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Introduction
In Drosophila, the larval somatic (skeletal) musculature arises 

from the fusion of two distinct types of myoblasts, the founders 

and fusion-competent cells (for review see Beckett and Baylies, 

2006). Subsequent differentiation programs, including activation 

of muscle-specifi c gene expression and asymmetrical cell fusion 

between the differentially marked founders and fusion-competent 

myoblasts, are required for the generation of syncytial muscle 

fi bers. Maturation of these syncytia into functional muscle fi bers 

involve additional events, including pathfi nding processes and the 

formation of attachments to the tendon cells, as well as the estab-

lishment of neuromuscular junctions (for review see Volk, 1999; 

Schnorrer and Dickson, 2004). The functional characterization of 

integrins and downstream effectors of integrin signals has under-

scored the importance of this pathway in establishing muscle at-

tachment sites (for review see Bokel and Brown, 2002). However, 

the molecular basis for many other aspects of morphogenesis and 

maintenance of the mature muscles is still poorly defi ned.

Herein, we present a functional characterization of Dro-
sophila mind bomb2 (mib2), which shares structural similarities 

with its paralogue mib1. Unlike mib1, mib2 is prominently 

expressed in muscle progenitors and differentiated muscula-

tures. We show that loss of mib2 activity leads to muscle detach-

ment and massive muscle degeneration. We also demonstrate that 

mib2 functions in a novel integrin- and Notch-independent man-

ner to maintain the integrity of the mature somatic musculature.

Results and discussion
Characterization of the Drosophila mind 
bomb2 gene product
Drosophila mind bomb2 (mib2) encodes a 1,050-amino acid 

protein with several notable features (Fig. 1 A). A ZZ zinc fi nger 

domain within the N-terminal portion is fl anked by two regions 

that share homology with HERC2, a protein that may function in 

protein traffi cking and degradation pathways (Lehman et al., 1998; 

Ji et al., 1999). The ZZ domain, characterized by Cys-X2-Cys and 

Asp-Tyr-Asp-Leu motifs, is found in a small number of proteins, 

including some transcriptional adaptor proteins and Dystrophin/

Utrophin, and is implicated in protein–protein interactions 

(Ponting et al., 1996). Following the ZZ and HERC2-like domains 

is a repeated sequence that is specifi c to Mib proteins. Eight 

Ankyrin repeats are in the middle portion of the protein and two 

RING fi ngers at the C-terminal end. Ankyrin repeats are present 

in a vast number of proteins and their role in protein–protein 

interactions is well documented (Sedgwick and Smerdon, 1999), 
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while RING fi ngers proteins are known to participate in protein–

protein interactions in the ubiquitination pathway  (Joazeiro and 

Weissman, 2000). The presence of these various domains sug-

gests that Mib2 functions as an adaptor-type of protein and/or as 

a component of a ubiquitination pathway.

The Mib2 protein is conserved during evolution. Drosophila 

Mib2 and its murine orthologue display a similar structural orga-

nization and considerable degree of amino acid conservation 

within all the aforementioned domains (Fig. 1 A; and Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200708135/DC1). 

When compared with Mib2 proteins across species, Drosophila 

Mib1, an E3 ubiquitin ligase that has been shown to be important 

in Notch signaling (Itoh et al., 2003; Lai et al., 2005; Le Borgne 

et al., 2005; Pitsouli and Delidakis, 2005; Wang and Struhl, 

2005), shows a lower level of homology in most of these domains, 

indicating that Mib2 is a paralogue of Mib1. In addition, the 

Mib2 proteins have only two RING fi nger domains while the 

Mib1 proteins have three.

