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istone H1 phosphorylation affects chromatin con-

densation and function, but little is known about

how specific phosphorylations impact the func-
tion of H1 variants in higher eukaryotes. In this study, we
show that specific sites in H1.2 and H1.4 of human cells
are phosphorylated only during mitosis or during both
mitosis and interphase. Antisera generated to individual
H1.2/H1.4 interphase phosphorylations reveal that they
are distributed throughout nuclei and enriched in nucleoli.
Moreover, interphase phosphorylated H1.4 is enriched

Introduction

Nonallelic variants of histone H1 in metazoans share a common
tripartite structure, with a conserved globular domain flanked
by a short N-terminal domain and a longer C-terminal domain
(CTD). FRAP analyses of cells expressing H1-GFP fusions have
revealed that H1 variants bind chromatin dynamically in vivo
and that both the globular domain and CTD contribute to chro-
matin binding (Lever et al., 2000; Misteli et al., 2000; Hendzel
et al., 2004; Brown et al., 2006). H1-binding dynamics affect
the chromatin access of high mobility group proteins, MeCP2
(methyl-CpG-binding protein), upstream-binding factor (UBF),
the glucocorticoid receptor, and other regulators by modulat-
ing H1-mediated chromatin folding and by enabling factors to
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at active 45S preribosomal RNA gene promoters and is
rapidly induced at steroid hormone response elements
by hormone treatment. Our results imply that site-specific
interphase H1 phosphorylation facilitates transcription by
RNA polymerases | and Il and has an unanticipated func-
tion in ribosome biogenesis and control of cell growth.
Differences in the numbers, structure, and locations of
interphase phosphorylation sites may contribute to the
functional diversity of H1 variants.

compete with H1 for chromatin-binding sites (Zlatanova et al.,
2000; Phair et al., 2004; Bustin et al., 2005).

CTD interactions with linker DNA are important for higher
order folding of chromatin (Allan et al., 1980, 1986; Bednar
et al., 1998; Carruthers et al., 1998; Lu et al., 2009). S/TPXK/R
Cdk substrate motifs that are repeated in the CTD contribute to
its DNA binding (Suzuki, 1989; Vila et al., 2001; Roque et al.,
2005), and phosphorylation at these motifs affects CTD-DNA
interactions (Roque et al., 2008). These motifs are phosphory-
lated to varying degrees in H1 prepared from asynchronous or
mitosis-arrested mammalian cells (Garcia et al., 2004; Sarg et al.,
2006; Wisniewski et al., 2007), but how this affects chromatin
processes is unclear. Analyses of synchronized cells suggest
that H1 phosphorylation increases progressively during interphase
before peaking transiently during mitosis (Gurley et al., 1975;
Ajiro et al., 1981a,b), but few details are known about the site
specificity of phosphorylation during interphase and mitosis be-
cause phosphorylation sites were not identified in these early
analyses. Site-specific phosphorylation of an H1 variant during
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interphase has recently been described, but direct evidence of
its significance is lacking (Talasz et al., 2009).

Human somatic cells express six H1 variants with distinct
chromatin-binding dynamics that possess CTDs differing in
length, net charge, number, and relative positions of S/TPXK/R
motifs (Hendzel et al., 2004; Th’ng et al., 2005). FRAP analyses
of H1 mutated to mimic dephosphorylation or phosphorylation
(Contreras et al., 2003; Hendzel et al., 2004) imply that phos-
phorylation is likely to have variant-specific and site-specific
effects on H1 function, but the paucity of data on how H1 variant
phosphorylation is regulated in vivo has hindered investigat-
ing this further. To address this problem, we characterized the
phosphorylation of the major H1 variants of HeLa S3 cells
during interphase and mitosis and generated phosphorylation
site—specific antisera to investigate the function of interphase
H1 phosphorylation.

