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Pcdp1 is a central apparatus protein that binds
Ca**-calmodulin and regulates ciliary motility

Christen G. DiPetrillo and Elizabeth F. Smith

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755

or all motile eukaryotic cilia and flagella, beating

is regulated by changes in intraciliary calcium con-

centration. Although the mechanism for calcium
regulation is not understood, numerous studies have
shown that calmodulin (CaM) is a key axonemal calcium
sensor. Using anti-CaM antibodies and Chlamydomonas
reinhardltii axonemal extracts, we precipitated a com-
plex that includes four polypeptides and that specifically
interacts with CaM in high [Ca?*]. One of the complex
members, FAP221, is an orthologue of mammalian Pedp!

Introduction

Understanding how dynein is regulated to produce the wave-
forms typical of beating cilia and flagella is among the most
pressing questions in the field of motility. These complex wave-
forms result from temporal and spatial regulation of dynein-
driven microtubule sliding. In addition, virtually all motile cilia
and flagella modulate their motility in response to changes in
the intraciliary concentrations of the second messenger calcium.
For example, in the presence of high calcium levels, sperm fla-
gella and respiratory cilia increase their beat frequency (Brokaw
et al., 1974; Verdugo, 1980), and flagella of Chlamydomonas
reinhardtii switch from an asymmetric to a symmetric wave-
form (Bessen et al., 1980) (note: because the structures and
polypeptides that comprise cilia and flagella are virtually identi-
cal, we use these two terms interchangeably).

Several calcium-binding proteins are components of the
ciliary axoneme (for review see DiPetrillo and Smith, 2009).
Our in vitro functional studies using axonemes isolated from
wild-type and mutant C. reinhardtii cells provided evidence
that calmodulin (CaM) is a key calcium sensor and that the cen-
tral apparatus and radial spokes are integral components of the
calcium signaling pathway (Smith, 2002; Dymek and Smith,
2007). Understanding the role of calcium and CaM in regulat-
ing dynein activity requires the identification and localization of
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(primary ciliary dyskinesia protein 1). Both FAP221 and
2+].

mammalian Pcdp1 specifically bind CaM in high [Ca
Reduced expression of Pcdp1 complex members in C. rein-
hardtii results in failure of the C1d central pair projec-
tion to assemble and significant impairment of motility
including uncoordinated bends, severely reduced beat
frequency, and altered waveforms. These combined re-
sults reveal that the central pair Pcdp1 (FAP221) complex
is essential for control of ciliary motility.

CaM binding partners. Based on the large body of CaM litera-
ture (for review see Chin and Means, 2000), we hypothesized
that CaM would exhibit differential affinity for particular inter-
acting proteins in low versus high calcium conditions. In addi-
tion, we hypothesized that differential interaction of Ca**-CaM
with specific axoneme components would play a role in altering
dynein-driven microtubule sliding to control the size and shape
of ciliary bends.

Previous investigators demonstrated that CaM is associ-
ated with the radial spoke stalk and that binding of CaM to par-
ticular stalk components is calcium sensitive (Yang et al., 2001;
Patel-King et al., 2002, 2004). However, a substantial amount of
axonemal CaM is not associated with the spokes. To identify
additional CaM-interacting proteins, our laboratory used anti-
CaM antibodies and extracts of axonemal proteins in immuno-
precipitation experiments. In our first experiments we used low
calcium buffer conditions and identified two distinct complexes.
In addition to CaM, one complex contains five polypeptides
including PF6; this complex most likely comprises the Cla
central pair projection (Fig. 1 A; Wargo et al., 2005). Phenotypic
analyses of Cl-defective mutants (for review see Dutcher et al.,
1984; Mitchell and Sale, 1999), as well as recent structural and
functional studies (Smith, 2002; Wargo and Smith, 2003; Wargo
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et al., 2004), have provided ample evidence to indicate that the
C1 microtubule regulates motility. The flagella of the C. reinhardtii
pf6 mutant lack the Cla projection and are virtually paralyzed
with only modest twitching (Dutcher et al., 1984; Rupp et al.,
2001). In addition, our laboratory has shown that modulation of
dynein activity on specific subsets of doublet microtubules in
response to changes in calcium concentration is defective in
pf6 axonemes (Wargo et al., 2004). We predict that the CaM
interactors associated with the Cla projection play a role in
this modulation.

The second complex we identified, the CSC (CaM- and
spoke-associated complex), is most likely localized near the
base of the radial spokes (Dymek and Smith, 2007). This com-
plex includes FAP91, a protein with significant sequence simi-
larity to AAT-1, a protein identified in testis as an AKAP
(A-kinase anchor protein)-binding protein. FAP91 directly
interacts with CaM and the radial spoke protein RSP3 (an
AKAP), located at the base of the spoke (Fig. 1 A). Addition
of antibodies generated against FAP91 to mutant axonemes
with reduced microtubule sliding velocity restores dynein
activity to wild-type levels. These results strongly implicate
the CSC in mediating regulatory signals between the radial
spokes and dynein arms.

Based on the prediction that CaM has different axonemal
binding partners in high calcium, we have now performed immuno-
precipitation experiments in high calcium buffer. Here, we report
the identification of a complex that includes four polypeptides
in addition to CaM and that localizes to the C1d projection of
the central apparatus. One member of the complex, FAP221,
binds directly to CaM in a calcium-dependent manner and
shares significant sequence identity with mammalian primary
ciliary dyskinesia protein 1 (Pcdpl; Lee et al., 2008). Our func-
tional and structural analyses of mutant strains with reduced
expression of complex components provide direct evidence that
this calcium-dependent CaM complex localizes to the C1d cen-
tral pair projection and is essential for controlling ciliary beat
frequency and waveform.

Results

Ca®-CaM binds to a 110-kD protein that
is associated with the central apparatus

To identify potential calcium—calmodulin (Ca?*-CaM) inter-
actors, we performed a gel overlay assay using bacterially
expressed C. reinhardtii CaM and axonemes isolated from
wild-type (WT), pfi4, and pf18 cells. CaM bound to a protein of
~110 kD in the presence of high calcium buffer, but not in buf-
fers with EGTA (Fig. 1 B). The 110-kD protein is present in WT
and pf14 axonemes, but appears lacking from pf/8 axonemes.
These results suggest that the 110-kD protein is associated with
the central apparatus. To isolate this protein, as well as to iden-
tify other Ca’-CaM interactors, we used a C. reinhardtii-
specific anti-CaM antibody and extracted axonemal proteins in
immunoprecipitation experiments (Fig. 1 C). These experi-
ments were performed in the presence of either low or high
calcium buffers and using extracts prepared from axonemes
isolated from several C. reinhardtii mutants. The resulting
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precipitates were analyzed by SDS-PAGE using both high (not
depicted) and low percentage polyacrylamide gels and silver
stain for visualizing proteins (Fig. 1 C).