mib2 is highly expressed in visceral 
and somatic mesodermal cells
Maternally derived mib2 transcripts are detected prominently in 

the fertilized egg (Fig. 1 B). Zygotic expression is fi rst observed 

at low levels panmesodermally, and beginning at stage 11, high 

levels of expression appear in progenitors of somatic and visceral 

muscles (Fig. 1 C) and persist in the differentiated muscles of late 

stage embryos (Fig. 1, D and E; and unpublished data). mib2 is 

not detectable in cardiomyocytes. Co-localization of mib2 RNA 

(cytoplasmic) and LacZ protein (nuclear) in embryos derived from 

the rP298 enhancer trap line (Nose et al., 1998), which carries a 

P-LacZ insertion within the dumbfounded (duf) gene that is active 

in all founders (Ruiz-Gomez et al., 2000), confi rmed that mib2 

Figure 1. Protein structure of Mib2 and mib2 mRNA expres-
sion in embryos. (A) Top: comparison of homology domains 
between the D. melanogaster Mib2 protein, its paralogue 
Mib1, and the murine orthologue Mib2. (A) Bottom: truncated 
gene products expressed from mutant alleles mib21 and mib24. 
Mib2-∆RF is a truncated protein minus both RING fi ngers. 
(B) Cleavage-stage embryo with evenly distributed maternal 
mib2 mRNA. (C) Stage 11 embryo with mib2 expression in 
founder cells of somatic and visceral muscles. (D) Stage 13 
embryo with mib2 expression in somatic muscle precursors. 
(E) Stage 16 embryo with mib2 expression in somatic, vis-
ceral, and pharyngeal muscles. (F) Early stage 12 rP298-LacZ 
embryo, showing colocalization of mib2 mRNA (green) with 
founder cell-specifi c LacZ (red). (G) Early stage 12 wild-type 
embryo, showing mutually exclusive signals for mib2 mRNA 
(green) in founder myoblasts and Lame duck (Lmd) protein 
(red) in fusion-competent myoblasts (occasional yellow signals 
are due to merged signals from different Z positions). (H) Dor-
sal view of early stage 12 embryo, showing Mib2 protein in 
founder cells of visceral muscles (vmfo) and somatic muscles 
(smfo). (I) Lateral view of late stage 12 embryo (J, high mag-
nifi cation), showing Mib2 protein (green) in founder cells of 
somatic muscles (smfo). Staining is cytoplasmic and nuclei of 
cells (stained for Mef2, red) appear spared (J).
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expression is specifi c for founder myoblasts (Fig. 1 F). Accord-

ingly, mib2 is not detected in Lame duck (Lmd)–positive fusion-

competent cells (Duan et al., 2001; Fig. 1 G). Mib2 protein 

expression is identical to that of mib2 mRNA and appears to be 

in the cytoplasm of founder cells (Fig. 1, H–J). In contrast, mib1 ex-

pression is not detectable in mesodermal cells (unpublished data).

Identifi cation of mib2 mutant alleles
Genetic and molecular analysis in the vicinity of the 37B10 locus 

identifi ed the lethal complementation group l(2)37Be as a likely 

candidate for mib2 (CG17492; see Materials and methods). 

We obtained the two extant alleles, l(2)37Be1 and l(2)37Be4, for fur-

ther analysis. Sequence analysis of the protein-coding exons 

showed that the mib2 gene on the l(2)37Be1 mutant chromosome 

contains a nucleotide change (C to T) that converts Gln377 to a 

nonsense codon (Fig. 1 A and Fig. S1). On the l(2)37Be4 chromo-

some, a two-base pair deletion converts Asn587 to a Thr, which is then 

followed by a nonsense codon. As shown below, expression of wild-

type mib2 in l(2)37Be1 mutant embryos can rescue the observed 

muscle phenotype. We conclude that the l(2)37Be1 and l(2)37Be4 

alleles correspond to bona fi de mib2 mutations and henceforth 

designate these alleles as mib21 and mib24, respectively. Based upon 

our analysis, the mutant Mib21 protein lacks all Ankyrin repeats and 

RING fi ngers while the mutant Mib24 protein lacks the RING 

fi ngers but retains four out of the predicted eight Ankyrin repeats.

mib2 mutant embryos exhibit detached 
muscles during later stages of 
embryogenesis
To assess the consequence of loss of mib2 function on muscle 

development, we stained wild-type and mutant embryos with 

an antibody against Myosin to visualize the muscle pattern. 

We focused more on the mib21 allele because the molecular nature 

of this mutation suggests that it is a stronger mutant allele. 

