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Introduction
Cells impinge force on their extracellular environments  
during tissue morphogenesis, cardiovascular and pulmonary 
function, directed cell motility, and the immune response. 
Cell forces are primarily developed by myosin IIs acting in 
the actin cytoskeleton (Cai et al., 2006). Cytoskeletal forces 
are linked to the ECM through transmembrane – integrin 
heterodimers that cluster to form focal adhesions (FAs; Geiger 
et al., 2009). On their cytoplasmic face, integrin tails serve 
as scaffolds for the recruitment of FA-associated proteins, 
including cytoskeletal-binding and adapter proteins, and en-
zymes such as kinases, phosphatases, and small GTPases and 
their modulators (Zaidel-Bar et al., 2007a). These proteins 
contribute to FA functions in integrin-mediated signal trans-
duction and form the force-bearing link between the ECM 
and cytoskeleton.

FAs are mechanosensitive organelles that recruit cyto-
plasmic proteins to grow and change composition in response 
to mechanical tension (Chrzanowska-Wodnicka and Burridge, 
1996; Riveline et al., 2001) in a process known as FA matura-
tion. Tension driving FA maturation can be supplied either by 
myosin II forces transmitted to FAs through the actin cytoskele-
ton or by external forces applied to the cell. It is thought that 
tension-driven FA compositional changes are critical to the abil-
ity of FAs to trigger different signaling pathways that promote 
differentiation, division, or apoptosis (Engler et al., 2006).

The mechanism of tension-mediated FA maturation is not 
well characterized. Tension on FA proteins could drive local-
ized unfolding or conformational changes that unmask binding 
sites for cytoplasmic proteins (Vogel and Sheetz, 2006). For ex-
ample, molecular dynamics simulations suggest that directional 

Focal adhesions (FAs) are mechanosensitive adhe-
sion and signaling complexes that grow and change 
composition in response to myosin II–mediated  

cytoskeletal tension in a process known as FA matura-
tion. To understand tension-mediated FA maturation, we 
sought to identify proteins that are recruited to FAs in a 
myosin II–dependent manner and to examine the mech-
anism for their myosin II–sensitive FA association. We find  
that FA recruitment of both the cytoskeletal adapter 
protein vinculin and the tyrosine kinase FA kinase 
(FAK) are myosin II and extracellular matrix (ECM)  

stiffness dependent. Myosin II activity promotes FAK/
Src-mediated phosphorylation of paxillin on tyrosines 
31 and 118 and vinculin association with paxillin. We 
show that phosphomimic mutations of paxillin can spe-
cifically induce the recruitment of vinculin to adhesions 
independent of myosin II activity. These results reveal an 
important role for paxillin in adhesion mechanosensing 
via myosin II–mediated FAK phosphorylation of paxillin 
that promotes vinculin FA recruitment to reinforce the 
cytoskeletal ECM linkage and drive FA maturation.
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Contraction was inhibited with either 20 µM of the myosin II–
specific ATPase inhibitor blebbistatin (Ki = 0.3 µM) or 10 µM 
of the Rho kinase inhibitor Y27632 (Ki = 0.14 µM). As a 
physiological approach to myosin II inhibition, MEFs were 
plated on fibronectin-coupled compliant substrates (1.0 kPa 

force on integrin cytoplasmic tails could induce separation of 
the  and  subunits (Zhu et al., 2008) to allow new protein 
binding. In vitro experiments suggest that forced unfolding of 
talin promotes vinculin binding (del Rio et al., 2009), whereas 
stretching p130cas unmasks a tyrosine substrate for Src family 
kinases (Sawada et al., 2006). However, whether these mech-
anisms operate in cells during physiological, myosin II–mediated 
FA maturation is not known.

In spite of the lack of mechanistic insight, it is well  
accepted that tension-mediated FA maturation involves a se-
quential cascade of compositional changes (Zaidel-Bar et al., 
2004). FAs are initiated by activation of integrin extracellular 
heads’ affinity for ECM through association of their cytoplas-
mic tails with the vinculin- and actin-binding protein talin 
(Tadokoro et al., 2003). Early after integrin activation, the 
adapter protein paxillin is recruited by an unknown mechanism, 
and more integrins cluster into FA (Laukaitis et al., 2001; Webb 
et al., 2004; Wiseman et al., 2004). Further FA growth is  
accompanied by the recruitment of the actin-bundling protein 
-actinin (Choi et al., 2008), which with talin (Lee et al., 2004) 
may establish a link between integrins and the actin cytoskele-
ton. Myosin II is thought to transmit tension in an -actinin– 
actin network to the integrin–ECM linkage. This tension promotes 
elongation of an adhesion-associated actin bundle where cyto-
skeletal adapter proteins vinculin and zyxin accumulate (Choi 
et al., 2008). In addition, tension on fibronectin-engaged 1 in-
tegrins promotes integrin head binding to secondary sites on 
fibronectin (Friedland et al., 2009), inducing recruitment and 
activation of the tyrosine kinase FAK (Shi and Boettiger, 2003; 
Friedland et al., 2009). Tyrosine phosphorylation of early FA 
proteins, including FAK, paxillin, and p130cas (Ballestrem et al., 
2006), then act as scaffolds for phosphotyrosine (PY)-binding 
SH2 domain–containing proteins. There are also studies that show 
compositional differences between small or large FAs (Zaidel-
Bar et al., 2003, 2007b; Zimerman et al., 2004), although the 
order of protein addition or the requirement for tension in their 
FA recruitment is not known.

