion and removal of apoptotic cells by phagocytes. Each step ap-
pears to be tightly regulated by signaling events to ensure swift 
and efficient clearance (Fig. 1). At the early stage of apoptosis, 
the dying cells release “find-me” signals that are sensed by motile 
phagocytes, which help attract these phagocytes to the proximity 
of the dying cell. Several soluble chemoattractant find-me signals 
released during apoptosis have been recently defined, including 
triphosphate nucleotides (ATP/UTP), lysophosphatidylchloline 
(lysoPC), and the chemokine CX3CL1 (Lauber et al., 2003; 
Truman et al., 2008; Elliott et al., 2009; Muñoz et al., 2010). Once 
in the proximity of the dying cell, the physical contact between 
the apoptotic cell and the phagocyte is mediated via ligands on 
apoptotic cells (referred to as “eat-me” signals) and engulfment 
receptors on phagocytes that can recognize these eat-me markers. 
Among the array of identified eat-me molecules (Ravichandran 
and Lorenz, 2007), the exposure of phosphatidylserine (PtdSer) on 
the outer leaflet of the apoptotic cell plasma membrane appears to 
be a key eat-me marker (Fadok et al., 1992; Vandivier et al., 2006). 
Phagocyte recognition of PtdSer is mediated directly via one or 
more PtdSer recognition receptors, including Bai1, Tim-4, and 
Stabilin-2 (Kobayashi et al., 2007; Park et al., 2007, 2008, 2009;  
Miyanishi et al., 2007; Nakayama et al., 2009), or by soluble 
bridging molecules that bind PtdSer on the apoptotic cell and a 
receptor on the phagocyte (MFG-E8/v3/5, Gas6/MER; Savill  
et al., 1990; Scott et al., 2001; Hanayama et al., 2004). Engagement 
of the PtdSer receptors initiates signaling events within the phago-
cytes that lead to activation of the small GTPase Rac, and subse-
quent cytoskeletal reorganization of the phagocyte membrane to 
allow corpse internalization (Albert et al., 2000; Gumienny et al., 
2001). From studies in Caenorhabditis elegans and Drosophila 
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ELMO, and Dock180 appear to be widely expressed (Hasegawa 
et al., 1996; Gumienny et al., 2001), whereas the expression 
of many of the surface molecules responsible for recognition 
of apoptotic cells varies widely among different tissues and cell 
types (Ferrero et al., 1990; Graham et al., 1994; Falkowski et al., 
2003; Miyanishi et al., 2007; Park et al., 2007). Thus, because of 
the redundancy in the engulfment machinery among cell types, it 
is critical to know the expression pattern of identified phagocytic 
receptors when considering apoptotic cell clearance in a specific 
tissue or by a particular cell type. Interestingly, many of the disease 
states linked to failed clearance have been associated with aberra-
tions in the recognition or eat-me step of clearance (Table I). This 
observation might reflect an investigator-induced bias toward 
phagocyte–corpse interactions, or it may be the result of selective 
expression of phagocytic receptors that reduces the redundancy 
of uptake mechanisms, and thus is more likely to reveal failures 
in clearance.

Regardless of the specific molecules mediating uptake, 
the ability to efficiently clear apoptotic cells is strongly linked 
to the homeostatic maintenance of healthy tissues in mammals. 
This is thought to be the result of two key features of the clear-
ance process. The first is the obvious function of phagocytes 

melanogaster, and in vitro mammalian cell experiments, two key 
evolutionarily conserved Rac-dependent apoptotic cell engulf-
ment pathways have been identified (Fig. 1; Reddien and Horvitz, 
2004; Kinchen, 2010). In addition to receptors that can directly 
signal after engaging eat-me signals, there are also contributions 
from other “tethering” receptors (e.g., CD14 and CD31) that help 
the binding/specific recognition between the apoptotic cell and 
the phagocyte (Brown et al., 2002; Devitt et al., 2003). Once  
inside the phagosome, the ingested apoptotic cargo is processed 
via a phagolysosomal pathway that shares both overlapping and 
unique features with the endocytic machinery (Erwig et al., 2006; 
Kinchen et al., 2008; Yu et al., 2008; Kinchen and Ravichandran, 
2010; Bohdanowicz and Grinstein, 2010). Because of this over-
lap, it is difficult to distinguish disease states related specifically 
to aberrant signaling in the phagosomal pathways from those in-
volving endocytosis dysfunction. Indeed, a role for endocytosis in 
human disease has been well established (Mosesson et al., 2008; 
Ballabio and Gieselmann, 2009). Thus, we will focus on diseases 
related to engulfment signaling upstream of corpse degradation.