Results and discussion

The limited heterogeneity of H1 in

HelLa cells

We used top-down mass spectrometry (MS [TDMS]) to analyze
H1 phosphorylation because this approach facilitates character-
ization of multisite histone modification (Pesavento et al., 2008).
The mass spectrum of crude H1 from asynchronous HeLa S3
cells was remarkably simple, containing just seven distinct H1
species (Fig. 1 A). A combination of analyses identified four of
these to be unmodified and monophosphorylated allelic variants
of H1.2 that are polymorphic for an Ala > Thr substitution at
residue 142 (H1.2 [A142], H1.2 [T142], 1p-H1.2 [A142], and
1p-H1.2 [T142]; Fig. S1 B and Fig. S2 F). The three remain-
ing forms correspond to unmodified, monophosphorylated, and
diphosphorylated forms of H1.4 (H1.4, 1p-H1.4, and 2p-H1.4).
Relative quantitation of the mass spectrum revealed that nearly
a third of H1.2 and H1.4 is monophosphorylated, and roughly a
sixth of H1.4 is diphosphorylated under these conditions. Small
amounts of H1.5 were detected in crude H1 by TDMS, but we
did not analyze these further. Additional H1 variants have been
detected in HeLa cells previously (Garcia et al., 2004), but this
is the first work demonstrating that HeLa S3 cells express pre-
dominantly H1.2 and H1.4 and that H1.2 is polymorphic in
these cells.

To enhance phosphorylation site identification, we used
hydrophobic interaction chromatography (HIC) to enrich phos-
phorylated forms of H1 before TDMS. HIC resolved five major
peaks for crude H1 from asynchronous cells (Fig. 1 B). These
correspond to the forms resolved by TDMS except that simi-
larly modified allelic variants of H1.2 were not separated from
each other. The same HIC peaks were observed at all times
sampled after cells were released from double-thymidine block
synchronization (unpublished data), but the relative abundance
of phosphorylated forms increased significantly as cells pro-
gressed toward mitosis. Phosphorylated H1.2 and H1.4 were
more abundant in samples from mid—S phase cells (4 h after re-
lease) compared with asynchronous cells, and most H1.2 and
H1.4 were tetra- and hexaphosphorylated, respectively, in cells
arrested in mitosis with colchicine (Fig. 1 B). These findings are
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Figure 1. The limited heterogeneity of H1 in Hela cells. (A) The mass
spectrum of intact crude H1 from asynchronous growing Hela S3 cells.
Proteins were identified directly by gas phase fragmentation and MS/MS
analysis. Phosphorylation levels were inferred from predicted molecular
masses. The A142T polymorphism in H1.2 was confirmed by genotyping
(Fig. ST B). (B) The HIC profiles of crude H1 from asynchronous grow-
ing, mid-S phase, and mitosis-arrested Hela S3 cells. Eluate absorbance
(214 nm) is plotted relative to time for equivalent portions of each separa-
tion. H1.2, H1.4, and H1.5 represent ~47%, 48%, and 5% of total H1 in
asynchronous cells, respectively, based on chromatographic infegration.

consistent with previous analyses of H1 phosphorylation stoi-
chiometry in synchronized cells (Ajiro et al., 1981a,b; Gurley
et al., 1995; Talasz et al., 1996).

H1 is phosphorylated at a specific subset
of sites during interphase

We identified interphase phosphorylation sites in HIC frac-
tions from mid-S phase cells because H1 phosphorylation was
clearly increasing at this time, but the chance of contamination
by hyperphosphorylated H1 from mitotic cells was less than
at later time points. SDS gel electrophoresis confirmed that the
five major HIC peaks for mid-S phase samples were essentially
homogenous fractions of H1.2 or H1.4 (Fig. S1 A). TDMS
analyses of these fractions provided striking evidence that inter-
phase H1 phosphorylation is site specific. H1.2 contains four
Cdk substrate motifs, but MS/MS analysis of the 1p-H1.2 peak
localized phosphorylation exclusively to S173 in both allelic
variants. Similarly, although H1.4 has five Cdk substrate motifs,
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Table I.  H1 phosphorylation during interphase and mitosis in Hela S3 cells
HIC peak Molecular mass Am Variant Modifications
Measured Predicted
D D
Interphase
1 21,491.6 21,332.8 +160 H1.4 pS172, pS187
2 21,4123 21,332.8 +80 H1.4 pS187
3 21,333.1 21,332.8 0 H1.4 None
4 20,912.1 20,832.6 +80 H1.2 (A142) pS173
4 2,0941.7 20,832.6 +110 H1.2 (T142) pS173
5 20,832.3 20,832.6 0 H1.2 (A142) None
5 20,862.2 20,832.6 +30 H1.2 (T142) None
Mitosis
6pH1.4 21,813.9 21,332.8 +480 H1.4 pT18, pS27, pT146, pT154, pS172, pS187
4p-H1.2 21,153.3 20,832.6 +320 H1.2 (A142) pT31, pT146, pT154, pS173
4p-H1.2 21,182.9 20,832.6 +350 H1.2 (T142) pT31, pT146, pT154, pS173