To better understand tension-mediated FA maturation, 
we sought proteins that are recruited to FAs in a contractility- 
dependent manner and examined the mechanism for their 
myosin II–sensitive FA association. We find that FA localization 
of vinculin is myosin II and ECM stiffness dependent. By exam-
ining the effects of myosin II inhibition on protein interactions 
and phosphorylation, we deduce that the myosin II–dependent 
recruitment of vinculin to FA is mediated by FAK phosphoryla-
tion of paxillin, which creates binding sites in FAs for vinculin 
to drive FA maturation.

Results
Inhibition of myosin II activity affects 
adhesion morphology and alters cell 
migration
To gain insight into myosin II–mediated FA maturation, we 
characterized the effects of myosin II inhibition on migra-
tion and FA morphology in mouse embryonic fibroblasts 
(MEFs) adhered to coverslips coated with 5 µg/ml fibronectin.  

Figure 1.  Rho kinase–mediated myosin II activity and substrate stiffness 
slow MEF migration and increase adhesion size. (A) Migration rates for 
untreated cells (control), cells treated with 20 µM blebbistatin (Blebb) or 10 µM  
Y27632, or plated on 1.0 kPa compliant polyacrylamide substrates. Mean 
velocity is shown above each box plot. Arrowheads indicate lower and  
upper extreme outliers. n = number of cells. (B) Phase-contrast images of 
cell morphology under the same conditions as in A. Bar, 10 µm. (C) Immu-
nolocalization of PY epitopes (P-Tyr) to visualize adhesions (green) and  
fluorescent phalloidin staining to visualize actin filaments (red) under the 
treatments as in A. Merged images are shown in the third column, and boxed 
regions are magnified in the fourth column. Bars: (third column) 10 µm; (fourth 
column) 2 µm. (D) Area of individual adhesions within PY-immunolabeled cells 
under the conditions in A. Mean adhesion area (micrometer squared) is 
shown above each box plot. n = number of adhesions.
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polyacrylamide gel) where myosin II activity is down-regulated 
in response to mechanosensation of a compliant ECM (Pelham 
and Wang, 1997). Phalloidin staining and immunolocalization 
of PY epitopes (Thomas and Brugge, 1997) in control cells 
showed lamellipodia in the cell front and F-actin bundles in 
the center and tail, which often terminated in PY-containing  
FAs (Fig. 1 C). FAs ranged in size from diffraction limited 
(0.125 µm2) at the cell front to several micrometers long  
(0.45 ± 0.75 µm2) in the central and rear regions (Fig. 1 D). 
Because a goal of this study is to determine the compositional 
changes that accompany FA size changes mediated by myosin 
II, we will not classify different-sized structures as FAs, focal 
complexes, or fibrillar adhesions, but will refer to all membrane 
plaques marked by PY or another FA protein as adhesions. 
Blebbistatin treatment inhibited actin bundles and induced a  
homogeneous network, ROCK inhibition blocked central actin 
bundles, and plating on compliant substrates reduced actin 
bundle length and intensity compared with controls (Fig. 1 C). 
Myosin II inhibition by all three treatments decreased adhe-
sion size compared with control (Fig. 1 D), and in the case of 
blebbistatin, confined adhesions to the extreme cell periphery 
(Fig. 1 C). These results agree with previous studies (Totsukawa 
et al., 2004; Even-Ram et al., 2007; Schaub et al., 2007). In 
addition, all three treatments altered cell morphology and in-
creased migration rate compared with control (Fig. 1, A and B)  
as reported previously (Totsukawa et al., 2004; Even-Ram et al., 
2007). Because myosin II ATPase and ROCK inhibition pro-
duced similar effects, in the remainder of our experiments, we 
used 20 µM blebbistatin (1 h) for pharmacological inhibition of 
myosin II, whereas compliant substrates were used for physi-
ological down-regulation of contractility.

Adhesion recruitment of FAK, vinculin, 
zyxin, and -actinin is myosin II dependent
To determine how adhesion composition is affected by acto-
myosin activity, we performed immunofluorescence and quan-
titative image analysis of cells in which contractility was 
inhibited. Because the adapter protein paxillin is a component 
of newly formed adhesions (Laukaitis et al., 2001; Choi et al., 
2008), we examined the myosin II dependence of its localiza-
tion to PY-containing adhesions. In both control and blebbistatin-
treated cells, paxillin was nearly completely colocalized with 
PY in all adhesions in spite of blebbistatin’s effects on adhe-
sion size, spatial distribution, and actin organization (Fig. 2 A). 
Similarly, plating cells on compliant substrates did not alter 
localization of paxillin to PY-containing adhesions (Fig. S1). 
Thus, paxillin is present in adhesions independently of myo-
sin II contractility, and therefore, we used it as an adhesion 
marker in further experiments.