Four polypeptides, tentatively named HC1-4 and ranging
in apparent molecular weight from 285 kD to 110 kD, were
most consistently enriched in immunoprecipitates using high
calcium buffer (Fig. 1 C, red asterisks). These four proteins are
either lacking from or significantly reduced in precipitates of
extracts isolated from the central apparatus defective mutants
pfl8 and pfl16 (Fig. 1 C, blue asterisks). However, HC1-4 are
precipitated from axonemal extracts isolated from cpcl and pf6.
Based on the well-established structural defects for these mu-
tants (Fig. 1 A), these results tentatively localize HC1-4 to the
Clc or C1d projections of the central apparatus. CaM gel over-
lay analysis of precipitates confirmed that the 110-kD protein
(HC4) was precipitated in high calcium buffer and only bound
CaM under high calcium overlay conditions. These studies also
revealed that HC4 was the only CaM interactor among HC1-4
(Fig. 1 D). These results suggest that HC4 corresponds to the
110-kD protein originally identified in gel overlay assays and
that HC1-4 form a single complex with CaM.

Identification of HC1-4: FAP221 is

the C. reinhardtii homologue of

mammalian Pcdp1

To determine the identities of HC1-4, corresponding bands
were excised from a polyacrylamide gel and subjected to mass
spectrometry. Comparisons of the resulting peptides with the
translated C. reinhardtii genome (version 3.0; http:/genome
jgi-psf.org/Chlre3/Chlre3.home.html; (Merchant et al., 2007)
revealed that HC1-4 correspond to four previously uncharacter-
ized flagellar-associated proteins that were originally identified
in the flagellar proteome (Pazour et al., 2005). The identities,
in order of decreasing molecular weight, are FAP54, FAP46,
FAP74, and FAP221 (Table I).

In database searches using the predicted amino acid se-
quences, putative homologues for all four proteins are only
found in ciliated organisms. The top mammalian hit for each is
shown in Table I and is a reciprocal best match. FAP54, FAP46,
and FAP74 have no known functional domains and share se-
quence identity with predicted proteins of unknown function.
However, FAP221 shares high amino acid sequence identity
with the mouse protein, primary ciliary dyskinesia protein 1
(Pcdpl; Lee et al., 2008), particularly over two regions (Fig. 2 A).
The first region spans aa 8-244 and shares 37% identity and
60% similarity with Pcdpl (Fig. 2 A, red), whereas the second
region spans aa 392-739 (Fig. 2 A, blue) and shares 33% simi-
larity (for a comparison of Pcdpl homologues from ciliated
organisms, see the dendrogram in Fig. S1).

FAP221 has a predicted CaM binding site at aa 588-595
(see Calmodulin Target Database; http://calcium.uhnres.utoronto
.ca/ctdb/ctdb/sequence.html). Pcdpl contains two predicted
CaM binding motifs. An IQ motif is located in the C terminus
of the protein, and an uncharacterized CaM binding motif
is located between aa 465-500. To confirm the predicted
CaM binding site in FAP221 as well as determine if the two
potential binding sites in Pcdpl bind CaM, we bacterially
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Figure 1. Anti-CaM antibodies precipitate four polypeptides, one of which exhibits calcium-sensitive CaM binding. (A) Diagram of the central apparatus
and a single doublet microtubule with associated structures. Central pair projections are labeled. Inserted table lists WT and mutant strains used in this study
along with the associated structural defects. (B) CaM gel overlay of WT, pf14, and pf18 axonemes in high and low calcium conditions. CaM binds to a
polypeptide of ~110 kD specifically in the presence of calcium (red arrowhead); this protein is missing from pf18 axonemes. (C) Silver-stained gels of anti-
CaM immunoprecipitation experiments (IPs) performed in low and high calcium buffers from axonemal extracts isolated from WT and mutant axonemes.
Four polypeptides are precipitated that are highly enriched in high calcium IPs (HC1-4). These four polypeptides are missing or reduced from pf18 and
pf16 anti-CaM IPs (blue asterisks) and are present at WT levels in pf6, cpci, and pf14 anti-CaM IPs (red asterisks). These results tentatively localize HC1-4
to the Clc or C1d projections of the central apparatus. (D) Corresponding CaM gel overlays of high calcium anti-CaM IPs from WT and mutant axonemal
extracts. Only one of the precipitated proteins, HC4, exhibits calcium-sensitive CaM binding.

Table I. Proteins precipitated with anti-CaM antibodies in high calcium buffers

Protein Flagellar Predicted MW Predicted PI Top mammalian hit E valve
proteome

HC1 FAP54 318,000 7.8 Predicted protein XP_001057963 (Rn) 9e-21

HC2 FAP46 289,000 6.6 Predicted protein XP_001092606 (Ma.m) le-14

HC3 FAP74 204,000 5.9 EAWS56139 (Hs) le-79

HC4 FAP221 100,000 7.9 Primary ciliary dyskinesia protein 1 (Mu.m) 3e-51

Hs, Homo sapien; Ma.m, Macaca mulatta; Mu.m, Mus musculus; Rn, Rattus norvegicus.
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Figure 2. Pedp]1 is the mammalian orthologue of FAP221. (A) Diagram
comparing the FAP221 and Pcdp1 protein coding sequences that share
two maijor regions of identity. In the second region (shown in blue), both
proteins have a predicted CaM-binding site (hatch marked region labeled
“CaM”). Pcdp1 also has a predicted IQ motif at its C terminus (IQ). Re-
gions that were expressed and used in the CaM gel overlay assay are
marked with a black line; A and B for FAP221 and 1 and 2 for Pedpl.
(B) CaM gel overlay assay of FAP221 and Pcdp1 predicted CaM-binding
regions. Overlays were performed with CaM from mouse (mCaM). The
predicted CaM-binding regions shown in hatch marks only bind to CaM
in the presence of high calcium. The predicted IQ motif at the C terminus
of Pcdp1 does not bind to CaM under high or low calcium conditions.
(C) Site-directed mutagenesis was used to alter three amino acids in the
FAP221 CaM-binding site. Gel overlay analysis demonstrates the altered
CaM-binding site no longer binds to C. reinhardtii CaM (CrCaM) in the
presence of calcium.

expressed and purified the regions of interest for each protein and
used them in gel overlay assays (Fig. 2 B). CaM preferentially
binds to both FAP221 and Pcdp] in the presence of high calcium.
In addition, our data demonstrate that the uncharacterized motif
in Pcdpl, and not the predicted IQ motif, binds Ca**-CaM.

The FAP221 CaM binding site was further confirmed by
repeating the gel overlay assay using expressed protein frag-
ments with either the WT CaM binding site or a CaM binding
site in which three key amino acid changes were engineered
(Fig. 2 C). The hydrophobic nature of leucine and basic prop-
erty of arginine are predicted to aid in binding CaM to its inter-
actor (see Calmodulin Target Database). Therefore, these amino
acids were changed to the polar amino acid glutamine, which
has a neutral charged side chain. CaM no longer bound to
the mutagenized FAP221 fragment regardless of the calcium
concentration. These results confirm the identification of the
FAP221 CaM binding site.