HIC peaks are labeled as in Fig. 1 B. Molecular masses are reported as neutral monoisotopic species. Predicted values were found using NCBI Protein database
accession no. NP_005312 (H1.4) and NP_005310 (H1.2), assuming the loss of Met1 during protein maturation in vivo and residues 2-5 during electrospray ioniza-
tion. Peak identifications are based on MS/MS sequencing of multiple electron capture dissociation fragment ions. The A142 and T142 allelic variants of H1.2 were
detected initially by MS and confirmed by genotyping as described in Fig. S1. Phosphorylated residues were identified by MS/MS sequencing of electron capture dis-
sociation fragment ions. Analyses of the H1.2 (T142) forms indicated that phosphorylated residues were identical to those determined for the H1.2 (A142) forms.

phosphorylation localized exclusively to S187 in the 1p-H1.4
peak and to S172 plus S187 in the 2p-H1.4 peak (Table I,
Fig. S1 B, and Fig. S2 F).

Analyses of the 4p-H1.2 and 6p-H1.4 peaks from colchicine-
treated cells (Fig. 1 B) revealed uniform phosphorylation at
the four and five Cdk substrate motifs present in H1.2 and
H1.4, respectively (Table I and Fig. S2 F). A sixth site, S27,
in an RKS motif that is unique to H1.4 was phosphorylated
concurrently. We refer to T31, T146, and T154 of H1.2 and
T18, S27, T146, and T154 of H1.4 as M sites because they
appear to be phosphorylated exclusively during mitosis. In
contrast, we refer to H1.2-S173, H1.4-S172, and H1.4-S187 as
I sites because they can be phosphorylated during mitosis
and interphase.

Our results suggest that H1.2-S173 and H1.4-S172
and -S187 are the sole sites of interphase phosphorylation in
these proteins in human cells. Notably, monophosphorylation
at H1.4-S172 was not detected, implying that interphase H1.4
phosphorylation/dephosphorylation occurs hierarchically or
that other mechanisms prevent the accumulation of detect-
able H1.4-S172 monophosphorylation. Our findings also sug-
gest that interphase H1 kinases preferentially phosphorylate
Ser-containing Cdk substrate motifs, which is consistent with
evidence that three such sites in H1.5 are phosphorylated during
interphase in human cells (Talasz et al., 2009). With the ex-
ception of H1.4-S27, all of the M sites identified in this study
are Thr-containing Cdk substrate motifs. Identification of
H1.4-S27 as an M site is noteworthy because phosphoryla-
tion at this residue during mitosis may affect acetylation or
methylation at H1.4-K26 or the interaction of factors that rec-
ognize these modifications (Kuzmichev et al., 2004; Vaquero
et al., 2004; Daujat et al., 2005; Trojer et al., 2007). We did
not detect either modification at H1.4-K26 using TDMS, sug-
gesting that they affect <1% of total H1.4 in HeLa S3 cells
(Pesavento et al., 2008).

pS173-H1.2 and pS187-H1.4 are enriched
in nucleoli

To investigate the roles of specific Hl phosphorylations, we
generated antisera against phosphopeptides containing the
pS173-H1.2 and pS187-H1.4 I sites and the pS27-H1.4 and
pT154-H1.4 M sites (Fig. S2 A). We also generated antisera
against recombinant human H1.4 that recognizes H1.4 regard-
less of its phosphorylation state to use as a control. The specific-
ity of these antisera was validated using Western blotting (Fig. S2,
B-E), ELISA assays (not depicted), and immunocytochem-
istry (Fig. S3).