We performed immunofluorescence and quantitative  
image analysis to examine the blebbistatin sensitivity of adhe-
sion association of several important FA proteins. We deter-
mined the ratio of intensity of fluorescence in segmented 
adhesions in blebbistatin-treated cells relative to controls as a 
measure of the myosin II dependence of adhesion recruitment. 
This revealed a slight yet insignificant reduction in paxillin 
level after blebbistatin treatment in all experiments, ranging 

Figure 2.  Myosin II is required for recruitment of specific proteins to adhe-
sions. (A) Immunolocalization of paxillin (Pxn; red) and PY epitopes (P-Tyr; 
green) in untreated cells (control) or cells treated with 20 µM blebbistatin 
(Blebb). Merged images are shown in the third column, and boxed regions 
are magnified in the fourth column. Bars: (third column) 10 µm; (fourth col-
umn) 2 µm. (B) Immunolocalization of paxillin (red) with either (in green); 
talin 1 (Tln), FAK, 1 integrin (1-Int), zyxin (Zyx), vinculin (Vcl), or -actinin 
(Actn) in untreated control cells (left) or cells treated with 20 µM blebbistatin 
(right). Merged images are shown in the right column. Bar, 2 µm. (C) Effects 
of blebbistatin on adhesion localization of FA proteins expressed as the ratio 
of mean fluorescence intensities within segmented adhesions of blebbistatin-
treated relative to control cells. Mean ratios are shown above each plot. 
*, P < 0.02. Error bars indicate 95% confidence interval of the mean. n = 
number of blebbistatin-treated cells/number of control cells.
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of both protein class (i.e., adapter, kinase, and actin binding) 
and the myosin II dependence of their adhesion localization. 
Furthermore, in MEFs, the adapter protein vinculin exhibits 
particularly stable adhesion binding. Thus, we focused further 
study on the mechanism of actomyosin-dependent, stable vincu-
lin association with adhesions.

Myosin II–mediated recruitment of vinculin 
to adhesions is cell type independent, 
reversible, and physiologically relevant
To characterize the generality of myosin II–dependent vinculin 
recruitment to adhesions, we examined its human cell type 
specificity. Immunofluorescence analysis of osteosarcoma (U2OS), 
breast epithelial (MCF-10), and endothelial (HUVEC) cell lines 
(Fig. S3) and primary foreskin fibroblasts (HFF-1; Fig. 4 A) 
revealed high levels of vinculin in adhesions of untreated 
cells but a significant reduction in vinculin in adhesions in-
duced by blebbistatin treatment (Fig. 4 B).

To determine whether the blebbistatin-induced reduction 
of vinculin in adhesions was reversible, we analyzed the time 
course of vinculin recruitment after induction of actomyosin 
contractility by blebbistatin washout (Fig. 4, C and D). Immuno-
fluorescence analysis showed that within 15 min after blebbi-
statin washout, although adhesion size was still reduced compared 
with controls, vinculin was already colocalized with paxillin in 
adhesions (Fig. 4, C and D). Analysis of later time points in-
dicated that vinculin remained colocalized with paxillin, and 
normal adhesion size was regained within 30–60 min (Fig. 4, C 
and D). Thus, blebbistatin reversibly reduces vinculin in adhe-
sions, and vinculin is recruited to adhesions soon after the 
induction of actomyosin contraction before the completion of 
adhesion growth.

We next sought to determine whether the myosin II– 
dependent recruitment of vinculin to adhesions occurs in physi-
ologically relevant contexts. By examining vinculin localization 
in cells plated on compliant ECMs, we confirmed that reduction 
of contractility by ECM compliance mechanosensing reduced 
vinculin level in adhesions (Fig. S1). We next sought to deter-
mine when in the adhesion maturation cycle vinculin is recruited 
to adhesions of migrating cells. Similar to blebbistatin washout, 
in the advancing lamellipodium of migrating cells, nascent adhe-
sions form independently of actomyosin contraction followed 

from 61 to 91% of controls (Fig. 2 C). Similar analysis revealed 
no significant difference in the levels of 1 integrin and talin in 
paxillin-containing adhesions between control and blebbistatin-
treated cells (Fig. 2, B and C). In contrast, although there were 
high levels of FAK, zyxin, vinculin, and –actinin in adhesions 
of controls, these proteins were significantly reduced in adhe-
sions of blebbistatin-treated cells (Fig. 2 C). Blebbistatin caused  
redistribution of FAK, vinculin, and zyxin from adhesions to the 
cytosol, whereas -actinin was relocalized to lamellipodia. 
(Fig. 2 B). Together, these results indicate that the recruitment 
of paxillin, talin, and 1 integrin to adhesions is independent of 
myosin II activity, whereas adhesion association of FAK, zyxin, 
vinculin, and -actinin requires myosin II contraction.