FAPS54, FAP46, FAP74, and FAP221
form a single complex

Our CaM immunoprecipitation results combined with CaM gel
overlay suggested that FAP54, FAP46, FAP74, and FAP221
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form a single complex with CaM. To characterize these proteins
further, polyclonal antibodies were generated against FAP74
and FAP221 using synthetic peptides or purified bacterially
expressed protein fragments, respectively (see Materials and
methods). Both antibodies recognize a polypeptide of the pre-
dicted molecular weight on Western blots of wild-type axo-
nemes; these polypeptides are lacking from pfI18 and reduced in
pfl16 axonemes (Fig. 3 A). Importantly, anti-FAP74 and anti-
FAP221 antibodies also recognize polypeptides of the predicted
molecular weight in high calcium anti-CaM immunoprecipi-
tates (Fig. 3 B).

Both anti-FAP221 and anti-FAP74 antibodies were used
to precipitate proteins from axonemal extracts. The anti-FAP221
antibody proved ineffective for immunoprecipitation (not de-
picted). However, the anti-FAP74 antibodies precipitated all
four members of the complex from WT axonemal extracts, as
seen by silver stain (Fig. 3 C) and Western blots (for FAP74 and
FAP221; unpublished data). Because we do not have antibodies
generated against FAP54 and FAP46, the identities of the two
highest molecular weight bands in our precipitates were con-
firmed by mass spectrometry. As expected, the four proteins are
not precipitated from pf18 axonemal extracts because FAP74 is
missing from axonemes isolated from this mutant. We also ana-
lyzed the sedimentation profile of these polypeptides on sucrose
gradients (Fig. 3 D). FAP74 and FAP221 cosediment on sucrose
gradients at ~~158S, consistent with our hypothesis. Immuno-
precipitation of CaM from pooled gradient fractions revealed
that both FAP54 and FAP46 also cosediment with FAP74 and
FAP221 (Fig. 3 E). These results provide strong evidence that
these four proteins form a single complex.

The Ca®'-CaM interacting complex localizes
to C1d and is required for wild-type motility
Searches of the C. reinhardtii sequence database and genetic
maps revealed that no previously indentified mutations mapped
near to any of the genes encoding FAP46, 54, 74, or 221. There-
fore, no mutants are currently available for any of the complex
members. Because targeted gene disruption is not yet possible
in C. reinhardtii, we used an artificial microRNA (amiRNA)
approach to reduce gene expression of complex components
and thus gain additional information about their localization and
function. This technique takes advantage of the cell’s own micro-
RNAs that function to regulate endogenous gene expression
(Fig. 4 A). Gene-specific amiRNA vectors were constructed as
described in Molnar et al. (2009) and transformed into WT
C. reinhardtii cells (Kindle, 1990). After selection of transfor-
mants on paromomycin, we screened for abnormal swimming
phenotypes. Flagella were isolated from transformants with
swimming defects and assessed for reduced protein expression
by Western blot. A total of 960 transformants were picked
from two transformations. Of these, 80 transformants had
apparent swimming defects and 34 of these were screened for
the presence of FAP74 in isolated flagella. 25 screened transfor-
mants had reduced amounts of FAP74 protein compared with
WT based on densitometry of Western blots.

For cells that were transformed with amiRNA vectors de-
signed to knock down expression of FAP74, three transformants,
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Figure 3. FAP54, FAP46, FAP74, and FAP221
form a single complex. (A) Western blots of
isolated axonemes. FAP74 and FAP221 anti-
bodies recognize proteins of the correct mo-
lecular weight and that are missing or reduced
from pf18 and pf16, but are present in WT,
pf6, and cpcl axonemes. (B) These proteins
are also present in anti-CaM IPs using WT
axonemal extracts but not pf18 and pf16 ex-
tracts. (C) Silverstained gel of high calcium
anti-FAP74 IPs from WT and pf18 NaCl axo-
nemal extracts. All four proteins coprecipitate
from WT extracts. The identities of FAP74
and FAP221 were confirmed by Western blot
(not depicted). The identities of FAP54 and
FAP46 were confirmed by mass spectrometry.
(D) Western blots of WT axonemal extracts
fractionated on a 5-20% sucrose gradient.
FAP74 and FAP221 cosediment at ~15S.
(E) Silverstained gel of high calcium anti-
FAP74 IPs from pooled sucrose gradient frac-
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1G11, 2D4, and 7A4, from two independent transforma-
tion experiments showed the most significant reduction of
FAP74 protein in flagella (Fig. 4 B) and were selected for
further analysis. Importantly, unlike many procedures we
have tried for RNAi-mediated knockdown of protein expres-
sion in C. reinhardtii, protein expression in these mutants
appears to be stably reduced after many passages of cell cul-
tures. We confirmed reduction of FAP74 expression by Northern
blot (Fig. S2).

Flagella isolated from strain 1G11 appear to nearly com-
pletely lack FAP74 by Western blot, whereas densitometry
analysis shows flagella isolated from strains 2D4 and 7A4 have
an 87 and 78% reduction, respectively, of FAP74 compared
with wild-type (Fig. 4 B). Interestingly, FAP221 still assembles
into flagella of these mutant axonemes at apparently wild-type
levels. However, immunoprecipitation of Ca**-CaM from ex-
tracts isolated from mutant extracts failed to precipitate FAP221
(Fig. 4 C). Silver-stained gels of the resulting precipitates also
reveal that FAP54 and FAP46 are absent or severely reduced in
precipitates from these strains (Fig. 4 C). In the absence of anti-
bodies generated against FAP54 and FAP46, it is unknown
whether they fail to assemble in transformants. However, our
results indicate that the interactions of the polypeptides in this
complex with Ca**-CaM and potentially with each other have
been severely disrupted.

To determine if any structural defects result from reduced
expression of FAP74, we prepared axonemes from 1G11, 2D4,
and 7A4 for transmission electron microscopy. Transverse sec-
tions of axonemes isolated from each of these mutants revealed
that the C1d projection of the central apparatus, as well as the
sheath connecting the C1d and C1b projection, are either lacking

tions (see F). All four members of the complex
coprecipitate from pool B (fractions 7-11), and
not from pools A, C, or D. (F) Silver-stained gel
of WT axonemal extracts fractionated on a
5-20% sucrose gradient. Odd fractions were
pooled together in designated groups A-D
and used in high calcium anti-FAP74 Ps shown
in E. These data support the conclusion that all
four proteins form a single complex.

or significantly reduced (Fig. 4 D, arrow). In the absence of the
C1d projection, a space is seen between the radial spoke heads
and central apparatus (Fig. 4 D, arrowhead). To ensure that we
distinguish the central pair projections from the radial spoke
heads, we generated double mutants with reduced FAP74 ex-
pression in combination with the pf74 (radial spokeless) muta-
tion. In the absence of the radial spokes, the defect in the C1d
projection and sheath is easily recognized (Fig. 4, D and E).