The pT154 antisera stained the chromosomes of mitotic
HeLa cells intensely but did not stain interphase nuclei (Fig. 2 A).
Similar results were observed for the pS27 and pT146 antisera
(unpublished data), confirming that these sites are phosphory-
lated exclusively in mitosis. In contrast, the pS173 and pS187
antisera stained chromatin in both interphase and mitotic cells.
The pS173 antisera stained mitotic chromosomes less intensely
than either the pT154 or the pS187 antisera. Because these
residues are expected to be phosphorylated to similar degrees
during mitosis, this suggests that the pS173 epitope may be
less accessible in mitotic chromosomes. Differences were also
observed for the staining of interphase cells by the pS173 and
pS187 antisera (Fig. 2 A). Most interphase cells displayed stip-
pled nuclear staining and clusters of punctate nucleolar staining
for pS173. Many interphase cells showed similar staining
for pS187, but others displayed speckled staining similar to
that of mouse 10T1/2 cells stained by antiserum to phosphory-
lated Tetrahymena thermophila H1. The latter antiserum pref-
erentially recognizes phosphorylated mouse H1.5, and it has
been suggested that the speckled staining represents the local-
ization of transcriptionally active chromatin near sites of RNA
splicing (Chadee et al., 1997). Other evidence suggests that
speckled staining with this same antibody occurs primarily
during G1 phase in human cells (Lu et al., 1994), but we have
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Figure 2. Interphase phosphorylated H1.2/
H1.4 are enriched in nucleoli. (A) Confocal
images of asynchronous Hela cells stained
with the H1 antisera shown. DNA was stained
with TO-PRO-3. Arrows indicate mitotic cells.
Bar, 20 pm. (B) Confocal images of asynchro-
nous Hela cells costained with antisera to
fibrillarin and the H1 antisera shown. Bars,
5 pm. (C) Confocal images of asynchronous
Hela cells costained with antisera to pS187-
H1.4 and BrdU after pulse labeling with BrUTP
to detect nascent transcripts. Bar, 5 pm. Plots of
the relative fluorescence intensity of the green
(pS187-H1.4) and red (BrUTP) channels along
the white line shown in the merged panel dem-
onstrate colocalization of pS187-H1.4 with
BrUTP incorporation foci.

not investigated whether this is the case for pS187 staining. In
contrast, stippled staining distributed throughout interphase nuclei
was observed for the a-H1.4 antisera, with weaker staining asso-
ciated with nucleoli in some cases. Because this antiserum rec-
ognizes H1.4 regardless of its phosphorylation state (Fig. S2 D),
the stippled pattern may reflect a nonuniform distribution of
H1.4, as suggested previously for two H1 variants (Parseghian
et al., 1994) or differences in the accessibility of H1.4 at different
loci to the antisera.

Fibrillarin colocalized extensively with clustered punctate
pS173 and pS187 staining, but not with a-H1.4 staining, con-
firming that these H1.2/H1.4 phosphorylations are enriched in
nucleoli (Fig. 2 B). Moreover, punctate pS187 staining colocal-
ized with centers of bromo-UTP (BrUTP) incorporation foci when
cells were pulse labeled with BrUTP to detect nascent 45S pre—
ribosomal RNA (rRNA) transcripts (Fig. 2 C; Koberna et al.,
2002; Olson and Dundr, 2005). Similar results were obtained
for pS173 staining (unpublished data), suggesting that inter-
phase phosphorylated H1.2/H1.4 are associated with transcrib-
ing rDNA (45S preribosomal RNA genes) and may facilitate
RNA pol I transcription.

Mammalian cells contain several hundred rDNA repeats. The
transcriptional activity of individual repeats is regulated by
mechanisms including histone modification to match cellular
demand for ribosome biogenesis (Lawrence and Pikaard, 2004;
Moss et al., 2007; McStay and Grummt, 2008). To investigate
whether interphase H1 phosphorylation contributes to this regu-
lation, we used chromatin immunoprecipitation (ChIP) to com-
pare the association of pS187-H1.4 with rDNA promoters
before and after selective inhibition of RNA pol I transcription
with actinomycin D (ActD; Jordan et al., 1996; Olson and
Dundr, 2005). The levels of 45S pre-rRNA were assessed using
RT-PCR to provide a semiquantitative measure of rDNA tran-
scription (Huang et al., 2008; Murayama et al., 2008). A brief

fibrillarin (R)

ps173 D

ActD treatment that markedly reduced the levels of nascent 45S
pre-TRNA significantly reduced the promoter association of
pS187-H1.4 compared with untreated cells (Fig. 3, A and B).
Although treatments that impair RNA pol II transcription are
associated with global H1 dephosphorylation (Chadee et al.,
1997), immunoblots revealed that the limited ActD treatment
used had little effect on the global levels of pS187-H1.4 and
total H1.4 (Fig. 3 C). Moreover, ChIP with the a-H1.4 antisera
revealed that ActD treatment actually enhanced the level of total
H1.4 at the promoter (Fig. 3 A). Collectively, the data suggest
that pS187-H1.4 is enriched at active rDNA promoters and that
this association is dynamically regulated.