Although the clearance of apoptotic cells occurs throughout 
the body, the specific molecular pathways can vary by tissue. For 
example the intracellular engulfment signaling molecules Rac, 

Figure 1.  Stages of apoptotic cell engulfment and associated cell signaling events that regulate each stage. The four stages of apoptotic cell clearance 
are shown, with some of the specific key signaling players identified. The “find-me” step occurs when apoptotic cells release soluble chemoattractants that 
promote chemotaxis of phagocytes via corresponding receptors on the phagocyte. The broken line from LPC to G2A indicates uncertainty of direct ligand– 
receptor interaction. The “eat-me” stage is characterized by the appearance of ligands on the surface of the dying cell that mark it as a target to be engulfed 
by phagocytes bearing appropriate DAMP or PtdSer recognition receptors. The “engulfment” stage occurs when signaling downstream of the apoptotic cell 
recognition receptors stimulates Rac-dependent cytoskeletal rearrangement and formation of the phagocytic cup around the target and subsequent internal-
ization. Once fully internalized, the cell corpse undergoes “processing” through the phagolysosomal pathway that results in the degradation and reprocessing 
of the dead cell material. DAMP, damage-associated molecular patterns; LPC, lysophosphatidylcholine; MBL, mannose-binding lectin; PS, phosphatidylserine.
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The release of intracellular contents from necrotic cells is thought 
to provoke an inflammatory response, particularly toward intra-
cellular antigens and DNA released from the dying cells. This 
may provide the immunogenic impetus for the onset of some 
autoimmune disorders in humans, including systemic lupus  
erythematosus and rheumatoid arthritis (Gaipl et al., 2004). 
Early experiments in mice showed that the administration of 
excess syngeneic apoptotic cells or the masking of PtdSer on 
apoptotic cells via annexin V (to block PtdSer-mediated uptake) 
produces hallmarks of autoimmunity, such as autoantibody 
production and IgG deposition in the glomeruli (Mevorach 
et al., 1998; Asano et al., 2004). More recently, several genetic 
mouse models bearing defects in PtdSer-mediated recognition 
have further confirmed that the failure to efficiently clear apop-
totic cells can result in autoimmunity (Botto et al., 1998; Scott 
et al., 2001; Cohen et al., 2002; Hanayama et al., 2004; Lacy- 
Hulbert et al., 2007; Rodriguez-Manzanet et al., 2010). Nuclear 
antigens, particularly DNA and DNA–protein complexes (e.g., 
high mobility group box 1–containing nucleosomes), appear 
especially crucial in human systemic lupus erythematosus and 
rheumatoid arthritis (Taniguchi et al., 2003). Studies in knock-
out mice demonstrated that to maintain self-tolerance, DNase- 
mediated degradation of apoptotic cell-derived DNA in the 
phagosome is necessary (Napirei et al., 2000; Krieser et al., 
2002; Kawane et al., 2003). There is now a solid link between 
the inefficient engulfment of apoptotic cells and autoimmunity  
in humans (Ren et al., 2003; Gaipl et al., 2004).

An additional means for controlling the immune response 
to apoptotic cells is through the active production of anti- 
inflammatory mediators by phagocytes. The PtdSer-dependent  

as “garbage collectors,” mediating the physical removal of 
the dying cells. Such clearance sequesters the dying cell and 
prevents the release of potentially toxic or immunogenic intra
cellular contents from the dying cell into the local environment. 
This is a key distinction from necrotic cell death, where the un-
regulated release of dead cell material can cause very strong 
inflammatory responses (such as ischemic injury). The second 
homeostatic function of the clearance process is the production 
of anti-inflammatory mediators by phagocytes that suppress in-
flammation and facilitate the “immunologically silent” clear-
ance of apoptotic cells.

The purpose of this review is to examine the current body 
of knowledge linking apoptotic cell clearance to disease patho-
genesis. We will discuss several families of disease states that 
appear to have as a contributing factor some level of impaired 
cell clearance. We will also attempt to highlight how components  
of the engulfment signaling pathways may function in myriad 
disease processes.