Vinculin is a stably bound adhesion protein
We next hypothesized that strong adhesion binding affinity 
could override actomyosin dependence in recruitment of pro-
teins to adhesions. To test this, we performed FRAP of EGFP-
tagged proteins in single adhesions and determined the mean 
fluorescence recovery t1/2 as an estimate of the stability of 
adhesion binding (Bulinski et al., 2001; Lele and Ingber, 2006). 
Our hypothesis predicts long FRAP t1/2’s for the myosin II– 
independent adhesion-associated proteins paxillin and talin 
and short FRAP t1/2’s for the blebbistatin-sensitive adhesion 
proteins zyxin, FAK, -actinin, and vinculin. Contrary to our 
expectations, FRAP analysis revealed a broad range of mean 
t1/2’s from <10 s to nearly 3 min with no correlation between 
myosin II dependence of adhesion association and FRAP t1/2 
(Fig. 3 and Fig. S2). EGFP conjugates of the myosin II– 
independent adhesion-associated proteins paxillin and talin 
had similar intermediate FRAP t1/2’s of 23 ± 3.4 s (SEM) and 
25 ± 5.9 s. The myosin II–dependent adhesion proteins exhib-
ited FRAP t1/2’s from very short, for EGFP-FAK (7 ± 2.1 s) 
and EGFP-zyxin (12 ± 2.5 s), to intermediate, for EGFP– 
-actinin (36 ± 0.5 s), and to very long, for EGFP-vinculin (80 ± 
2.9 s), which is longer than previous reports in other cell types 
(Chandrasekar et al., 2005; Möhl et al., 2009; Wolfenson  
et al., 2009). In addition, EGFP-vinculin often did not exhibit 
complete fluorescence recovery after 300 s (Möhl et al., 2009;  
unpublished data), suggesting the presence of a stably bound 
fraction in adhesions. Thus, different adhesion proteins possess 
highly variable adhesion-binding stability, which is independent 

Figure 3.  Vinculin is stably bound in adhesions. EGFP fusion proteins localized to adhesions were subjected to FRAP. (A) Sample fluorescence recovery curves for 
vinculin, -actinin, talin 1, paxillin, FAK, and zyxin in single adhesions. Note different x-axis scales in left and right plots; fits are shown as solid lines. (B) Half-times 
of fluorescence recovery. Means are shown above each plot. Vcl, vinculin; Actn, -actinin; Pxn, paxillin; Tln, talin 1; Zyx, zyxin. n = number of adhesions.
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relevant contexts of ECM stiffness mechanosensing and adhe-
sion maturation during cell migration.

The paxillin–vinculin interaction is modulated 
by myosin II activity
Our results show that the vinculin-binding proteins talin 
(Jones et al., 1989) and paxillin (Brown et al., 1996) are re-
cruited to adhesions independent of myosin II, suggesting that 
they could serve as myosin II–sensitive scaffolds for recruit-
ment of subsequent proteins. To determine whether vinculin 
interactions with talin or paxillin were altered by myosin II  
activity, we assayed their associations by immunoprecipitation 
(IP) from MEF lysates prepared in the presence or absence of 

by their myosin II–dependent maturation (Riveline et al., 2001; 
Choi et al., 2008). MEFs were cotransfected with mApple- or 
EGFP-paxillin as a marker of nascent adhesions (Choi et al., 
2008) and EGFP- or mCherry-vinculin and imaged by time-
lapse TIRF microscopy (Fig. 4 E and Video 1). Quantitative 
analysis showed that the initiation of vinculin accumulation in 
adhesions lagged behind that of paxillin by 80 ± 40 s (n = 16 
FAs in four cells; range 35–180 s; Fig. 4 F; Choi et al., 2008). 
The lag in vinculin accumulation relative to paxillin occurred 
independently of fluorescent tag or order of image acquisition 
(unpublished data). Together, these results suggest that the re-
versible, myosin II–dependent recruitment of vinculin to adhe-
sions occurs in a range of cell types in the physiologically 