The ultrastructural elements of nucleoli in higher eu-
karyotes, the fibrillar center (FC), the dense fibrillar compo-
nent (DFC), and the granular component, are thought to reflect
vectorial organization of major steps in ribosome biogenesis:
pre-TRNA transcription, pre-rRNA processing, and ribosome
assembly on mature rRNA (Olson and Dundr, 2005; Hernandez-
Verdun, 2006). This organization is affected when rDNA tran-
scription is inhibited by ActD (Jordan et al., 1996; Olson and
Dundr, 2005), so we investigated how ActD affects pS187-H1.4
colocalization with markers for these nucleolar compartments.
Fibrillarin localizes primarily to the DFC in punctate stain-
ing that rings FCs in untreated cells but becomes concentrated
in large foci at the nucleolar periphery when the FC and DFC
dissociate from each other in ActD-treated cells (Olson and
Dundr, 2005). Although pS187-H1.4 and fibrillarin colocal-
ized extensively in untreated cells, ActD caused a characteris-
tic change in this relationship (Fig. 3 D). Both proteins formed
similar numbers of foci near the nucleolar periphery, but the
pS187-H1.4 foci were typically smaller and shifted relative to
the fibrillarin foci.

Similarly, pS187-H1.4 colocalized extensively with UBF
in untreated cells (Fig. 3 D). ActD caused the characteristic
punctate UBF staining to coalesce into a few large granules at the
nucleolar periphery, which is in agreement with previous work
(Zatsepina et al., 1993). However, in contrast to the fibrillarin
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pS187-H1.4 is preferentially associated with transcriptionally active rDNA. (A) The levels of pS187-H1.4 and total H1.4 (a-H1.4) at the 45S pre-

rRNA promoter in untreated and 50 ng/ml ActD-treated Hela cells (3 h). The data are expressed as fold change relative to a parallel ChIP without primary
antibody from untreated cells. (B) The levels of the 45S pre-rRNA transcript in untreated and ActD-treated cells were assayed by RT-PCR and normalized to
B-actin expression. The data in A and B represent the mean of two independent experiments. Error bars indicate the standard error of the mean for triplicate
samples. (C) The global levels of pS187-H1.4 and total H1.4 in ActD-treated cells were assayed by immunoblotting and quantified relative to the control
samples after normalization to a-tubulin levels. MW, molecular weight. (D) Confocal images of control and ActD-treated Hela cells costained with antibodies
to pS187-H1.4 and fibrillarin, UBF, or the large subunit of RNA polymerase | (RPA 194). DNA was visualized using TO-PRO-3. Bars, 5 pm.

results, UBF and pS187-H1.4 foci colocalized completely in
ActD-treated cells. ActD had similar effects on the colocal-
ization of pS187-H1.4 and RNA pol I (RPA 194). Like UBF,
RPA 194 localizes preferentially to the FC in untreated cells
(Matera et al., 1994). Punctate pS187-H1.4 and RPA 194 stain-
ing colocalized extensively in the central portions of nucleoli
in untreated cells, and they colocalized completely in dense
clusters at the edge of nucleoli in ActD-treated cells (Fig. 3 D).
The perdurance of pS187-H1.4 staining and its colocalization
with UBF and RPA 194 in foci formed upon ActD treatment are
consistent with evidence that the latter proteins remain associ-
ated with rDNA under these conditions (Jordan et al., 1996).
Together, these results suggest that pS187-H1.4 is enriched in
active rDNA within the FC or at the FC-DFC interface in un-
treated cells.

UBF dimers bind rDNA promoters and activate transcrip-
tion by recruiting SL1/TIF-IB and enhancing preinitiation com-
plex formation (Moss et al., 2007; McStay and Grummt, 2008).
UBF binding throughout the transcribed portions of rDNA re-
peats may also affect other aspects of RNA pol I transcription
and help maintain the euchromatic state of rDNA (O’Sullivan
et al., 2002; Moss et al., 2007; Sanij et al., 2008; Sanij and
Hannan, 2009). Multiple lines of evidence suggest that compe-
tition between UBF and H1 determines the proportion of active
rDNA repeats (Kermekchiev et al., 1997; Sanij et al., 2008).
The dependence of pS187-H1.4 and rDNA promoter association
on RNA pol I activity and the colocalization of pS187-H1.4

with UBF and RNA pol I before and after ActD treatment re-
ported in this study (Fig. 3) suggest the possibility that H1 ki-
nases are recruited to transcriptionally active/competent rDNA.
S187 phosphorylation could promote rDNA decondensation
and transcription by enhancing H1.4 dissociation and facilitat-
ing UBF binding.