As noted above, the FAP74-amiRNA mutants were se-
lected among transformants for their altered motility. Using
phase optics, 1G11, 2D4, and 7A4 cells appear to move signifi-
cantly slower than wild-type with uncoordinated flagellar beat-
ing. Because the ability to phototax requires that flagella respond
appropriately to increases in intraflagellar calcium, we used a
simple phototaxis assay to test whether these strains retained
the ability to phototax (see Materials and methods). All knock-
down strains are capable of phototaxis. However, for strain 1G11
it took several hours for half of the cells to photo-accumulate.
This result is most likely due to their motility defect rather than
a defect in the ability to phototax.

To analyze flagellar beating of these strains quantitatively
we used high speed video capture of swimming cells (see
Materials and methods and Videos 1-4). All three strains
showed significant reduction in swimming velocity compared
with wild-type (Table II). 1G11 and 2D4 had velocities of
approximately one-fourth of wild type, whereas swimming
velocities of 7A4 were approximately one-half of wild type.
Importantly, we were only able to measure swimming velocity
for a fraction of the cells. In strain 1G11 only 29% of the cells
were swimming. For 40% of cells, their flagella were either
twitchy or one flagellum was paralyzed; these cells were unable

Pcdp1 binds Ca®*-CaM and regulates ciliary motilicy *« DiPetrillo and Smith
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Figure 4. Mutants with reduced expression of FAP74 lack the C1d central
pair projection. (A) Diagram of FAP74 artificial miRNA construct. (B) West-
ern blot of WT and mutant flagella showing that FAP74 amiRNA trans-
formants 1G11, 2D4, and 7A4 have reduced levels of FAP74. FAP221
levels are not reduced in these mutants. IC138 is a dynein intermediate
chain used as a loading control. (C) Top panel is a silverstained gel of
high calcium anti-CaM IPs from axonemal extracts. Reduced amounts of
FAP54 and FAP46 are immunoprecipitated from 1G11, 2D4, and 7A4
axonemal extracts compared with WT. Bottom panels are anti-FAP74 and
anti-FAP221 Western blots of high calcium anti-CaM IPs showing that
FAP74 and FAP221 are not precipitated from FAP74ami transformants.
(D) Diagram shows the identities of the central pair projections. Electron
micrographs of transverse sections of WT, 1G11, pf14, and 1G11,pf14
mutant axonemes. (E) Enlarged view of the central apparatus from pf14
and 1G11,pf14 double-mutant axonemes. All micrographs are oriented
with the axoneme viewed proximal to distal with the bar representing
25 nm; the C1 central microtubule in all images is to the left. The 1G11
and 1G11,pf14 axonemes lack the C1d density and the sheath connect-
ing C1d to C1b (marked by red arrows and asterisks).
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to initiate a productive effective stroke to propel themselves
through the media and often tumbled in circles. The remaining
31% of cells had paralyzed flagella.

Much of the reduction in swimming speed could be ac-
counted for by a reduction in beat frequency. The average beat
frequencies of 1G11, 2D4, and 7A4 are significantly reduced
compared with wild type, with 1G11 beating at ~30% of wild-
type frequency (Table II). The magnitude of the reduction of
beat frequency and swimming velocity roughly correlates with
the amount of reduction of FAP74 expression with the greatest
reduction observed for 1G11 in which FAP74 appears nearly
absent in isolated axonemes. Upon close inspection of individ-
ual flagella, the reduction in beat frequency appears to be due in
large part to stalling after the recovery stroke; the cells are
defective in the ability to initiate the effective stroke.

To qualitatively evaluate beating in mutant strains we ana-
lyzed images from high speed video recordings. The still im-
ages in Fig. 5 illustrate the uncoordinated nature of flagellar
motility for 1G11 compared with wild type (compare Video 1
with Videos 2—4). In these images and the corresponding traces,
the flagella spend more time in the “hands-up” position before
initiating an effective stroke. In some cases, the two flagella
alternate bending (Fig. 5 B). In addition, for some cells one
flagellum beats at one-quarter the frequency of the other flagel-
lum (Fig. 5 C). To determine if the difference in beat frequency
between the two flagella is a general feature of these mutants,
we plotted the distribution of beat frequencies for a given popu-
lation (unpublished data). We predicted that if this difference
were a general feature of the population, we would observe
a bimodal distribution of frequencies. For all three mutant
strains, the distribution was normal. Therefore, this difference
in beat frequency for the two flagella is not a general feature of
these mutants.

For the FAP74ami transformants that are motile, we
tested their ability to switch to a symmetric waveform in
response to an increase in illumination (see Videos 5 and 6).
All FAP74ami transformants were defective in their ability to
switch waveform, with the greatest deficiency observed for
strain 1G11. In this strain, only 4% of swimming cells were
able to switch waveform. Interestingly, of the cells that
switched to a symmetric waveform, the beat frequency of the
symmetric waveform was not as severely reduced as the beat
frequency for the asymmetric waveform (Table IT). For exam-
ple, there is a 70% decrease in the asymmetric beat frequency
of 1G11 compared with WT, but only a 22% decrease in the
symmetric beat frequency.

Discussion

Our previous in vitro functional studies of dynein-driven micro-
tubule sliding using isolated axonemes demonstrated that CaM
anchored to the axoneme is a key calcium sensor and that the
central apparatus and radial spokes are integral elements of the
calcium signaling pathway (Smith, 2002; Wargo et al., 2004;
Dymek and Smith, 2007). Three different CaM-interacting pro-
tein complexes have been localized to these structures: RSP2,
which localizes to the radial spoke stalk (Yang et al., 2001;
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Table Il. FAP74ami mutant analysis

Strain Percent Percent Swimming velocity Asymmetric beat Percent able to Symmetric beat
FAP74 swimming (n) (pm/s) £ SEM (n) freq (Hz) + SEM (n) switch waveform (n) freq (Hz) + SEM (n)
WT 100% 83% (281) 119£7.9 (10) 50 1.0 (77) 100% (91) 76+ 3.2 (26)
1611 1% 29% (146) 34 + 2.3 (40) 15 £ 0.9 (90) 4% (91) 59+ 4.5(12)
2D4 13% 50% (354) 32+1.3(92) 17£0.7 (116) 22% (104) 52423 (27)
7A4 22% 64% (133) 67 + 3.5 (67) 24£1.0(122) 57% (49) 6427 (33)

Patel-King et al., 2002, 2004); FAP91, a component of the CSC,
which tentatively localizes to the base of the spoke (Dymek and
Smith, 2007); and FAP101, a component of the PF6 complex
that localizes to the Cla central pair projection (Wargo et al.,
2005). Here, we report the discovery of a protein complex that
interacts with Ca?*-CaM and localizes to the Cld projection
of the central apparatus. The complex includes Pcdpl and is
required for wild-type motility. Our results provide the first
assignment of polypeptides to the C1d central projection, and
establish a definitive and essential role for this complex in regu-
lating motility.
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FAPS54, 46, 74, and 221 form a single
complex that exhibits calcium-sensitive
CaM binding