As compared with wild-type embryos, stage 15 mutant embryos 

(derived from mib21 germline clones and zygotically mib21/

Df(2L)TW130, termed “mib21 m&z”), which lack both maternal 

and zygotic mib2 activity, have a well-developed somatic mus-

culature, although a very limited number of detached muscles 

can already be detected (compare Fig. 2 A with Fig. 2 D). 

At stage 16, the mutant embryos exhibit a highly deranged muscle 

pattern that is characterized by a massive number of detached 

muscles (Fig. 2 B). Many of the rounded muscles have become 

smaller, followed by rapid muscle degeneration. Consequently, 

in stage 17 mutant embryos, normal somatic muscles are absent 

and the size of the rounded muscles decreases dramatically 

(Fig. 2 C). We observed the same types of muscle deterioration 

with mib24 mutant embryos that are null for both maternal and 

zygotic mib2 activity (unpublished data). Unlike the somatic 

muscles, the midgut muscles do not disintegrate in mib2 mutant 

embryos; however, the incompletely constricted midgut of these 

embryos suggests that mib2 also plays a role in visceral muscles 

(Fig. S3, A and B; available at http://www.jcb.org/cgi/content/

full/jcb.200708135/DC1). Cardiac morphology is not affected, 

as predicted from the absence of mib2 expression in myocardial 

cells (see Fig. 5 F). Embryos that lack only zygotic mib2 func-

tion and homozygous defi ciency embryos show similar somatic 

muscle and gut defects as those derived from germ line clones, 

although the defects are delayed and less severe (see Fig. 4; and 

unpublished data). Previous CG17492/mib2 knockdown by 

RNAi injections also caused some muscle detachments (Estrada 

et al., 2006).

Figure 2. mib2 is required for maintaining the attachment and integrity of somatic muscles. Muscle phenotypes were analyzed in embryos that were derived from 
homozygous mib21 mutant germ line clones and have the zygotic genotype of mib21/Df(2L)TW130 (except for embryo in D, which is zygotically mib21/SM6 
wg-lacZ). Embryos in E–H also carry P5053A-Gal4 and UAS-lacZ on the Df(2L)TW130 chromosome to highlight muscle 12 (VL1). Color codes for probes are indi-
cated on the left. (A) At stage 15, a few somatic muscles lacking functional Mib2 are detached and rounded up (arrowheads), wheras the majority of muscles are 
still normal. (B) At stage 16, most somatic muscles (except for some LT and DO muscles, arrows) are rounded up and decreased in size (arrowheads). (C) At stage 17, 
only small remnants of rounded somatic muscle syncytia remain. (D) Normal somatic muscle pattern in germ line–derived embryo, which is zygotically hetero-
zygous for mib2, shows that maternal products are not required in the presence of functional zygotic mib2. (E–H) Normal attachment and morphogenesis of muscle 12 
(E and F; orange-yellow signals) occurs before it detaches and shrinks after stage 16 (G–H). Occasional red signals come from longitudinal gut muscles.
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To analyze the temporal progression and cause of the 

observed muscle phenotype, we recombined P5053A-Gal4, 

which is a common marker for muscle 12 (or VL1) develop-

ment (Ritzenthaler et al., 2000; Swan et al., 2004), and UAS-LacZ 

onto the mib21 chromosome. Wild-type and mutant embryos were 

double-labeled for Tropomyosin and LacZ expression. At late 

stage 14, the somatic musculature of mib21 mutant (m&z) embryos, 

including muscle 12, which is in the fi nal stages of establishing 

its normal attachments, looks normal (Fig. 2 E). A low degree 

of muscle detachment becomes detectable at stage 15, although 

muscle 12 does not seem to be affected immediately, suggesting 

some differences in susceptibility to loss of mib2 function among 

the various muscles (Fig. 2 F). However, massive muscle de-

tachments and degeneration, which include muscle 12, occur 

by stage 16 (Fig. 2, G and H). In the aggregate, this analysis 

indicates that mib2 function is not needed for the formation of 

somatic muscles and their initial attachment to tendon cells, but 

rather it is required at late embryogenesis for maintaining the 

attachments and the integrity of the mature musculature.