Data from approaches that do not account for H1 phosphorylation
suggest that H1 represses transcription by RNA pol IT (Laybourn
and Kadonaga, 1991; Cheung et al., 2002; Lee et al., 2004; Kim
et al., 2008). In contrast, ChIP analyses using antisera to phos-
phorylated T. thermophila H1 suggest that H1 phosphorylation
is required for glucocorticoid-dependent transcription from the
murine mammary tumor virus (MMTYV) promoter in mamma-
lian cells (Lee and Archer, 1998; Bhattacharjee et al., 2001).
This led us to investigate whether pS187-H1.4 is involved in
transcription by RNA pol II.

We used ChIP to compare the association of pS187-H1.4
with the multicopy MMTYV long terminal repeat glucocorticoid
response element (GRE [MMTV-GRE]) in murine 3134 mam-
mary tumor cells before and after hormone stimulation. Dexa-
methasone rapidly induced pS187-H1.4 association with the
MMTV-GRE, increasing the level of pS187-H1.4 at this locus by
approximately threefold in 60 min (Fig. 4 A). Rapid, hormone-
induced enrichment of pS187-H1.4 was also observed at the
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single-copy Sgk gene GRE in these same cells (Fig. 4 B). We
also compared how the association of pS187-H1.4 and estrogen
receptor—a (ER-a) with the estrogen response element (ERE) of
the pS2 gene in MCF-7 human breast cancer cells changes after
estradiol treatment (Fig. 4 C). Both ER-o and pS187-H1.4 were
markedly enriched at the pS2-ERE after just 15 min of estradiol
treatment and became further enriched after 45 min of treat-
ment. Collectively, the data in Fig. 4 suggest that H1.4-S187 phos-
phorylation facilitates gene-specific activation of RNA pol II
transcription by nuclear hormone receptors.

Analyses of glucocorticoid receptor—regulated transcrip-
tion at the MMTYV promoter in different systems suggest that
HI is depleted immediately after hormone stimulation (Bresnick
et al., 1992; Belikov et al., 2007) but reassociates with refrac-
tory promoters after prolonged hormone treatment (Lee and
Archer, 1998), which is consistent with the notion that H1 gen-
erally acts as a repressor. In contrast, overexpression of Hlc or
H1° enhanced basal and hormone-stimulated transcription of
stably integrated MMTV-LTR reporter genes in murine 3T3
cells and prevented their repression during prolonged hormone
stimulation (Gunjan and Brown, 1999). Our data are consistent
with the proposal that H1 affects MMTV promoter chromatin
architecture to facilitate the binding of liganded nuclear hor-
mone receptors, their synergism with transcription factors such
as NF1 and AP-1, and the recruitment or activation of kinases
that phosphorylate and facilitate H1 displacement after hor-
mone stimulation (Vicent et al., 2002). Together with recent evi-
dence that estradiol stimulates the exchange of HMGB for H1
at the pS2-ERE and sites recognized by AP-1 or by other nu-
clear hormone receptors (Ju et al., 2006), our data suggest that
H1.4-S187 phosphorylation promotes transcriptional activation
by nuclear hormone receptors by enhancing chromatin access
for other regulatory factors.

Considered together with evidence from FRAP analyses
that mutations mimicking phosphorylation or dephosphorylation
of Cdk sites enhance or diminish H1-GFP dissociation from
chromatin, respectively, our findings imply that phosphorylation
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at a limited number of specific sites enables H1 to affect chroma-
tin accessibility to factors that regulate transcription and other
processes. Our evidence that the association of pS187-H1.4 with
specific loci is dynamic implies that H1 kinases and phospha-
tases are recruited to these loci in a targeted fashion, although
little is known about the mechanisms involved. Kinases that me-
diate interphase H1 phosphorylation in vivo have not been di-
rectly identified, but several lines of evidence implicate Cdk2
(Herrera et al., 1996; Bhattacharjee et al., 2001; Contreras et al.,
2003). Less is known about whether specific phosphatases regu-
late interphase H1 phosphorylation. Although our data support
the general model that interphase phosphorylation enhances H1
dissociation from chromatin, variation in the numbers, locations,
and structures of I sites among H1 variants suggests that inter-
phase phosphorylation may affect H1 chromatin binding in a
variant-specific fashion. Such differences may underlie recent
evidence for H1 variant—specific effects on transcription and rep-
lication (Sancho et al., 2008; Talasz et al., 2009).