Both our immunoprecipitation results and the sedimentation
profile on sucrose density gradients support the conclusion that
FAP54, 46, 74, and 221 form a single complex. All four poly-
peptides coprecipitate using either anti-CaM antibodies or anti-
FAP74 antibodies, and all cosediment on sucrose gradients. Gel
overlay assays of either immunoprecipitates or expressed pro-
teins confirm that FAP221 is the only CaM interactor among
these four polypeptides. In addition, the interaction of FAP221

Waveform traces
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Figure 5. FAP74ami transformants have slow and uncoordinated flagella with abnormal waveforms. Montage of sequential frames from high speed
recordings. Elapsed time in seconds is denoted on each frame. (A) WT cell displaying normal waveforms of two coordinated flagella (see Video 1).
(B) 1G11 cell displaying uncoordinated flagellar movements. The right flagellum beats first, followed by the left flagellum. The corresponding waveform
traces show an incomplete effective stroke and the lack of a normal recovery stroke (see Video 2). (C) 1G11 cell displaying uncoordinated flagella. The left
flagellum completes two beats in the same time the right flagellum completes one effective stroke. The waveform traces also show the failure of the left fla-
gellum to complete an effective stroke before beginning the recovery stroke. Examples of FAP74ami transformants 2D4 and 7A4 swimming can be seen in

Videos 3 and 4, respectively.
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with CaM is calcium sensitive and only occurs in the presence
of high calcium.

Given that none of the four proteins precipitate from cen-
tral apparatus defective mutants using anti-FAP74 antibodies,
we concluded that these four polypeptides form a complex that
is localized to the central apparatus. In analyses of anti-CaM
immunoprecipitates from mutants that completely lack the cen-
tral apparatus (pfI18), FAP74 and FAP221 appear to be com-
pletely missing. However, FAP54 and FAP46 are present, albeit
in significantly reduced amounts. Given the large size of FAP54
and FAP46 and the fact that they do not interact with CaM, it is
possible that FAP221 is present in the precipitates at levels too
low to detect by silver stain or gel overlay. Alternatively, FAP54
and FAP46 may bind to an additional Ca?*-CaM interactor that
localizes to an axonemal structure other than the central appara-
tus. To explore this possibility will require the generation of
antibodies against FAP54 and FAP46.

FAP221 is the C. reinhardtii orthologue

of Pcdp1 and localizes to C1d

FAP221 shares high amino acid sequence identity with mouse
Pcdpl. Pcdpl, or primary ciliary dyskinesia protein 1, is a pro-
tein that when mutated in mice causes many of the same pheno-
types observed in PCD, including hydrocephalus, respiratory
defects (sinusitis), and male infertility (Lee et al., 2008). In par-
ticular genetic backgrounds, homozygous mutant mice die peri-
natally from hydrocephalus. In other genetic backgrounds the
male mice are infertile, producing sperm with no visible fla-
gella. Interestingly, in these mice cells of the respiratory tract do
produce cilia; however, they beat with reduced frequency and
exhibit an abnormal accumulation of mucus in their sinuses.

Lee et al. (2008) reported that there was no C. reinhardtii
homologue for Pcdpl. However, they most likely searched the
C. reinhardtii genome database for predicted coding sequences.
In our studies, we discovered that the intron—exon prediction
for FAP221 in the C. reinhardtii genome database was incorrect.
Once the correct coding sequence was determined, the high
degree of similarity between Pcdpl and FAP221 was immedi-
ately obvious. Using this predicted amino acid sequence, we
have also shown that apparent Pcdpl homologues exist in all
ciliated organisms (Fig. S1).

In addition to sharing significant sequence similarity,
we demonstrated that both FAP221 and Pcdp1 are CaM-binding
proteins and that the CaM binding domains appear to occur
within the same region for each polypeptide. We have also
shown that CaM binding for each of these polypeptides is
calcium sensitive. Taken together with the functional data
discussed below, FAP221 appears to be truly orthologous
to Pcdpl.

The structural analyses of respiratory cilia in mutant mice
by Lee et al. (2008) did not reveal any defects associated with
the axoneme. However, reduced expression of the FAP74 mem-
ber of the C. reinhardtii complex results in the absence of the
C1d projection of the central apparatus. Therefore, this complex
most likely localizes to C1d. Given the difficulty in preserving
and staining axoneme structure within mammalian respiratory
cilia, it is not surprising that these investigators were unable to
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discern such a distinct structural defect. Remarkably, based on
the observed motility defect of mutant mice in comparison with
the motility defects observed for central apparatus defective
C. reinhardtii mutants, such as those that lack Hydin (Lechtreck
and Witman, 2007; Lechtreck et al., 2008), Lee et al. (2008)
suggested in their Discussion that Pcdp1 localizes to the central
apparatus. Our results clearly demonstrate that their hypoth-
esis was in fact correct.

Pcdp1-FAP221 is required for normal
ciliary motility

Given that Pcdp1-FAP221 is a Ca**-CaM interactor, we pre-
dicted that this protein is involved in calcium-induced changes
in motility. Mammalian sperm respond to increases in intra-
flagellar calcium by hyperactivation. Homozygous pcdpl mu-
tants fail to assemble sperm flagella; therefore, it is not known
whether this complex is involved in hyperactivation. This ob-
servation suggests that Pcdpl in mammals also plays a role in
flagellar assembly during spermatogenesis. Mammalian airway
cilia respond to increases in calcium by increasing beat fre-
quency. Mutant homozygous mice that lack Pcdpl assemble
airway cilia with reduced beat frequency (Lee et al., 2008).
However, it is unknown if airway cilia from these mice also
have altered waveforms or respond to changes in intracellular
calcium concentration.

Although we have been unable to reduce expression of
C. reinhardtii Pcdpl-FAP221, we have knocked down ex-
pression of the FAP221-interacting protein, FAP74. In these
mutants FAP221 still assembles into flagella; however, its inter-
action with CaM is lost and the two other complex members
FAP54 and FAP46 fail to either assemble or interact with
FAP221. This defect results in the loss of the C1d projection.
Using a variety of structural and biochemical approaches, all
other axonemal components appear to be fully assembled. What
is remarkable is that this small structural defect disrupts several
fundamental features of motility. For the most significant knock-
down of expression, only 29% of cells are swimming and their
beat frequency is reduced to 30% of wild type. Flagella from
these cells are uncoordinated, with defects in propagating bends
and switching between effective and recovery strokes. Such a
defect in switching has also been observed for C. reinhardtii
mutants with reduced expression of Hydin (Lechtreck and
Witman, 2007). Of the cells that have motile flagella, only 4%
are able to switch between asymmetric (ciliary) and symmetric
(flagellar) waveforms, a calcium-induced motility response.
These results provide strong evidence that the Pcdpl-FAP221
complex not only plays a role in calcium regulation of motility,
but also in control of normal wild-type beating.