Loss of mib2 function does not interfere 
with the localization of known muscle 
attachment components
Because of the muscle detachment phenotype, we examined 

whether loss of mib2 function disrupts the localization of inte-

grin signaling components that are known to establish stable 

muscle/tendon attachments (for review see Bokel and Brown, 

2002). In mib21 (m&z) embryos, αPS2 integrin localizes nor-

mally to the attachment sites within the tips of muscle 12 before 

and during the early stages of their detachment (compare Fig. 3, 

A and B with Fig. 3 D). Hence, the gradual disappearance of 

 localized αPS2 integrin during later stages (Fig. 3 C) is presumably 

a consequence of the muscle detachments and deterioration 

rather than a cause of the detachment. Likewise, all other integrin 

pathway components examined, including Talin (Fig. 3, E and F), 

Pinch (not depicted), ILK (Fig. 3, G and H), and Tyr397-phos-

phorylated FAK (Fig. S3, C and D) are initially localized normally 

within the muscle ends near the attachment sites in the absence 

of mib2 activity. Several components on the epidermal side of 

the attachments were also unaffected (unpublished data). These 

observations argue against a function of mib2 in establishing 

stable muscle attachments via integrin signaling components 

unless there is a yet unknown parallel pathway to ILK that 

is affected.

Absence of mib2 function triggers 
apoptosis in muscles
As shown in Fig. 4 A, Mef2-positive nuclei are still present in 

the large rounded muscles of zygotic (z) mib21 mutant embryos 

at stage 16, whereas they are absent in the rounded muscles that 

are severely decreased in size. Because cell shrinkage and chro-

matin deterioration are hallmarks of apoptosis, we used TUNEL 

staining to detect apoptotic cells in mib2 mutant embryos. 

Indeed, the detaching muscles in mib21 (z) embryos are positive 

for the apoptotic marker (Fig. 4 B), whereas heterozygous con-

trol embryos only show apoptotic signals in the CNS and other 

nonmuscle tissues (Fig. 4 C). Of note, the detached muscles in 

myospheroid (mys) mutant embryos, which lack functional 

β-integrin at their attachment sites, do not show any signifi cant 

apoptotic signals and do not shrink, indicating that apoptosis is 

Figure 3. mib2 is not required to localize integrin signaling components to muscle attachments. Except when denoted “WT” (wild type), embryos shown 
are derived from homozygous mib21 mutant germ line clones and have the zygotic genotype of mib21/Df(2L)TW130. Embryos in A–D also carry P5053A-
Gal4 and UAS-lacZ on the Df(2L)TW130 chromosome to highlight muscle 12 (VL1). (A) At stage 14–15, normal localization of αPS2 integrin to the ends of 
muscle 12 near the attachment sites in the absence of mib2 activity. (B) At early stage 16, mostly normal localization of αPS2 integrin during the early phase 
of muscle 12 detachment. (C) During late stage 16, no localization of αPS2 integrin in muscle 12 syncytia (arrows) that begin to deteriorate. Small red cells 
in A–D correspond to longitudinal gut muscles. (D) Stage 16 control embryo, showing αPS2 integrin localized to the attachment sites within muscle 12. 
(E and F) Stage 15 embryos without and with mib2 activity, showing normal localization of Talin to the attachment sites within the myosin-stained muscles 
(arrowheads). In E, a few ventral muscles that have detached show evenly distributed Talin (arrows). (G and H) Stage 16 embryos without and with mib2 activity, 
showing normal localization of ILK-GFP to the attachment sites (arrowheads) except where muscles have detached and were shrinking.
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not an automatic consequence of muscle detachment (Fig. 4 D). 

Hence, we propose that the muscle detachment in mib2 mutants 

is a consequence of apoptotic events in these muscles.