Materials and methods

Cell culture

Hela S3 cells were grown in suspension in Joklik’s modified minimal essential
medium supplemented with 10% newborn calf serum (NCS) and synchro-
nized using the doublethymidine block procedure as described previously
(Pesavento et al., 2008). 1 yM colchicine was added to growing asynchro-
nous cells for 18 h to enrich for mitotic cells. For the experiments shown in
Fig. 3, adherent Hela cells were grown in DME supplemented with 10% FBS.
Cells were treated with 0.05 pg/ml ActD for 3 h to selectively inhibit
RNA pol | transcription. 3134 cells were maintained in DME supplemented
with 10% FBS, sodium pyruvate, nonessential amino acids, and 2 mM gluta-
mine as described previously (John et al., 2009). Cells were transferred to
DME supplemented with 10% charcoal dextran—treated FBS for 48 h before
treatment with 100 nM dexamethasone. MCF-7 cells were maintained in DME
supplemented with 5% NCS as described previously (SchultzNorton et al.,
2007). Cells were transferred to phenol red-free DME containing 5% charcoal
dextran—treated NCS for 72-96 h before treatment with 10 nM estradiol.

Histone preparation, chromatography, and M$S

Crude H1 was prepared by 5% perchloric acid fractionation of crude
histones (Pesavento et al., 2008). Recombinant human H1.4 was expressed in
Escherichia coli BL21 cells from a pET-3d vector using standard procedures.
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Reverse phase HPLC used a column (4.6 mm ID x 250 mm; Vydac
C18) with a multistep linear gradient from buffer A (0.1% vol/vol TFA in
5% vol/vol CH;CN) to buffer B (0.094% TFA in 90% CH3CN). HIC used
a column (4.6 mm ID x 100 mm; PolyPROPYL A; PolylC Inc.) with a multi-
step linear gradient from buffer A (2.5 M (NH),SO4 and 50 mM ethylene-
diamine, pH7.0) to buffer B (1.0 M (NH),SO4 and 50 mM ethylenediamine,
pH 7.0). Hydrophilic interaction chromatography used a column (4.6 mm
ID x 200 mm; PolyCAT A; PolyLC Inc.) with a multistep linear gradient from
buffer A (70% CH3;CN and 15 mM friethylamine/H;POy, pH 3.0) to buffer B
(70% CHZCN, 0.68 M NaClOy, and 15 mM friethylamine/H3PO,, pH 3.0).

MS data were acquired on a custom 8.5-T quadrupole Fourier trans-
form ion cyclotron resonance mass spectrometer with an electrospray ion-
ization source operated in positive-ion mode as described previously
(Pesavento et al., 2008). Desalted HIC/hydrophilic interaction chromatog-
raphy fractions or crude H1 were dissolved in 50% methanol + 1% formic
acid for infusion info the mass spectrometer. Masses are reported as neu-
tral, monoisotopic species. Figs. 1 and S1 show the spectrum of the most
abundant charge state.

Immunochemical methods

Phosphorylated and nonphosphorylated peptides were custom synthe-
sized. Rabbits were immunized with phosphopeptides coupled to keyhole
limpet hemocyanin (Thermo Fisher Scientific) using standard procedures.
Recombinant human H1.4 was complexed with yeast RNA before rabbit
immunization as described previously (Stollar and Ward, 1970). Antibod-
ies to pT146-H1.4 and fibrillarin were obtained from Abcam. Antibodies
to UBF and RPA 194 were obtained from Santa Cruz Biotechnology, Inc.
Antibodies to a-tubulin (clone DM1A) and bromodeoxyuridine (clone
BRD.3) were obtained from Sigma-Aldrich and Neomarkers, respectively.

Microscopy and BrUTP labeling of cells
Hela cells grown on glass coverslips were fixed with 4% (wt/vol) para-
formaldehyde in PBS for 10 min at room temperature, permeabilized with
0.2% Triton X-100 in PBS for 15 min, and immunostained with primary
antisera using standard procedures. Staining was visualized with FITC-
conjugated donkey anti-rabbit antibody (1:200; Jackson ImmunoResearch
Laboratories, Inc.) and Cy3-conjugated donkey anti-mouse antibody
(1:800; Jackson ImmunoResearch Laboratories, Inc.). Nuclei were counter-
stained with TO-PRO-3 (Invitrogen), and coverslips were mounted with
Vectashield media (Vector Laboratories). Images were captured at room
temperature with a confocal microscope and software (LSM 510; Carl
Zeiss, Inc.) using a Plan Apochromat 63x 1.4 NA oil immersion objective
lens and processed with Image) (National Institutes of Health) and Photo-
shop (Adobe). For peptide competition, primary antibodies were preincu-
bated with peptides at 2x final concentration for 2 h at room temperature
and diluted to a final peptide concentration of 1.0 pg/ml before use.
FUGENE 6 was diluted 1:10 in Hepes-buffered saline (25 mM
Hepes, 0.75 mM Na,HPO,, and 140 mM NaCl, pH 7.05) and incubated
at room temperature for 5 min. BrUTP was added to achieve 5 mM BrUTP
(final) and incubated for 15 min at room temperature. Cells grown on cover-
slips were pulse labeled by placing coverslips over BrUTP transfection mix-
ture drop on parafilm for 15 min at room temperature followed by a 15-min
chase in DME containing 10% NCS at 37°C.