Failed clearance, altered immune tolerance, 
and autoimmunity
Autoimmune disorders represent the best-characterized rela-
tionship between apoptotic cell clearance and disease pathogen-
esis (Table I; Savill et al., 2002; Gaipl et al., 2004; Erwig and  
Henson, 2007; Nagata et al., 2010). The self-contained, regulated 
nature of apoptotic cell death preserves membrane integrity and 
prevents the release of potentially inflammatory and immuno
genic intracellular contents. However, if the apoptotic cells  
are not promptly cleared, the membrane integrity is lost over  
time, and apoptotic cells can progress to secondary necrosis.  

Table I.  A survey of disease states associated with defects in engulfment-related genes

Gene Disease relationship Human/mouse References

Find me
G2A AI M Le et al., 2001
CX3CR1 Neuropathy M Cardona et al., 2006
CX3CL1 Atherosclerosis M Combadière et al., 2003
Eat-me/tickling
MER AI, cancer, neuropathy, atherosclerosis H/M Gal et al., 2000; Scott et al., 2001; Cohen et al., 2002; 

Keating et al., 2006; Nandrot et al., 2007; Ait-Oufella  
et al., 2008; Thorp et al., 2008

MFG-E8 AI, atherosclerosis, neuropathy M Hanayama et al., 2004; Ait-Oufella et al., 2007;  
Nandrot et al., 2007

C1q AI, atherosclerosis, neuropathy M Botto et al., 1998; Fonseca et al., 2004; Bhatia et al., 2007
v3/5 AI, atherosclerosis M Weng et al., 2003; Lacy-Hulbert et al., 2007 
TIM-4 AI M Rodriguez-Manzanet et al., 2010
Gas6 Atherosclerosis M Lutgens et al., 2008
Engulfment
ELMO1 Diabetic nephropathya H Shimazaki et al., 2005; Leak et al., 2009;  

Pezzolesi et al., 2009a
GULP1 Arthritisa, schizophreniaa H Qingchun et al., 2008; Chen et al., 2009
MEGF10 Schizophreniaa H Chen et al., 2009
Post-engulfment
LXR/ AI M A-Gonzalez et al., 2009
PPAR AI M Mukundan et al., 2009
DNase II AI M Kawane et al., 2003

Genes are grouped by known roles in engulfment (find-me, eat-me, engulfment, and post-engulfment). AI, autoimmune phenotype; H, human; M, mouse.
aThere is evidence of genetic linkage but no direct causal relationship was established.
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At least two factors in CF sputum have been shown to disrupt 
apoptotic cell engulfment, including elevated levels of neutrophil- 
derived elastase, which may cleave eat-me signals (Vandivier et al., 
2002), and pyocyanin, a toxic by-product of Pseudomonas  
aeruginosa, a common infectious pathogen found in the lungs 
of about half of all CF patients (Bianchi et al., 2008). Finally, 
the inflammation associated with lung disease appears to create 
a cytokine milieu (notably increased TNF) that may suppress 
apoptotic cell engulfment (Borges et al., 2009), perhaps by hin-
dering the differentiation of monocytes to macrophages, thus 
exacerbating these clearance defects.

Intrinsic defects in macrophages in the context of the dis-
eased lung also appear to contribute to the reduced clearance 
seen in these respiratory diseases. Alveolar macrophages from 
COPD, CF, and asthma patients show a decreased ability to en-
gulf apoptotic cells in vitro (Hodge et al., 2003, 2007; Huynh 
et al., 2005; Vandivier et al., 2009). To date, there are no re-
ported links to specific engulfment pathways that are defective 
in these lung diseases, although decreased expression of at least 
two collectins (mannose-binding lectin and surfactant protein-D) 
in COPD patients suggests a possible role for decreased pat-
tern recognition receptor (PRR)/C1q receptor–mediated up-
take (Hodge et al., 2008). Intriguingly, Vandivier et al. (2009) 
recently found that cystic fibrosis transmembrane conductance 
regulator (CFTR)-deficient epithelial cells are defective in the 
phagocytosis of apoptotic cells, whereas CFTR-deficient al-
veolar macrophages show no engulfment defect. These findings 
suggest that a persistent disease state in the lung (i.e., COPD) 
and/or genetic anomalies may drive engulfment defects, and 
thus point to a prominent role for engulfment in the establish-
ment and progression of disease. Moreover, the relative contri-
butions of macrophages and the epithelial cells for apoptotic cell 
clearance, as well as the anti-inflammatory cytokines generated 
(or lack thereof), need to be determined in the context of lung in-
flammation. Future genetic studies that target engulfment genes 
in particular phagocyte populations may reveal some important 
information on the onset and progression of lung inflammation.