To test this proposal further, we blocked apoptosis through 

forced expression of the caspase inhibitor p35 in muscle found-

ers and their derived muscles. Blocking apoptosis in muscles of 

mib21 (z) mutant embryos leads to a signifi cant reduction of 

muscle detachment and deterioration at early stage 16 (com-

pare Fig. 4 F with Fig. 4 B; no effects are seen with analogous 

expression of p35 in a wild-type background [Fig. 4 E]). At late 

stage 16, some muscle degeneration still occurs in the p35-over-

expressing mutant embryos, as evidenced by the slightly larger 

number of rounded muscles with decreased sizes and missing 

muscle fi bers, although it is much less severe than in mib21 (z) 

mutants without blocked apoptosis (Fig. 4 G). A large number 

of muscle fi bers are still present at stage 17 in these apoptosis-

blocked mib21 (z) mutant embryos (unpublished data). Notably, 

the muscle degeneration phenotype is rescued in mib21 (z) 

Figure 4. mib2 activity is required for preventing apoptosis 
of somatic muscles. In all panels, muscles were labeled with 
anti-Tropomyosin (red). (A) Zygotically (z) mib21 homozygous 
mutant embryo at stage 16 with disappearance of Mef2-
 labeled nuclei in shrunken syncytia (arrowheads). Arrows indi-
cate Mef2-positive muscles at an earlier stage of detachment. 
(B) Embryo as in A but labeled with TUNEL (green), showing 
strong apoptotic signals in the detached and shrinking muscle 
syncytia (arrowheads). Arrow indicates detaching muscle with 
weak apoptotic signals. (C) Stage 16 mib21 heterozygous 
control embryo without any apoptotic signals in somatic mus-
cles. (D) Stage 16 myospheroid (mys) mutant embryo with an 
absence of apoptotic signals in detached muscles which are 
not shrunken. (E) Stage 16 control embryos with p35 over-
expression via rP298-Gal4 exhibit normal somatic muscle 
morphology. (F) Early stage 16 mib21 (z) embryo with forced 
expression of p35 via rP298-Gal4, showing only a few de-
tached muscles (arrowheads). (G) Late stage 16 embryo as in 
(F) with only a few detached or missing muscles (arrowheads). 
(H) Late stage 16 embryo homozygous for mib21 and 
Df(3R)H99. Most somatic muscles appear normal although a 
few have aberrant shapes or are missing (arrowheads).

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/179/2/219/1889450/jcb_200708135.pdf by guest on 24 April 2024



JCB • VOLUME 179 • NUMBER 2 • 2007 224

mutant embryos that are also homozygous for Df3R)H99, which 

deletes the apoptosis inducers reaper, hid, and grim, (Fig. 4 H). 

In this background the majority of the muscles appear normal 

until at least late stage 16, although we do not know whether 

they change their morphology after cuticle formation. Together, 

these observations suggest that muscle detachment and degen-

eration in mib2 mutants are largely a consequence of trig-

gered apoptosis.

Ubiquitin ligases in the Notch pathway 
cannot substitute for Mib2 during 
muscle development
Because RING fi ngers are implicated in protein ubiquitination, 

we sought to test whether the RING fi ngers of Mib2 are re-

quired for its activity and whether Mib1 and Neuralized (Neur), 

E3 ubiquitin ligases that have been shown to be modulators of 

the Notch pathway by ubiquitinating Delta (Lai and Rubin, 

2001; Pavlopoulos et al., 2001; Lai et al., 2005; Le Borgne 

et al., 2005; Pitsouli and Delidakis, 2005; Wang and Struhl, 2005), 

could substitute for Mib2. Overexpression of full-length Mib2 

in muscle founders and the derived muscles of wild-type 

embryos does not affect the pattern and stability of the muscles, 

although there is an increased number of unfused myoblasts at 

late stages (Fig. 5 A). In the mib21 mutant background, forced 

expression of full-length Mib2 leads to essentially complete 

rescue of the muscle detachment and deterioration phenotype 

(compare Fig. 5 B with Fig. 5 D), although an excessive number of 

unfused myoblasts is also evident. Notably, forced expression of 

a Mib2 version lacking both RING fi ngers (Mib2∆RF; see Fig. 1 A) 

in the mutant background also allowed a significant, albeit 

incomplete, rescue of the muscle defects. In these embryos 

there is only occasional detachment of muscles and very few 

signs of apoptotic decay, although the muscles sometimes 

appear shorter and thicker as compared with normal muscles 

(compare Fig. 5 C with Fig. 5, A and D). Analogous overexpres-

sion of this mutated Mib2 version in a wild-type background 

does not have any effects on muscles (unpublished data). Based 

upon the signifi cant degree of rescue with Mib∆RF, we conclude 

that the RING fi ngers have a less prominent role in promoting 

muscle integrity as compared with the other domains, and that 

ubiquitination may not be the main activity of Mib2 that is 

required for muscle development.