Figure 4.  Characterization of myosin II dependence of vinculin recruitment to adhesions. (A) Immunolocalization in human foreskin fibroblasts (HFF1) 
of vinculin (Vcl; green) and paxillin (Pxn; red) in untreated (control) or 20 µM blebbistatin (Blebb)-treated cells. Bar, 10 µm. Merged, magnified images 
of boxed regions are shown in the third column. Bar, 2 µm. n = number of blebbistatin-treated cells/number of control cells. (B) Effects of blebbistatin on 
adhesion localization of paxillin and vinculin in the noted cell types expressed as the ratio of mean fluorescence intensities within segmented adhesions of 
blebbistatin-treated relative to control cells. Mean ratios are shown above each plot. *, P < 0.02. Error bars indicate 95% confidence interval of the mean. 
(C) Area of individual adhesions from paxillin immunostaining in MEF cells in untreated control cells at specific times after treatment with 20 µM blebbistatin 
(15, 30, and 60 min) or washout of 20 µM blebbistatin into control media (15, 30, and 60 min w/o). Mean adhesion areas (micrometer squared) are 
shown next to each box plot. Red symbols indicate the outliers at more than three interquartiles; blue symbols indicate a 95% confidence interval of the 
mean. n = number of adhesions. (D) Immunolocalization of paxillin (red) and vinculin (green) and fluorescent phalloidin staining of actin filaments in cells 
after treatment (Treat) for 60 min and washout (blebbistatin w/o) for 15, 30, and 60 min of 20 µM blebbistatin. Merged images are shown in the fourth 
column, and boxed regions are magnified in the fifth column. Bars: (fourth column) 10 µm; (fifth column) 2 µm. (E) Images from a time-lapse dual-color 
TIRF series of EGFP-paxillin (GFP-Pxn) and mCherry vinculin (mCherry-Vcl) during adhesion formation and growth in a migrating MEF cell. Time is shown 
in seconds. Bar, 2 µm. (F) Normalized fluorescent protein intensity (green, paxillin; red, vinculin) in the adhesion shown in E. Horizontal lines show the 
value of two times the standard deviation of the normalized background fluorescence (2× SD Vcl or Pxn Bckg); note that this is higher for mCherry because 
it is much dimmer than EGFP. Arrows indicate the time when the intensity rose above these values. The time difference between arrows indicates lag time 
between the accumulation of EGFP-paxillin and mCherry-vinculin at the adhesion (Pxn-Vcl lag).
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(Zaidel-Bar et al., 2007b), suggest that contractility enhances 
paxillin phosphorylation on Y31/118.

To determine how myosin II–mediated effects on paxillin 
phosphorylation correlated with paxillin protein interactions, 
we performed paxillin IPs from lysates prepared in the presence 
and absence of blebbistatin and probed for interacting proteins. 
First, probing paxillin IPs with anti-PY antibodies showed 
that myosin II inhibition decreased the level of total paxillin 
PY (31%) by a similar amount as its reduction of pY31 and 
pY118 (Fig. 6 D) relative to controls. There was also a similar 
reduction to 12% and 66%, respectively, in the association of 
either FAK or Crk with paxillin in IPs from blebbistatin-treated 
cells compared with controls (Fig. 6 D). In contrast, myosin II 
inhibition increased the paxillin–-Pix interaction to 159% of 
control (Fig. 6 D) and did not effect the adhesion localization 
of -Pix (Fig. S4). Together, these results show that myosin II– 
dependent modulation of paxillin interactions correlates with its 
regulation of paxillin phosphorylation.

Integrin engagement promotes FAK recruitment to adhe-
sions and activation by autophosphorylation on Y397 (pY397-
FAK; Burridge et al., 1992; Shi and Boettiger, 2003). Thus, we 
examined the effects of myosin II activity on FAK Y397 phos-
phorylation. Immunoblotting of lysates revealed, similarly to 
ROCK inhibition in other cell types (Torsoni et al., 2005), that 
blebbistatin treatment or plating cells on compliant substrates 
substantially reduced pY397-FAK relative to control (Fig. 6 G 
and Fig. S1). Immunofluorescence showed a blebbistatin- 
induced reduction in pY397-FAK that mirrored the reduction of 
total FAK in adhesions (Fig. 2, B and C; Fig. 6, E and F; and 
Fig. S1). In contrast, the activity of Src, another kinase known 
to act with FAK on paxillin Y31/118 (Turner, 2000), was not  
affected by blebbistatin treatment, as assayed by immunoblot-
ting for dephosphorylation on Src Y527 (Fig. 6 G; Kmiecik and 
Shalloway, 1987). Thus, full FAK adhesion association and  
activation requires myosin II contractility.

Because phosphorylation of Y31/118 on paxillin is 
regulated by FAK (Bellis et al., 1995; Schaller and Parsons, 
1995), our results suggest that the blebbistatin-induced effects 
on paxillin phosphorylation could be mediated through FAK. 
Indeed, by immunoblotting cell lysates, we found that paxillin 
phosphorylation was at similar levels in lysates of cells treated 
with blebbistatin, 10 µM of a small molecule FAK inhibitor (FAKi; 
PF271; Roberts et al., 2008), or both (Fig. 6 G and Fig. S5 A). In 
addition, inhibition of Src by PP2 treatment did not further de-
crease the paxillin phosphorylation by blebbistatin but curiously 

blebbistatin. IP with antivinculin antibodies followed by prob-
ing for coprecipitation of talin or paxillin revealed association 
of both talin and paxillin with vinculin in controls (Fig. 5 A). 
Surprisingly, the coprecipitation of paxillin with antivinculin 
antibodies was markedly reduced in lysates of blebbistatin-
treated cells. Similarly, although vinculin was present in IPs 
performed with antipaxillin antibodies from controls, vinculin 
in paxillin IPs from blebbistatin-treated cells was substantially 
reduced (Fig. 5 B). In contrast, the level of talin in the vinculin 
IPs (or vinculin in talin IPs) was not changed by myosin II  
inhibition (Fig. 5, A and C) in spite of the reduction in vinculin 
but not of talin in adhesions of blebbistatin-treated cells, sug-
gesting that these proteins form a complex in the cytoplasm. 
IP with a nonrelated antibody (anti-EGFP) did not coprecipi-
tate vinculin (see Fig. 8 K), paxillin, or talin (not depicted). 
Therefore, in cell lysates, the paxillin–vinculin interaction 
is reduced by myosin II inhibition, whereas effects on talin– 
vinculin interaction are not detected. Thus, we focused further 
study on the role of paxillin in myosin II–mediated recruit-
ment of vinculin to adhesions.