An interesting feature of defective apoptotic cell clearance 
in the diseased lung is the potential role of the small GTPase 
RhoA. During engulfment, activation of the small GTPase Rac in 
the phagocyte is crucial for actin rearrangement during corpse 
internalization (Fig. 1). In contrast, RhoA antagonizes Rac in 
this process, and increased levels of RhoA-GTP potently im-
pair engulfment (Leverrier and Ridley, 2001; Tosello-Trampont 
et al., 2003; Nakaya et al., 2006). Independent studies have 
shown that CFTR deficiency in lung epithelial cells results in 
higher basal levels of activated RhoA (Kreiselmeier et al., 2003; 
Vandivier et al., 2009). Studies using in vitro treated lung epi-
thelial cells similarly show increased basal levels of RhoA-GTP 
in response to cigarette smoke (Richens et al., 2009). Pharma-
cological inhibitors of RhoA activity, particularly statins, en-
hance apoptotic cell engulfment in vitro and in vivo, and thus 
suggest that elevated RhoA-GTP levels may play a signifi-
cant role in the impaired clearance observed in diseased lungs 
(Morimoto et al., 2006). Although the molecular events leading 
to increased levels of RhoA-GTP levels are poorly understood, 
cigarette smoke exerts a similar effect (activation of RhoA) and 

recognition of apoptotic cells by a phagocyte elicits the re-
lease of anti-inflammatory mediators such as IL-10, TGF, and 
prostaglandins in vitro (Voll et al., 1997; Fadok et al., 1998; 
McDonald et al., 1999; Ogden et al., 2005). Moreover, this  
recognition actively suppresses inflammatory cytokine release 
in vitro, particularly those elicited via Toll-like receptors (TLRs; 
Voll et al., 1997; Fadok et al., 1998). This immunosuppressive 
response extends in vivo, as studies in mice have shown that 
the systemic administration of apoptotic cells induces a toler-
izing effect on the immune response in rodent allograft models 
(Sun et al., 2004; Wang et al., 2009). Recently, key insights into 
the signaling events that regulate the release of these immune 
modulators have been gained. PtdSer-dependent engagement of 
apoptotic cells induces in phagocytes the p38 MAPK-dependent 
transcriptional regulation of IL-10, as well as translational con-
trol of TGF in the phagocyte (Chung et al., 2007; Xiao et al., 
2008). The ability of apoptotic cells to suppress TLR-dependent 
release of IL-6, IL-8, and TNF has also been shown to be regu-
lated at the transcript level (Cvetanovic and Ucker, 2004). Thus, 
in addition to the physical removal of dying cells, the “tickling” 
of phagocytic receptors generates signals that lead to regulation 
of anti-inflammatory mediators and in turn, the elicitation of  
an immunosuppressive environment during removal of apoptotic 
cells. Even under normal healthy conditions, there is a turnover 
of >200 billion cells per day in many tissues throughout our 
body, and therefore interruptions to the finely tuned clearance 
system can lead to inflammation, tissue destruction, and the  
onset of disease.

Respiratory diseases and impaired  
cell clearance
Intriguingly, increased levels of apoptotic cells are seen in the 
sputum and lung tissue of several serious respiratory diseases, 
including chronic obstructive pulmonary disease (COPD), cystic 
fibrosis (CF), and asthma (Henson and Tuder, 2008). Because 
aberrant lung inflammation is a common feature of these dis-
eases, one possibility is that uncleared apoptotic cells progress-
ing to secondary necrosis may contribute to lung inflammation. 
But a common underlying question is whether or not these “un-
cleared” apoptotic cells represent increased rates of apoptosis 
or defects in apoptotic cell clearance. In the past few years, 
several studies have established considerable links between re-
spiratory disease and inefficient apoptotic cell clearance in the 
lung (Vandivier et al., 2002; Hodge et al., 2003; Huynh et al., 
2005). Although the focus of these studies has primarily been 
on the phagocytic activity of lung resident macrophages (alveo-
lar macrophages), it will be interesting to determine the relative 
contribution of healthy lung epithelial cells in the clearance of 
neighboring apoptotic cells.