In sharp contrast to full-length Mib2 and Mib2∆RF, Mib1 and 

Neur are not able to confer any rescuing activity under similar 

experimental conditions (compare Fig. 5, E and F with Fig. 5 D), 

suggesting that Mib2 possesses important targets that are different 

from those of Mib1 and Neur, and that blocked Notch signaling 

is not the cause of the observed muscle defects in mib2 mutant 

embryos. This latter point is underscored by our results from 

experiments with the Nts allele, which never yield any embryos 

with muscle phenotypes that are similar to those of mib2 mutants 

(unpublished data; see also Fuerstenberg and Giniger, 1998). 

However, we do not exclude the possibility that Mib2 can act in 

the Notch pathway in other contexts, such as in post-embryonic 

tissues, which we have not yet examined. It has been shown in 

cell culture that vertebrate Mib2 is capable of ubiquitinating 

Figure 5. RING fi nger–deleted Mib2, but not Mib1 and Neuralized, can substitute for Mib2. (A) Stage 16 wild-type embryo, overexpressing full-length 
Mib2 (Mib2FL) via rP298-Gal4, exhibits a normal somatic muscle pattern. (B) Stage 16 mib21 (zygotic) homozygous mutant embryo with forced Mib2FL 
expression has normal somatic muscles. (C) Stage 16 mib21 (zygotic) homozygous mutant embryo with forced expression of RING fi nger–deleted Mib2 
(Mib2∆RF) via rP298-Gal4 shows signifi cant rescue of the mib2 muscle phenotype. (D) Stage 16 (zygotic) homozygous mib21 embryo, shown as control for 
the rescue experiments, exhibits detached/disintegrating muscles. (E and F) Stage 16 mib21 (zygotic) homozygous mutant embryo with forced expression 
of Mib1 or Neur via rP298-Gal4. Muscle phenotypes are comparable to mib21 alone.
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Delta and Jagged, and Mib2 was also identifi ed as a binding 

partner of Drosophila Delta in yeast two-hybrid screenings 

(Formstecher et al., 2005; Koo et al., 2005; Takeuchi et al., 

2005; Zhang et al., 2006).

In summary, Mib2 appears to have a unique and Notch-

independent role in “protecting” differentiated body wall muscles 

from entering apoptosis, undergoing detachment, and being 

subject to degradation. We speculate that Mib2 is required in a 

yet undefi ned pathway for the establishment of specifi c func-

tional features of the sarcomeres or other structures of the myo-

fi bers. In this context, it is interesting to note that mouse Mib2 

(also known as skeletrophin) was identifi ed as a binding partner 

of α-actin and is expressed in skeletal muscles (Takeuchi et al., 

2003). The disruption of these unknown structural and func-

tional features in the absence of mib2 activity could become det-

rimental upon stimulation of contractility and trigger entry into 

apoptosis. Apoptotic degradation of multiple components of 

the muscle fi bers could fi rst result in detachment because the 

contractile force renders muscle attachment more sensitive to 

disruptions, and leads to the degradation of the entire syncytia. 

The identity of the functional target(s) of Mib2 in muscles is 

currently unknown, as the expression of all markers examined to 

date, including founder cell markers (Fig. S2, available at http://

www.jcb.org/cgi/content/full/jcb.200708135/DC1), muscle at-

tachment proteins (Fig. 3), and differentiation markers (Fig. 3; 

Fig. 4; and unpublished data), is unaffected in mib2 mutant 

embryos. Future studies, including the identifi cation of interaction 

partners or mutations in other genes with similar phenotypes, 

will help to elucidate the pathway in which Mib2 acts to protect 

muscle integrity. Whether this pathway is involved in preventing 

skeletal muscle atrophies in which caspase-3 activation contrib-

utes to the breakdown of actomyosin complexes of myofi brils 

(Du et al., 2004) could also be explored.