Myosin II activity promotes FAK-mediated 
paxillin phosphorylation
Because paxillin phosphorylation is critical to cell migration 
and adhesion maturation (Petit et al., 2000; Zaidel-Bar et al., 
2003, 2007b; Webb et al., 2004; Nayal et al., 2006; Bertolucci 
et al., 2008), we examined its myosin II dependence. We first 
examined tyrosines 31 and 118 (pY31-paxillin and pY118-
paxillin), whose phosphorylation mediates Crk interaction 
(Schaller and Parsons, 1995) yet also are close to the LD1 and 
LD2 domains that are in part responsible for FAK and vinculin 
binding (Brown et al., 1996). Immunoblotting cell lysates with 
phosphospecific antibodies showed that blebbistatin reduced 
the level of pY31- and pY118-paxillin to 45 and 24% of control 
(Fig. 6 A). In contrast, phosphorylation at serine 273, which is 
thought to mediate paxillin’s interaction with the Rac1 regula-
tory complex of -Pix, Pak, and Pkl/Git1 (Turner et al., 1999; 
Nayal et al., 2006; Schmalzigaug et al., 2007), was slightly  
enhanced to 127% of control by blebbistatin treatment (Fig. 6 D). 
Immunofluorescence and quantitative image analysis revealed 
a blebbistatin-induced slight reduction in pY31- and pY118- 
paxillin to 69% and 81% of that in control adhesions, respec-
tively, similar to the blebbistatin-induced reduction in total 
paxillin in adhesions to 65–91% of controls (Fig. 2, B and C; 
and Fig. 6, B and C). These data, together with previous results 

Figure 5.  Effects of myosin II inhibition on 
the interactions between vinculin, paxillin, and 
talin. IPs were performed from lysates of un-
treated control MEFs (control) or MEFs treated 
with 20 µM blebbistatin (Blebb) followed by 
immunoblot analysis. (A) IP with anti-vinculin 
(Vcl) antibodies, immunoblot with anti-vinculin 
and antipaxillin (Pxn; left), or anti–talin 1 (Tln; 
right) antibodies. (B) IP with antipaxillin anti-
bodies and immunoblotting with antivinculin 
antibodies. White lines indicate that interven-
ing lanes have been spliced out. (C) IP with  
anti–talin 1 antibodies and immunoblotting with  
antivinculin antibodies are shown.
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likely express the closely related paxillin homologue Hic-5 
that also binds vinculin (Thomas et al., 1999). Therefore, we 
performed knockdowns of paxillin and/or Hic5 by siRNA and 
assayed for the presence of vinculin in adhesions. 48 h after 
transfection of MEFs with oligonucleotide pools, the levels 
of paxillin and Hic-5 protein were reduced by 45% and 75%, 
respectively, with even lower levels in the double knockdown 
(75% for both paxillin and Hic5; Fig. 7 A). Immunofluores-
cence revealed that cells with reduced levels of either paxillin, 
Hic5, or both were small and poorly spread (Fig. 7 B). Double- 
depleted cells displayed marked reduction in talin or PY- 
containing adhesions except in cell regions containing residual 
clustered paxillin/Hic5 (Fig. 7 C). Instead, talin in depleted 
cells was evenly distributed in dim, diffraction-limited punctae, 
PY staining was reduced, and interference reflection micros-
copy confirmed the absence of localized areas of close contact 
with the substrate in paxillin/Hic5-depleted cells (unpublished 
data). Immunolocalization of vinculin revealed a similar  
localization as talin in the double-depleted cells (Fig. 7 C).  
In addition, we were unable to find cells completely lacking 

restored some blebbistatin-induced FAK inactivation (Fig. 6 G). 
Together, these data suggest that myosin II–dependent recruit-
ment and activation of FAK at adhesions mediates phosphor-
ylation of paxillin on Y31/118.