The environment of the diseased lung contributes to poor 
apoptotic cell clearance. Cigarette smoking, the leading cause 
of COPD, is correlated with increased apoptotic cell debris in 
the lung (Hodge et al., 2005), and cigarette smoke impairs the 
uptake of apoptotic cells by alveolar macrophages in vitro 
(Kirkham et al., 2004; Hodge et al., 2007). Sputum from CF pa-
tients, when added to normal alveolar macrophages, inhibits their 
ability to engulf apoptotic targets in vitro (Vandivier et al., 2002). 
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and apoptotic cell engulfment. We and others have found that 
macrophages engulfing apoptotic cells up-regulate the key lipid 
transporter ABCA1, and this leads to enhanced cholesterol  
efflux from the phagocytes (Gerbod-Giannone et al., 2006; 
Kiss et al., 2006a). This cholesterol efflux requires PtdSer- 
dependent recognition and signaling within the phagocytes (Kiss 
et al., 2006a). These findings reveal that a phagocyte taking up 
an apoptotic cell has the ability to regulate and normalize the 
level of cellular material. Another intracellular engulfment sig-
naling protein, GULP1, has been shown to promote cholesterol 
efflux, and GULP1 functions downstream of the LDL-receptor 
related protein 1 (LRP1), which is also linked to engulfment of 
apoptotic cells (Su et al., 2002; Gardai et al., 2005; Kiss et al., 
2006b). Nuclear receptors, a family of transcriptional regulators 
that control the response to cellular lipids (Hong and Tontonoz, 
2008), have been implicated in this response, as antagonists 
blocked this efflux (Gerbod-Giannone et al., 2006; Kiss et al., 
2006a). As further evidence of the interplay between engulfment 
and lipid metabolism, mice deficient in the LXR/ or PPAR 
nuclear receptors showed decreased expression of engulfment 
genes, with impaired engulfment of apoptotic cells by macro-
phages in vitro and in vivo (A-Gonzalez et al., 2009; Mukundan 
et al., 2009). These mice also showed aberrant expression of 
inflammatory mediators and eventually develop hallmarks of 
autoimmunity. Because uncleared dead cells are a fundamental 
issue in atherogenesis, it would seem that the ability to modu-
late apoptotic cell clearance in this environment could serve as 
a useful and novel tool to prevent or treat disease.

Cell clearance defects in  
neurological diseases
Over a decade ago, several studies identified excess apoptotic 
cells associated with chronic neurodegenerative diseases, includ-
ing in patients with Parkinson’s, Alzheimer’s, and Huntington’s 
disease, and in aging brains (Su et al., 1994; Thomas et al., 1995; 
Zhang et al., 1995; Mochizuki et al., 1996). Microglia are one of 
the primary phagocytes for apoptotic cells and debris in the brain 
(Witting et al., 2000; Magnus et al., 2002; Stolzing and Grune, 
2004; Garden and Möller, 2006). Considered to be of myeloid 
lineage, these highly motile cells provide necessary surveillance 
to respond to cell death associated with acute injury and stroke 
(Davalos et al., 2005; Garden and Möller, 2006). Upon the initia-
tion of neuronal cell death, microglia migrate to the site of injury 
and mediate the inflammatory response (Davalos et al., 2005; 
Koizumi et al., 2007). Recently, engulfment signaling pathways 
have been implicated in glial function during chronic neurologi-
cal diseases. Although the discussion in the following paragraph 
focuses on microglial cells, it is important to keep in mind that 
other cell types in the brain such as astrocytes can also engulf 
apoptotic cells (Chang et al., 2000; Magnus et al., 2002; Park 
et al., 2007) and thus may play a role in clearance and disease 
in the brain.

To date, MFG-E8 is the engulfment-related molecule 
best linked to clearance of apoptotic cells in the brain. Cultured 
astrocytes and microglia produce MFG-E8, and MFG-E8 can 
promote the phagocytosis of apoptotic neurons by microglia 
in vitro (Boddaert et al., 2007; Fuller and Van Eldik, 2008). 

may in part explain the defective engulfment seen in COPD 
(Richens et al., 2009). There is currently no definite linkage be-
tween lung disease and specific engulfment receptors, and the 
high rate of cell death in the lung due to inhaled toxins could 
provide valuable insights into clearance mechanisms through the 
use of genetically modified mice.