Chip

Cells were cross-linked by adding formaldehyde directly to cultures
(1% final) and incubating for 10 min at room temperature. 125 mM
final glycine was added, and cultures were incubated for 10 min on ice.
Cells were washed twice with cold PBS, scraped, and resuspended in ChIP
lysis buffer (1% SDS, 10 mM EDTA, and 50 mM Tris, pH 8.0) containing
0.5 mM AEBSF and 5 nM microcystin. Chromatin was sheared to ~500-bp
mean length by repeated cycles of sonication alternated with cooling in
ice water.

After clarification by centrifugation (18,000 g for 10 min), super-
natants were diluted 10fold with dilution buffer (1.11% Triton X-100,
1.11 mM EDTA, 16.7 mM Tris, and 167 mM NaCl, pH 8.0). Aliquots
representing 1-2 x 10° cells in 1.0 ml final volume were used for each pull-
down. Samples were first precleared by incubation with 15 pl protein G
beads (Lake Placid Bio) for 30 min at 4°C, and the resulting superna-
tants were incubated with 15 pl pS187-H1.4 overnight at 4°C. Samples
were incubated with 12.5 pl protein G beads for 1 h at 4°C. Beads
were pelleted by centrifugation and washed sequentially with 0.1% SDS,
1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCI, pH 8.0,
0.1% SDS, 1% Triton X-100, 2 mM EDTA, 500 mM NaCl, 20 mM Tris-HCI,
pH 8.0, 0.25 MLICl, 1% NP-40, 1% sodium deoxycholate, 1 MM EDTA, and

10 mM Tris-HCI, pH 8.0, and twice with T mM EDTA and 10 mM Tris-HCI,
pH 8.0. Beads were eluted twice with 200 pl 1% SDS in 0.1 M NaHCO,
at 65°C for 10 min. The combined eluates were made 200 mM NaCl
(final), incubated at 65°C overnight to reverse cross-links, digested with
50 pg/ml RNase A at 37°C for 30 min, and then digested with 50 pg/ml
proteinase K at 50°C for 1 h. The DNA fragments were then purified by
phenol/chloroform extraction, recovered by ethanol precipitation using
20 pg glycogen as a carrier, and dissolved in 50 pl of deionized water.

ChIP products were quantitated by realtime PCR using SYBR
Green master mix (Applied Biosystems) and the following primers:
rRNA promoter (forward), 5'-GTGGCTGCGATGGTGGCGTTTT-3' and
(reverse) 5’ TGCCGACTCGGAGCGAAAGA-3'; MMTV-GRE (forward),
5'-TTTCCATACCAAGGAGGGGACAGTG-3" and (reverse) 5'-CTTACT-
TAAGCCTTGGGAACCGCAA-3’; Sgk-GRE (forward), 5'-CTTCCCTTAT-
CCAGCATGTCTTGTG-3' and (reverse) 5 -TGCATCGTGCAATCTGTGGC-3';
and pS2-ERE (forward), 5 -CCCGTGAGCCACTGTTGTC3" and (reverse)
5'-CCTCCCGCCAGGGTAAATAC-3".

ChIP to monitor the association of ER-a and pS187-H1.4 with the
pS2-ERE included minor modifications as described previously (Schultz-
Norton et al., 2007). The ER-a antibody (sc-8002) for ChIP was obtained
from Santa Cruz Biotechnology, Inc.

Online supplemental material

Fig. S1 shows SDS gel and TDMS analyses of H1 fractions with different
levels of phosphorylation prepared from mid-S phase Hela cells using HIC.
Fig. S2 shows the specificity of antisera for individual H1 phosphorylation
sites, the antisera to total H1.4 in immunoblots, and the phosphorylation
sites identified in this study relative to an alignment of the human H1.1-
H1.5 protein sequences. Fig. S3 shows the specificity of the pS173-H1.2
and pS187-H1.4 antisera using peptide competition in immunofluorescence
microscopy. Online supplemental material is available at http://www.icb
.org/cgi/content/full/jcb.201001148/DC1.
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