Paxillin Y31/118 phosphomimic is 
sufficient to promote paxillin–vinculin 
interaction and vinculin recruitment  
to adhesions
We next sought to determine the requirement for paxillin and its 
regulation by phosphorylation in the recruitment of vinculin to 
adhesions. Unfortunately, because cells lacking talin have no 
adhesions (Zhang et al., 2008), talin’s role in vinculin adhesion 
recruitment cannot be determined. In contrast, the requirement 
for paxillin in vinculin adhesion recruitment is controversial 
because vinculin is present in adhesions of embryonic stem 
cells lacking the paxillin gene (Hagel et al., 2002), whereas 
in smooth muscle cells, vinculin recruitment to the mem-
brane requires paxillin (Opazo Saez et al., 2004). However, 
cells in these previous studies, as well our MEFs (Fig. 7 A),  

Figure 6.  Myosin II promotes tyrosine phosphorylation and interaction of paxillin, vinculin, and FAK. (A) Immunoblot of lysates of untreated MEF cells 
(control) and cells treated with 20 µM blebbistatin (Blebb) using antibodies specific to paxillin (Pxn) or pY31, pY118, or pS273 paxillin (PxnY31, PxnY118, 
and PxnS273). Numbers above each blot represent the mean of quantified Western blots ± 95% confidence interval (n = 4 experiments). (B) Immunolocal-
ization of paxillin (green) and pY31 or pY118 paxillin (red) in untreated control cells and cells treated with 20 µM blebbistatin. The third columns show 
merged images Bar, 2 µm. (C) Effects of blebbistatin on adhesion localization of pY31 and pY118 paxillin in adhesions, expressed (also in F) as the ratio 
of mean fluorescence intensities within segmented adhesions of 20 µM blebbistatin-treated relative to control cells. Antibody competition for similar epitopes 
precluded comparison with effects of blebbistatin on total paxillin level in the same cells. Mean fluorescence ratio is shown above each plot. n = number of 
blebbistatin-treated cells/number of control cells (also in F). (D) IP with antibodies to paxillin (left and top right) or Crk (bottom right) from lysates of untreated 
control MEFs or MEFs treated with 20 µM blebbistatin followed by immunoblotting with antibodies to paxillin, PY epitopes (P-Tyr), pY31 paxillin, FAK, -Pix, 
or Crk. Numbers above each blot represent the mean of quantified Western blots ± 95% confidence interval (n = 3 experiments). (E) Immunofluorescence 
analysis of untreated control cells or cells treated with 20 µM blebbistatin using antibodies specific to pY397 FAK (red) or PY epitopes (green). Merged 
images are shown in the third column. Bar, 2 µm. (F) Effects of 20 µM blebbistatin on adhesion localization of pY397 FAK and PY in adhesions quantified 
from immunofluorescence images. *, P < 0.02. (G) Immunoblot of lysates of untreated MEF cells, cells treated with 20 µM blebbistatin, or a combination of 
20 µM blebbistatin and either 10 µm PP2, 10 µm PF271 (FAKi), or all three using antibodies specific to paxillin, pY31, pY118 paxillin, FAK, pY397 FAK, 
Src (c-Src), or pY527 Src (cSrcY527). Error bars indicate 95% confidence interval of the mean.
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We next sought to determine the requirement for paxillin 
phosphorylation in vinculin recruitment to adhesions. To deter-
mine whether enhanced phosphorylation could induce vincu-
lin recruitment to adhesions in the absence of contractility, we 
promoted tyrosine phosphorylation in blebbistatin-treated cells 
by inhibition of tyrosine phosphatases with 100 µM sodium 
orthovanadate (Na3VO4) or 10 µM phenylarsine oxide (unpub-
lished data). Phosphatase inhibition reversed the blebbistatin-
induced decrease in pY31-paxillin and pY397-FAK (Fig. 8 A). 
In addition, IP and immunofluorescence analysis revealed that 
Na3VO4 treatment rescued the blebbistatin-induced reduction 
in vinculin–paxillin coprecipitation and vinculin localization in 
adhesions, although it did not rescue other effects of bleb-
bistatin, including reduction in adhesion size and loss of central 
adhesions (Fig. 8, B–D).