Atherosclerosis and  
engulfment-related consequences
Macrophages play a prominent role in the development of  
atherosclerotic plaques, and their function in clearing apoptotic 
cells appears to be a key to the pathogenesis of this widespread 
and life-threatening disease. At the onset of plaque formation, 
monocytes in the blood adhere to intimal smooth muscle cells and  
differentiate almost exclusively to macrophages. These macro-
phages then take up low-density lipoprotein (LDL) via scaven-
ger receptors and, once they are cholesterol-laden, are known as 
“foam cells.” These foam cells eventually undergo apoptosis, yet 
early atherosclerotic lesions display few uncleared apoptotic 
cells, which suggests efficient clearance (Tabas, 2005). As leuko
cytes continue to infiltrate the lesion and release inflammatory 
mediators, cell death increases (Schrijvers et al., 2005). Indeed, 
late plaques feature much higher levels of free, uncleared apop-
totic cells, and eventually a necrotic core forms and becomes un-
stable, leading to possible lesions that can cause thrombosis 
(Tabas, 2005).

In recent years, the role of apoptotic cell clearance has  
begun to be appreciated in atherogenesis. Through the use of 
atherosclerosis mouse models—ApoE/ and Ldlr/—genetic 
studies of engulfment molecules have demonstrated the role of 
cell clearance in atherosclerosis (Table I). Mice deficient in the 
apoptotic cell-bridging molecules MFG-E8 (Ait-Oufella et al., 
2007) and C1q (Bhatia et al., 2007) develop accelerated athero-
genesis and display increased plaque-bound apoptotic cells on 
ApoE/ and Ldlr/ genetic backgrounds, respectively. Like-
wise, mice deficient in transglutamase 2 (TG2), a cross-linking 
enzyme that promotes engulfment via v3/5 (Lorand and  
Graham, 2003; Szondy et al., 2003), also enhances atheroscle-
rotic plaque formation in Ldlr/-deficient mice (Boisvert et al., 
2006), but not in ApoE-deficient mice (Williams et al., 2010). 
In addition, the receptor tyrosine kinase MER, which recog-
nizes apoptotic cells via the PtdSer-binding Gas6 bridging mol-
ecule, functions in vivo to inhibit plaque formation and can 
promote apoptotic cell clearance in atherosclerosis models  
(Ait-Oufella et al., 2008; Thorp et al., 2008). Paradoxically, 
Gas6 deficiency on the ApoE/ background leads to the forma-
tion of more stable plaques with smaller necrotic cores, fewer 
macrophages, and increased TGF levels (Lutgens et al., 2008), 
which suggests possible additional nonengulfment related anti-
atherogenic roles for MER. These studies suggest divergent 
roles for the receptor–ligand interactions in atherogenesis, 
which may be due to nonengulfment functions of both proteins 
or the lack of our full understanding of cell death/cell clearance 
in an atherosclerotic plaque.

Lipid handling by macrophages plays an important role in 
atherosclerosis, and so it is interesting that there is considerable 
overlap in the cellular mechanisms that regulate lipid metabolism 
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MFG-E8 in mouse models of solid tumors also enhances anti-
tumor activity (Jinushi et al., 2008; Jinushi et al., 2009). These 
findings suggest that interfering with PtdSer uptake promotes 
dendritic cell-mediated antitumor activity by favoring inflam-
matory uptake mechanisms. Still, despite what appears to be a 
plausible scenario wherein apoptotic cell clearance could have a 
profound impact on carcinogenesis, there is only limited genetic 
evidence to implicate specific engulfment signaling pathways in 
this process. Indeed, the expression of several key engulfment 
players, including MER (Linger et al., 2008) and v5 (Burvenich 
et al., 2008), is up-regulated in neoplastic cells, but the impor-
tance of this observation is unclear.

With the recent discovery of several “find-me” factors 
released by apoptotic cells that act to promote recruitment of 
phagocytes to apoptotic cells, new insights have been gained in 
our understanding of connections between cell clearance and 
tumorigenesis. Several insightful studies from the laboratory of 
C.D. Gregory (Ogden et al., 2005; Truman et al., 2008) have fo-
cused on how macrophages sense and subsequently engulf apop-
totic Burkitt lymphoma cells and how these signaling events may 
impact disease progression. These neoplastic B cells express high 
levels of fractalkine on their surface that is cleaved during apop-
tosis and subsequently functions as a potent chemoattractant for 
macrophages (Truman et al., 2008). Recruitment of macrophages 
to splenic follicles is impaired in fractalkine receptor-deficient 
mice, an observation consistent with a role for fractalkine as a key  
mediator of macrophage recruitment to germinal centers (Truman 
et al., 2008). Within the germinal center environment, high levels 
of IL-10 (likely produced by the engulfing macrophages) appear 
to suppress tumor immunity, whereas the release of B cell sur-
vival factors by engulfing macrophages is thought to promote 
tumor growth (Ogden et al., 2005).