As mentioned above, the loss of Pcdpl from mutant mice
results in slightly reduced beat frequency, yet the mice die peri-
natally of hydrocephalus. In C. reinhardtii, we have shown
that reduced expression of the FAP221 complex member,
FAP74, results in severely reduced beat frequency and altered
waveforms. There are several possibilities to explain this differ-
ence in ciliary phenotype. First, it is not known if the cilia from
pcdpl mutant mice have altered waveforms. The reduction
in beat frequency seen in mutant mice most likely does not
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account for the severe hydrocephalus and sinusitis. Therefore, it
seems probable that there are additional defects in ciliary motil-
ity that are difficult to observe by video microscopy. Second, it
is not known whether other components of the Pcdpl complex
assemble in pcdpl mutant mice. Reduced expression of FAP74
may result in a more significant structural and functional defect
than knockout of Pcdpl-FAP221. Finally, these differences
may be organism specific. As noted, pcdpl mutant mice assem-
ble respiratory cilia but fail to assemble sperm flagella. There-
fore, certain functions of Pcdpl-FAP221 may be unique to
multicellular organisms.

A mechanism for Pcdp1-FAP221 function
The central apparatus is the home of many proteins known to be
important for normal flagellar motility and function (for review
see Mitchell, 2009). Although several studies using altered
buffer conditions and low ATP concentrations have demon-
strated that the radial spokes and central apparatus are not abso-
lutely required for motility and waveform conversion (Omoto
et al., 1996; Frey et al., 1997; Wakabayashi et al., 1997; Yagi
and Kamiya, 2000), analysis of mutants in a variety of organ-
isms demonstrate that these structures are required for normal
motility in physiological conditions. Additional studies using
combined functional and structural approaches support the hypoth-
esis that calcium-induced changes in waveform affect dynein
activity on specific doublet microtubules by a mechanism pos-
sibly involving orientation of the central pair (Yoshimura and
Shingyoji, 1999; Bannai et al., 2000; Nakano et al., 2003; Wargo
and Smith, 2003; Mitchell and Nakatsugawa, 2004; Hayashi
and Shingyoji, 2009). The simplest model that can be derived
from these analyses is that the central pair/radial spoke system
acts as a signal transducer for controlling the size and shape of
ciliary bends and for modifying motility in response to specific
signals (for review see Smith and Yang, 2004). Given that such a
small structural defect, such as the lack of C1d, resulted in such
a significant defect in motility, we predict that the C1d projec-
tion is essential for the central pair/radial spoke interactions that
are required for coordinated and regulated microtubule sliding.

Our working hypothesis is that these protein complexes act
as molecular switches that alternate between CaM-associated
and -dissociated states, depending on the concentration of intra-
ciliary calcium. For example, the PF6 complex localizes to the
Cla projection and binds to CaM in the presence of low calcium
(Wargo et al., 2005). The FAP221-containing complex likely lo-
calizes to the C1d projection and binds CaM in the presence of
high calcium. We postulate that the altered association of CaM
with these complexes potentially alters the interaction of the cen-
tral pair projections with the radial spoke heads to ultimately
regulate dynein activity.

One of the most surprising discoveries in the past five to
ten years is the number of diverse human diseases that result
from defects in ciliary assembly and/or motility, so-called
“ciliopathies” (for review see Badano et al., 2006; Sharma et al.,
2008; Nigg and Raff, 2009). Defects in motility may result in
impaired fertility, respiratory distress, and/or randomization
of the left-right body axis. To date, mutations in PCDPI in
humans have not been identified. Based on the mutant mouse

phenotype, it is possible that mutations in Pcdpl as well as
other ciliary proteins required for motility are either lethal or
result in phenotypes not recognized as PCD in humans. Work in
model organisms such as mice and C. reinhardtii will continue
to provide important insights into the molecular mechanism of
wild-type ciliary motility, and the defects that result in primary
cilia dyskinesia.

Materials and methods

Strains and cell culture

C. reinhardftii strain A54-e18 (nit1-1, ac17, sr1, mt+) has wild-type motility
and was obtained from Paul Lefebvre (University of Minnesota, St. Paul,
MN), and the cpc1-2 strain was from David Mitchell (SUNY Upstate Medi-
cal University, Syracuse, NY). The strains pf16, pfé-2, pf14, and pf18 were
obtained from the Chlamydomonas Genetics Center (Duke University, Dur-
ham, NC). Cells were grown in constant light in TAP media (Gorman and
Levine, 1965). For electron microscopy analysis (see below), FAP7 4ami
transformant 1G11 was mated with radial spokeless mutant pf14. Double
mutant 1G11,pf14 was selected from nonparental ditype tetrads and
confirmed by Western blot (see below).

Axoneme isolation, protein extraction, sucrose gradient fractionation,
and immunoprecipitation
Axonemes were isolated and extracted as described previously (Dymek
and Smith, 2007) with the following modifications. Kl extraction after
NaCl extraction was not performed. NaCl extracts using 0.6M NaCl were
prepared for all experiments using axonemal extracts. For some experi-
ments, the clarified extracts were loaded onto 5-20% sucrose gradients
prepared in Nalow and subjected to ultracentrifugation at 35,000 rpm for
16 h in a SW4I1Ti rotor (Beckman Coulter). Fractions (0.5 ml) were
collected from the bottom of the tube and prepared for SDS-PAGE. For ex-
periments performed in the presence of High Ca?*, Nalow and NaHigh
were both modified to contain 1.0 mM CaCl, and EDTA was omitted.
Immunoprecipitation was performed as described previously (Dymek
and Smith, 2007) with the following modifications. 70 pg of anti-CaM or
anti-FAP74 (N-erminal) affinity-purified antibodies was used. TBS-T (150 mM
NaCl, 50 mM Tris-HCl, pH 7.4, 0.5 mM EDTA, and 0.2% sodium azide)
was prepared with or without 1 mM CaCl,. When calcium was present,
EDTA was omitted.

Cloning and expression of C. reinhardtii FAP221 peptides, mouse

CaM, and Pcdpl

RT-PCR was used to generate cDNA encoding FAP221 aa 554-668 that
was ligated into the pCR2.1 vector (Invitrogen) after being PCR amplified.
Primers were then used to PCR amplify two products from this vector: the
first spanning the region encoding aa 554-611, and the second region
encoding aa 606-668. The resulting PCR products were first ligated into
the PCR2.1 vector using the TOPO-TA cloning kit (Invitrogen). The PCR
fragments were then shuttled into the pET30B and pET30A expression vec-
tors, respectively (EMD). The constructs were transformed into BL21 (DE3)
plysS cells (EMD). Expression was induced by the addition of IPTG to a
final concentration of 2 mM. The protein was isolated and purified using
the manufacturer’s denaturing protocol. Peak fractions were dialyzed
against 2M urea in PBS, fixed with SDS sample buffer, and run on SDS-
polyacrylamide gels.