Materials and methods
Drosophila stocks
mys1 (Digan et al., 1986), UAS-p35 (made by Bruce Hay, CalTech, Pasa-
dena, CA; Zhou et al., 1997), P5053A-Gal4 (Lopez, 1998), P{neoFRT}40A 
(Xu and Rubin, 1993), UAS-lacZ (Bg4-1-2; Brand and Perrimon, 1993), 
CyO wgen11-LacZ (Kassis et al., 1992), SM6 eve-LacZ8.0 (Panzer et al., 
1992), TM2 P{lArB}C40.1S3 (Bellen et al., 1989), Df(3R)TW130 (Wright 
et al., 1976), and the alleles l(2)37Be1 and l(2)37Be4 (Stathakis et al., 
1995), which were induced by EMS and EMS plus γ-rays, respectively, 
were obtained from the Bloomington Drosophila stock center. Other fl y 
stocks used include: mib1EY9780 (Pitsouli and Delidakis, 2005), UAS-neur 
(Pavlopoulos et al., 2001), UAS-mib1-3 (Wang and Struhl, 2005), rP298-
Gal4 (Menon and Chia, 2001), and ILK-GFP (Zervas et al., 2001).

To generate UAS-mib2 and UAS-mib2∆RF transgenic lines, we sub-
cloned the regions coding for amino acids 1–1,050 and amino acids 
1–907, respectively, from the EST clone LP14687 (obtained from the 
Berkeley Drosophila Genome Project/BDGP) into the pUAST vector and 
 injected the resulting constructs into Drosophila embryos by using standard 
protocols. Multiple independent insertions were obtained and analyzed for 
each construct.

Identifi cation of mib2 mutants
The mib2 gene maps genetically at 37B10, a genomic region that was 
characterized genetically and molecularly in the context of the Dopa 
decarboxylase gene (Stathakis et al., 1995). By comparing the data of 
Stathakis et al. (1995) with those from the BDGP, we determined that mib2 
is uncovered by the overlapping defi ciencies Df(2L)OD15, Df(2L)hkUC1, 
and Df(2L)TW130 (Wright et al., 1976). Based upon additional molecular 

and genetic mapping data, we identifi ed a complementation group, l(2)37Be, 
of originally fi ve embryonic lethal alleles as the most likely candidate for 
the mib2 gene (Stathakis et al., 1995; Adams et al., 2000). The support-
ing evidence includes: (1) genomic rescue experiments done by Stathakis 
et al. (1995) with a construct, which according to our analysis only con-
tains mib2 and a neighboring gene called catsup (l(2)37Bc), rescued the 
lethality of l(2)37Be and catsup mutations; and (2) one allele, l(2)37B5, 
which no longer exists, was shown to be associated with an �800-bp dele-
tion of sequences that we now have identifi ed as being part of the Dro-
sophila mib2 gene.

Sequencing of mib2 from wild-type and mutant alleles
EST clone LP14687 was fully sequenced and the derived mib2 ORF was 
identical to that of CG17492. For allele sequencing, the alleles were bal-
anced with a “blue balancer”. Fixed embryos were stained with an anti-
body against β-galactosidase, and homozygous l(2)37Be1 or l(2)37Be4 
mutant embryos were identifi ed by the absence of LacZ expression from 
the “blue balancer”. Hand-picked embryos of the appropriate genotype 
were incubated in a solution of 10 mM Tris-HCl, 1 mM EDTA, 25 mM 
NaCl, and 200 μg/ml proteinase K. Amplifi ed products were purifi ed and 
subjected directly to automated sequencing. Specifi c primers were used for 
sequencing all exons and exon–intron boundaries. For confi rmation, the 
fragment that contained a sequence aberration was reamplifi ed from 
genomic DNA and resequenced. The mouse Mib2 sequence data are based 
on our sequencing of the cDNA clone IMAGE:6516763.