Additionally, we have recently found that apoptotic cells 
release nucleotide triphosphates (ATP/UTP) early during the 
apoptotic process (within 2–4 h), and that these nucleotides act as 
chemoattractants for monocytes and macrophages in vitro and  
in vivo (Elliott et al., 2009). The amount of ATP released by apop
totic cells under these conditions, which promotes silent clear-
ance, represents a very small percentage of the total intracellular 
pool of nucleotides (<2%; Elliott et al., 2009). In contrast, a few 
other recent studies have demonstrated that ATP is released  
by tumor cells undergoing apoptosis in response to chemo
therapeutics, with considerably higher amounts of ATP release 
(10–100 fold greater) seen at later times after induction (12–24 h; 
Ghiringhelli et al., 2009; Martins et al., 2009; Aymeric et al., 2010).  
This apoptotic cell-derived ATP stimulates activation of the  
NLRP3 inflammasome in dendritic cells via the P2X7 receptor 
(Ghiringhelli et al., 2009). This heightened activation state appears 
necessary to drive IL-1 secretion and subsequent priming of 
CD8+ T cells for IFN production and antitumor responses. These 
studies highlight an emerging role for factors released by apoptotic 
cells in shaping the immune response in normal and tumor environ-
ments. This has led to the concept of “immunogenic” versus “non-
immunogenic” cell death, and the idea that immunogenic cell 
death may be beneficial in antitumor therapies (Green et al., 2009; 
Locher et al., 2009). Thus, whether apoptotic cell clearance has a 
beneficial or detrimental effect in the context of tumor progression 

There is also a correlative relationship between MFG-E8 and 
Alzheimer’s disease, as suppressed levels of MFG-E8 are as-
sociated with the disease in humans and mice (Boddaert et al., 
2007; Fuller and Van Eldik, 2008). Additional evidence of en-
gulfment signaling in the brain comes from studies of microglial 
chemoattractants. Dying neurons release find-me cues, namely 
extracellular nucleotides as well as CX3CL1 (fractalkine or neuro
tactin) that promote chemotaxis of microglia via the P2Y and  
CX3CR1 receptors, respectively (Harrison et al., 1998; Koizumi 
et al., 2007). Interestingly, both fractalkine and UDP appear 
to enhance glial cell engulfment: fractalkine by enhancing  
microglial secretion of MFG-E8, and UDP through an as yet un
known mechanism (Koizumi et al., 2007; Fuller and Van Eldik, 
2008). The role of fractalkine signaling has been studied in the 
context of amyotrophic lateral sclerosis and Parkinson’s disease 
using CX3CR1-deficient mice. In these disease models, loss of 
fractalkine signaling resulted in increased numbers of dying 
neurons, which suggests a potential role for fractalkine as an 
important find-me signal in the maintenance of brain homeosta-
sis (Cardona et al., 2006). A key unexplored area of clearance 
in the central nervous system is the immune response generated 
by microglial cells or astrocytes during engulfment (i.e., the 
release of anti-inflammatory mediators) and how that impacts 
homeostasis and disease. Finally, in the developed brain, cell 
turnover is thought to be quite low with the exception of restricted 
regions where adult neurogenesis takes place (Kempermann 
et al., 2004; Zhao et al., 2008; Taupin, 2009). Defining how 
apoptotic cell clearance impacts other developmental processes  
in the brain related to cell turnover, including adult neuro
genesis, will require additional studies with appropriate neuro-
logical models.

Tumorigenesis and cell clearance
Because apoptotic cell clearance typically generates an immuno
suppressive environment, its role in the development and pro-
gression of cancer is enigmatic. As has been reviewed elsewhere 
(Coussens and Werb, 2002; Condeelis and Pollard, 2006; Solinas 
et al., 2009), chronic inflammation is a key factor in tumorigene-
sis. Thus, the efficient clearance of dying cells, and the associated 
production of anti-inflammatory mediators, would be predicted 
to be beneficial in limiting tumorigenesis. However, within a  
tumor environment where rapid cell proliferation and apoptosis are 
ongoing, phagocyte-mediated clearance can exert an unwanted 
immunosuppressive effect. This is particularly the case upon the 
administration of antitumor chemotherapeutics, most of which 
act by inducing apoptosis of tumor cells. In this setting, efficient 
engulfment and the characteristic release of anti-inflammatory 
mediators, particularly TGF, upon encounter with eat-me sig-
nals during this process appear to suppress the antitumor immune 
response. Indeed, in several rodent tumor models, treatment with 
monoclonal antibodies to block PtdSer-mediated uptake retards 
the growth of tumors (Huang et al., 2005; Ran et al., 2005; He 
et al., 2009). Similarly, vaccination of mice with UV-irradiated 
lymphoma cells coated with annexin V to mask PtdSer provides 
significant tumor protection against subsequent challenge with 
living tumor cells, presumably by initiating an antitumor inflam-
matory response (Bondanza et al., 2004). Antibody depletion of 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/189/7/1059/1567455/jcb_201004096.pdf by guest on 09 February 2026