For expression of mouse proteins, first PCR was performed using
cDNA from mouse testes (Ernst Laboratory, Dartmouth College, Hanover,
NH) as a template. Primers were designed based on the published protein-
coding sequences. PCR products were cloned into the pCR2.1 vector using
the TOPO-TA cloning kit (Invitrogen). The PCR products were then shuttled
into the pET30 series of expression vectors (EMD) and purified as above.
The entire mouse CaM coding sequence was expressed in pET30A. Two
regions of Pcdp1 were expressed: Pcdp1-1 spanning aa 791-8836 in
pET30C and Pcdp1-2 spanning aa 447-530 in pET30A.

Site-directed mutagenesis

The FAP221 CaM-binding site is encoded by aa 588-595. RT-PCR was
used to generate a cDNA fragment encoding aa 554-668. After PCR
amplification, this fragment was ligated into the PCR2.1 vector. Site-
directed mutagenesis was performed as described in the Stratagene
QuikChange XL site-directed mutagenesis protocol. Primers HC4-CaM-For
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(5-GGTGGTGACGCACCAGCGCCAGCAGCAGCAGCTGG-3') and HC4-
CaMRev (5-CCAGCTGCTGCTGCTGGCGCTGGTGCGTCACCACC-3')
were designed to alter aa 592 (leucine), 594 (arginine), and 595 (argi-
nine) to glutamines by altering a single nucleotide base in each codon.
Site-directed mutagenesis was achieved by PCR amplification of the cDNA
fragment with the above primers using a specific PCR program designed
as per the manufacturer’s instructions. Dpnl was added fo the finished PCR
reaction, which digests the methylated plasmid template. The digested
PCR reaction was then transformed into Escherichia coli cells (TOP10).
Sequencing of miniprepped plasmids confirmed the incorporation of the
nucleotide base pair changes. The FAP221 fragment containing the altered
CaM-binding site was then ligated into pET30B and transformed into BL21
(DE3) plysS cells (EMD). Induction and purification were performed as de-
scribed above.

Gels, blots, and blot overlays

Gel electrophoresis, silver staining, and Western blots were preformed as
described previously (Dymek and Smith, 2007). Serum antibodies were
used at a 1:1,000 (FAP221), 1:5,000 (FAP74), or 1:7,000 (CaM) dilufion
in TBS-T. For FAP221 and FAP74 blots, 2% nonfat dry milk was added to
the TBS-T during primary and secondary incubations.

Blot overlays were performed as described previously (Dymek and
Smith, 2007) with the following modifications. CaM::6XHis protein for blot
overlays was isolated from bacteria using a phenylsepharose column
according to the manufacturer’s instructions (GE Healthcare). CaM::6XHis
protein was diluted to a concentration of 10 pg/ml in TBS-T with 1% BSA
and either 0.1mM CaCl, or 5.0 mM EDTA and incubated with the mem-
brane for 2 h at room temperature. After three 5 min TBS-T washes, mem-
branes were blocked again in 5% milk in TBS-T. After a quick TBS-T
wash, blots were incubated with a CaM antibody at 1:7,000 in TBS-T for
1 h. After three 5 min TBS-T washes, membranes were incubated in HRP-
conjugated donkey anti-rabbit IgG (GE Healthcare) diluted 1:30,000 in
TBS-T for 30 min.

For CaM overlays using mouse CaM, the purified protein was bio-
tinylated with the EZ-link Sulfo-NHS-LC-Biotinylation kit from Thermo Fisher
Scientific as per the manufacturer’s instructions. The biotinylated CaM was
then detected with streptavidin-HRP (GE Healthcare) followed by visualiza-
tion by ECL+ (GE Healthcare).

Mass spectrometry, RNA isolation, and RT-PCR

High calcium anti-CaM immunoprecipitation from pf14 NaCl axonemal
extracts was performed as described above. Proteins precipitated from
600 pg of axonemal extract were eluted in a final volume of 90 pl of TBS-T
in order to concentrate the sample and loaded onto a largeframe 5%
polyacrylamide gel. Gels were run at 11 V for 18 h and Coomassie
stained. Protein bands were exiracted and analyzed by MALDI-TOF
(matrix-assisted laser desorption/ionization-time of flight) mass spectrome-
try with PSD (post-source decay) conducted at the University of Massachu-
setts Medical School (Worcester, MA) or at Dartmouth College (Hanover,
NH). Comparisons of peptide masses with translated genomic or EST se-
quences were made using the C. reinhardtii genome database (http://
genome.jgi-psf.org/Chlre3/Chlre3.home.html). The complete coding se-
quences for FAP74 and FAP221 were confirmed by RT-PCR performed as
described previously (Dymek and Smith, 2007). PCR primers were de-
signed based on the predicted coding regions published in the C. rein-
hardtii genome database or GreenGenie2 coding sequence prediction
software (Kwan et al., 2009). Complete coding sequences were deposited
into the National Center for Biotechnology Information (NCBI) for FAP221
(accession no. 1313266) and FAP74 (accession no. 1313270).

Construction of expression vectors, antibody production,

and offinity purification

Polyclonal antibodies for FAP221 were generated in rabbits against bacte-
rially expressed proteins. RT-PCR was used to generate cDNA encoding
aa 403-771. The amplified PCR product was ligated into the PCR2.1 vec-
tor using the TOPO-TA cloning kit (Invitrogen). Two tandem PCR fragments
were then shuttled into the pET30A expression vector (EMD). Orientation
and reading frame were confirmed by DNA sequencing. The construct was
transformed into BL21 (DE3) plysS cells (EMD) and expression was
induced using 2 mM IPTG. Protein was purified on a Ni?*resin column
according to the manufacturer’s instructions. Peak fractions were dialyzed
against 2.0M urea in PBS, fixed with SDS sample buffer, and subjected to
SDS-PAGE. Protein bands were excised from Coomassie-stained gels and
used for polyclonal antibody production in rabbits. Rabbits were injected
twice with 300 pg of protein per injection. Antibody production was con-
ducted by Spring Valley Laboratories, Inc.
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Polyclonal antibodies for FAP74 were generated in rabbits against
synthetic peptides corresponding to aa 41-56 (N+erminal) and 1894-
1909 (C-erminal). Each synthetic peptide had a cysteine added fo the
C-terminal end and was conjugated to KLH before being used for anti-
body production by Spring Valley Laboratories, Inc. Both the N- and
C-terminal synthetic peptides were co-injected into rabbits for antibody
production. The remaining synthetic peptides were conjugated to Sulfo-
link resin (Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions fo prepare separate N- and C-terminal antigen-specific affinity
columns. Affinity-purified N-terminal-derived antibody was used for anti-
FAP74 immunoprecipitation.