Rescue (and overexpression) experiments
For rescue and overexpression experiments the following stocks were gener-
ated and used: UAS-mib2Full Length(FL)-1.UAS-mib2∆RING(∆RF)-2. rP298-
Gal4; mib21/SM6, eveLacZ8.0. mib21/SM6, eveLacZ8.0;UAS-mib2-1. 
mib21/SM6, eve-LacZ8.0;UAS-mib∆RF-2. mib21/ CyO, wgen11-LacZ;UAS-
mib1-3. mib21/SM6, eve-LacZ8.0;UAS-p35. mib21/SM6, eve-lacZ8.0; 
Df3R)H99/TM2, P{lArB}C40.1S3. mib21/SM6, eve-LacZ8.0;UAS-neur12.4.

Generation of Drosophila Mib2 antibodies
pET30-Mib2(COOH) was generated by cloning the PCR fragment that 
code for amino acids 650–1,038 of Mib2 in frame with the 6xHis tag of 
the pET-30a vector (Novagen). The fusion protein was expressed in Esche-
richia coli and purifi ed with Ni2+-affi nity chromatography under denatur-
ing conditions (QIAGEN). Antiserum production in guinea pigs was done 
by Covance Research Products and affi nity purifi cation was performed 
against bacterially expressed S-tag (Novagen)-Mib2 fusion protein.

In situ RNA hybridization and immunocytochemistry of 
whole-mount embryos
The embryonic CG17492 mRNA expression was fi rst described in the 
BDGP in situ hybridization database (Tomancak et al., 2002). We con-
fi rmed and extended these expression data with the use of a digoxygenin-
labeled mib2 RNA probe that was generated by using the LP14687 cDNA 
clone and published protocols (Tautz and Pfeifl e, 1989). Embryos were photo-
graphed with Nomarski DIC optics on a microscope (AX70; Olympus) 
with a 20× Uplan Fl/0.5 NA objective and a color camera (5.0 RTV; 
QImaging). Images were acquired with QImaging software and processed 
with Adobe Photoshop.

Immunocytochemistry was performed essentially as described (Reim 
et al., 2003) and the TSA amplifi cation system was used as needed. Cy3 
and FITC were used as fl uorochromes. Embryo stainings were analyzed on 
a confocal microscope (TCS-SP 4D; Leica) with a HC Plan Apo20×/0.7 NA 
and a HCX Plan Apo40×/0.75–1.25 NA oil objective at 20°C. Generally, 
Z-scans were taken at 1- to 1.5-μm steps and four to eight Z-scans were 
merged via maximum projection using the Leica TCS software package or 
Adobe Photoshop CS. Except for the fi nal adjustment of contrast and 
brightness with Adobe Photoshop CS, no other processing of the imaging 
was performed.

Antibodies were used as follows: mouse anti-βgalactosidase (1:100; 
developed by J. Sanes, Washington University, St. Louis. MO, and ob-
tained through DSHB, Iowa University, Iowa City, IA), rabbit anti-β-galacto-
sidase (1:1500; ICN), rat anti-Tropomyosin (1:50; Babraham Tech), mouse 
anti-Myosin (1:200; Kiehart and Feghali, 1986); rabbit anti-Mef2 (1:700; 
Bour et al., 1995); rat anti-αPS2 (1:10, TSA; Wilcox et al., 1981); rabbit 
and mouse anti-Talin (1:750, TSA, and 1:20, TSA, respectively; Brown 
et al., 2002); rabbit anti-Pinch (1:15,000, TSA; Clark et al., 2003); rabbit 
anti-FAK[pY397] (1:300; Biosource International); and rabbit anti-GFP 
(1:10,000, TSA; Molecular Probes). Biotinylated (1:200, Vector Laboratories) 
and fl uorescent (1:100, Jackson ImmunoResearch Laboratories) secondary 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/179/2/219/1889450/jcb_200708135.pdf by guest on 24 April 2024



JCB • VOLUME 179 • NUMBER 2 • 2007 226

antibodies were also used. The Apoptag kit (Intergen) was used for detecting 
apoptotic cells as described in Reim et al. (2003).

Online supplemental material
Figure S1 shows protein sequence alignment of D. mel. Mib2 with 
D. mel Mib1 and mouse Mib2. Figure S2 shows absence of any effects 
of mib2 mutation on muscle founder marker expression. Figure S3 shows 
gut phenotype and phospho-FAK staining in mib2 mutant embryos. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200708135/DC1.
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