1065Apoptotic cell clearance and disease • Elliott and Ravichandran

The small GTPase RhoG acts upstream of ELMO1, and active 
RhoG-GTP interacts with ELMO1, and thereby recruits the 
ELMO–Dock180 complex to the membrane to promote Rac acti
vation, membrane ruffling, and engulfment (Katoh and Negishi, 
2003; deBakker et al., 2004). IPGB1 mimics the activity of RhoG-
GTP, and the Rac-generated ruffles serve as a site of entry for  
S. flexneri (Handa et al., 2007). Similarly, Yersinia enterocolitica 
virulence factors Invasin and YopE also modulate Rac1 activity 
at the level of RhoG, and appear to do so in an ELMO–Dock180-
dependent manner in cultured cells (Roppenser et al., 2009). 
However, neither of these Y. enterocolitica virulence factors have 
been reported to directly interact with ELMO–Dock180, and the 
role of this module was inferred by expression of a dominant-
negative mutant of ELMO1 that did not further alter Rac activa-
tion in the presence of YopE (Roppenser et al., 2009).

Usurping the engulfment machinery is not exclusive to 
bacteria, and in fact can be used by viruses to promote patho-
genesis. Janardhan et al. (2004) found that the Nef gene product 
of HIV-1 is able to complex with the ELMO2–Dock2 module in 
T cells to promote Rac activation. Further, we have found that 
Nef interacts with Dock2 in Jurkat T cells and promotes the  
activation of a key cytoskeletal Rac effector, p21-activated  
kinase (PAK; unpublished data). The outcome of this inter
action appears to be dysregulated Rac activation, which is 

or anticancer therapies will depend on gaining a better under
standing of the role of factors released by apoptotic tumor cells.

Engulfment molecules  
in microbial pathogenesis
An emerging facet of engulfment signaling is how these path-
ways can be usurped by microbial pathogens. It has been known 
for some time that bacteria can hijack or mimic host signaling 
pathways to aid in pathogenic steps, including cell entry and  
immune evasion (Stebbins and Galán, 2001). This is achieved by 
delivery of bacterial effector proteins into the host cell that mimic 
a range of cellular activities. As key regulators of the cytoskeleton 
and numerous other cellular processes, small G proteins, particu-
larly the Rho family (e.g., RhoA, Rac, and Cdc42), are frequent 
targets for these clever effector mechanisms (Mattoo et al., 2007). 
The signaling machinery that controls phagocyte morphology 
during apoptotic cell engulfment relies on these GTPases as well, 
and thus it is not surprising that several bacteria target these path-
ways. In particular, the RhoG–ELMO–Dock–Rac pathway has 
been found to be such a target (Fig. 2). The invasive pathogen 
Shigella flexneri utilizes a type III secretion system to inject ef-
fectors to promote entry into epithelial cells, including IPGB1 
(Handa et al., 2007). IPGB1 promotes membrane ruffling via  
Rac activation in a mechanism that requires binding to ELMO1. 

Figure 2.  Pathogens usurp the ELMO–Dock–Rac engulfment module. Examples of mechanisms whereby microbial pathogens use the ELMO–Dock–Rac 
module to alter the host cellular response. The area above the broken line shows mechanism of enhanced S. flexneri invasion via IPGB1 interaction with 
ELMO, leading to enhanced Rac activation and membrane ruffles that serve as entry points for the bacteria. The area below the broken line shows that 
HIV-1 uses Nef interaction with the ELMO–Dock2 complex to disrupt CXCR4-dependent chemotaxis in CD4+ T cells.
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topic (using in vivo models) portend potentially therapeutic ben-
efits by targeting the components of the engulfment machinery.
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