The initial studies for this manuscript used anti-C. reinhardtii CaM
antibodies that we generated as described previously (Wargo et al., 2005).
Our supply of this antibody was exhausted part way through these studies.
Therefore, we generated additional anti-CaM antibodies using the same
synthetic peptide (RMMTSGATDDKDKKGHK) and methods as described
in Wargo et al. (2005).

amiRNA construct, transformation, and screening

pChlamiRNA3int was obtained from the Chlamydomonas Resource
Center at the University of Minnesota (St. Paul, MN). The sequence and
vector map can be downloaded from the Baulcombe laboratory website
(http://www.plantsci.cam.ac.uk/research/baulcombe/sequencedata.html).
pChlamiRNA3int contains the precursor for cre-MIR1157 as an artificial
miRNA template and the aphVIil gene for selection. We followed the proto-
cols in Ossowski et al. (2008) and Molnar et al. (2009) (see also Zhao
et al., 2008). Potential FAP74 amiRNA target sequences were identified
using the Web MicroRNA Designer platform (WMD2; http://wmd2
.weigelworld.org/cgi-bin/mirnatools.pl). The amiRNA sequence (5'-TAAGT-
CATGAGGTGAGCCGTG-3) was chosen to target FAP74 coding sequence
for nucleotides 2298-2317 (5'-CATGGCTCACCTCATGACTT-3'). The
amiRNA sequence was used to design forward and reverse oligonucleo-
tides consisting of the target sequence, followed by a spacer region and
the amiRNA sequence, and Spel sequences on both ends. The annealed
target gene-specific oligonucleotides were ligated into the Spel-digested
pChlamiRNA3int to produce pChlamiRNA3int-FAP74. Bacterial transfor-
mants were screened by colony PCR to confirm the correct orientation of
the insert using forward primer 5"-GGTGTITGGGTCGGTGTTTTTG-3" and
reverse primer 5'-TAGCGCTGATCACCACCACCC-3'. Isolated plasmids
were transformed into A54-e18 C. reinhardtii cells by the glass beads
method (Kindle, 1990). Transformants were selected on TAP plates con-
taining 10 pg/ml paromomycin. Colonies were picked into 96-well dishes
filled with TAP media and screened for swimming defects using a stereo-
scope. Flagella isolated from potential amiRNA mutants were screened
by Western blot for the presence of FAP74. Densitometry was performed
using ImageQuant software (GE Healthcare).

Southern and Northern blots

Southern blotting using the aphvlll gene as probe confirmed that integra-
tion of the plasmid occurred randomly in the genomes of the three transfor-
mants selected for further analysis (Fig. S2). Reduced expression of FAP74
was also confirmed by Northern blot using the FAP74 gene as a probe. For
Southern blots, 20 pg of genomic DNA was digested with Notl, fraction-
ated on a 1% agarose gel, and transferred to MagnaGraph nylon mem-
brane (GE Healthcare). The membrane was washed in prehybridization
solution (5x SSPE, 10x Denhardt's, 1% SDS, and 300 pg/ml salmon sperm
DNA) for 3 h at 65°C. The aphVIll gene was labeled with a random
primed DNA labeling kit (Roche) using 50 pCi «-[*?P]dCTP according
to the manufacturer’s instructions, added to prehybridization solution, and
allowed to hybridize to the membrane for 16 h at 65°C. After extensive
washing, the membrane was exposed on a phosphor screen for 6 h.
The phosphor screen was then scanned with a Typhoon 9200 Imager
(GE Healthcare).

For Northern blots, total RNA was isolated from cells at O and 45 min
after deflagellation. 50 pg of total RNA was fractionated on a 1% agarose
gel containing formaldehyde and transferred to Hybond-N+ nylon mem-
brane (GE Healthcare). The membrane was washed in prehybridization
solution (5x SSPE, 0.5% SDS, 5x Denhardt’s, and 100 pg/ml salmon
sperm DNA) for 30 min at 65°C. FAP74 coding sequences representing
aa 377-606, 741-963, and 1776-1940 were PCR amplified. Approxi-
mately 100 ng of each PCR product was labeled with a random primed
DNA labeling kit (Roche) using 50 pCi a-[*2P]dCTP. The labeled probes
were added to prehybridization solution and allowed to hybridize to the
membrane for 16 h at 65°C. The membrane was then washed and treated
as described in the Southern blot procedure. The S14 gene encoding the
ribosomal S14 protein served as a loading control.
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Analysis of flagellar beat frequency, swimming velocity,

and swimming behavior

High speed video microscopy was performed at room temperature using
a MotionProY3 camera (Integrated Design Tools) at 500 fps using phase-
contrast optics and a 40x objective with 0.65 NA on a microscope (Axios-
kop 2; Carl Zeiss, Inc.). Images were recorded as 8 bit with a 640 x 480
pixel resolution using Motion Studio software (Integrated Design Tools).
A red filter was used during asymmetric waveform video recordings to pre-
vent photoshock. To induce waveform conversion, the red filter was
removed during video recording. Both beat frequency and swimming ve-
locity were measured manually and statistical significance was determined
using a Student's t test. Beat frequency and swimming velocity data were
graphed using Excel (Microsoft) and proved to have a normal distribution.
For Fig. 5, individual images were assembled into a montage and bright-
ness and contrast were uniformly adjusted for all images using Photoshop
(Adobe) to improve visibility of the flagella. Manual traces of flagellar posi-
tion over successive images were overlapped to defermine asymmetric
waveform. The ability of FAP74ami transformants to phototax was as-
sessed by covering a Pefri dish filled with cells with a black plastic bag,
leaving only a small edge exposed to the light. The cells were checked at
10-min intervals to see if photo-accumulation had occurred at the exposed
edge of the dish.

Electron microscopy

For analysis of flagellar defects, axonemes from WT and mutants of interest
were prepared for thin-section electron microscopy. Specimens were fixed
with 1% glutaraldehyde and 1% tannic acid in 0.1 M sodium cacodylate,
posffixed in 1% osmium tetroxide, dehydrated in a graded series of etha-
nol, and embedded in LX112 resin. Uniform silver-gray sections were
mounted on Formvar-coated, carbon-stabilized copper grids, stained with
uranyl acetate and Reynolds lead citrate, and examined at 100 kV in a
transmission electron microscope (model 100CX; JEOL Ltd.) with side-mount
2K X2K ATM camera.

Online supplemental material

Fig. S1 shows a phylogenetic tree constructed using the results from BLAST
searches with the FAP221 amino acid sequence. Fig. S2 includes both
Southern and Northern blot analyses of FAP74 amiRNA transformants. We
also include six movies. Video 1 shows swimming behavior of wild-type
cells. Videos 2-4 demonstrate abnormal motility of FAP74 amiRNA trans-
formants 1G11, 2D4, and 7A4, respectively. Video 5 demonstrates flagel-
lar waveform conversion for wildtype cells. Video 6 demonstrates the
inability of the FAP74ami transformant 1G11 to convert to a symmetric fla-
gellar waveform. Online supplemental material is available at http://www
.jcb.org/cgi/content/full /jcb.200912009/DC1.
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