To determine whether paxillin phosphorylation was suffi
cient to promote vinculin recruitment to adhesions or whether 
additional myosin II–dependent processes were required, we 
overexpressed EGFP-tagged paxillin mutants that were either 
unphosphorylatable (Y31/118F) or that mimicked phosphoryla-
tion charges (Y31/118E) at Y31/118 (Zaidel-Bar et al., 2007b) 
and examined their effects on the blebbistatin sensitivity of  
vinculin localization to adhesions. This revealed colocal-
ization of both EGFP-tagged paxillin mutants with vinculin  
at adhesions of control cells (Fig. 8 E), with Y31/118F EGFP-
paxillin inducing larger adhesions and the Y31/118E mutant in-
ducing smaller adhesions (Zaidel-Bar et al., 2007b). Vinculin 
localizing in Y31/118F EGFP-paxillin–containing adhesions 
suggests either a parallel pathway for vinculin recruitment 
(e.g., talin) or the effects of endogenous paxillin. Importantly, 
expression of the Y31/118E EGFP-paxillin mutant rescued 
the blebbistatin-induced reduction of vinculin but not zyxin 
or -actinin in small, peripheral adhesions (compare Fig. 8, 
E–H; with Fig. 2, B and C). FRAP analysis of mCherry vin-
culin in adhesions of cells expressing wild-type or Y31/118E 
EGFP-paxillin revealed long t1/2’s of fluorescence recov-
ery (Fig. 8 I). In contrast, mCherry vinculin in adhesions of 
blebbistatin-treated cells expressing Y31/118E EGFP-paxillin  
displayed a significant reduction in FRAP t1/2 (Fig. 8 I), in-
dicating a labile vinculin–adhesion association. In contrast, 
neither the Y31/118F EGFP-paxillin mutant nor vinculin  
localized to PY-containing adhesions in blebbistatin-treated 
cells (Fig. 8 E). Corroborating the results of immunofluores-
cence, IP from lysates of blebbistatin-treated cells using anti-
GFP antibodies showed increased coprecipitation of vinculin 
with EGFP-tagged Y31/118E paxillin compared with EGFP-
tagged wild-type or Y31/118F paxillin (Fig. 8 K). Expression 
of both mutant and wild-type EGFP-tagged paxillins reduced 
the level of endogenous paxillin phosphorylation in both 
untreated and blebbistatin-treated cells by similar amounts, 
possibly by competition between endogenous and expressed 
proteins for cellular kinases (Fig. 8 J). Expression of EGFP 
conjugates of any of the single paxillin tyrosine mutants (Y31E, 
Y31F, Y118E, and Y118F) gave partial effects compared with 
the double mutants in both immunofluorescence and IP assays 
(unpublished data). Together, these results suggest that paxil-
lin Y31/Y118 phosphorylation is sufficient for promoting the 

paxillin or Hic5, and no changes in adhesions were seen after 
treatment with scrambled siRNA controls (unpublished data). 
These results suggest that paxillin and/or Hic5 are necessary 
for formation of discrete substrate adhesions, which precludes 
our ability to determine the requirement for these proteins in 
vinculin recruitment to adhesions.

Figure 7.  Requirement for paxillin and Hic5 for adhesion formation.  
(A) Immunoblot analysis of paxillin (Pxn; left), Hic5 (right), and tubulin (Tub; 
both) in lysates of mock-transfected cells or cells transfected with siRNA 
pools against paxillin, Hic5, or both. (B) Immunofluorescence localization 
of Hic5 (red), paxillin (red), and vinculin (Vcl; green) in control cells or cells 
transfected with siRNA pools against paxillin or Hic5. (C) Immunofluores-
cence localization of paxillin (red) and vinculin, talin 1 (Tln), or PY epitopes 
(P-Tyr; green) in control cells or cells transfected with siRNA pools against 
both paxillin and Hic5. (B and C) Merged images of boxed regions are 
magnified in third columns. Bars, 2 µm.
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Figure 8.  Paxillin Y31/118 phosphorylation is sufficient for promoting paxillin–vinculin interaction and labile vinculin recruitment to adhesions.  
(A) Immunoblot analysis of lysates of untreated (control) and cells treated with 20 µM blebbistatin (Blebb) or with 20 µM blebbistatin and 100 µM Na3VO4 
using antibodies specific to paxillin (Pxn), pY31 paxillin, pY397FAK, or FAK. (B) Comparison of cells treated with 20 µM blebbistatin or 20 µM bleb-
bistatin and 100 µM Na3VO4 and immunolabeled with antibodies to paxillin (red) and vinculin (Vcl; green). Bar, 2 µm. (C) Effects of Na3VO4 on vinculin 
localization in adhesions of blebbistatin-treated cells, shown (also in G and H) as the ratio of mean fluorescence intensities within segmented adhesions 
of 20 µM blebbistatin-treated cells relative to non–blebbistatin-treated cells in the presence and absence of additional Na3VO4. The mean fluorescence 
ratio is shown above each plot. (D) Antipaxillin IPs from lysates of untreated control or cells treated with either 20 µM blebbistatin, 100 µM Na3VO4, and 
20 µM blebbistatin or 100 µM Na3VO4 alone followed by analysis by PAGE and immunoblotting with antibodies to vinculin, paxillin, or PY epitopes.  
(E–I) EGFP-conjugated paxillin (Pxn-GFP wt) or paxillin bearing mutations of tyrosines 31 and 118 to phenylalanines (Pxn Y31/118F) or glutamic acids 
(Pxn Y31/118E) were expressed in MEFs and either treated with 20 µM blebbistatin or not. (E) Images of cells expressing EGFP-conjugated paxillin mutants 
(green) and immunolocalization of vinculin (red) or PY epitopes (P-Tyr; red). Right columns show (also in F) merged, magnified images of the boxed regions 
Bar, 2 µm. (F) Images of EGFP-conjugated Y31/118E paxillin (green) and immunolocalization of zyxin (Zyx; red) or -actinin (Actn; red) in cells treated 
with 20 µM blebbistatin. (G) Effects of blebbistatin on adhesion localization of vinculin and paxillin in cells overexpressing wild type (WT) or mutant (Y31/
118E) paxillin-EGFP. (H) Effects of blebbistatin on adhesion localization of zyxin, -actinin, and paxillin in cells overexpressing Y31/118E paxillin-EGFP. 
(I) FRAP analysis of mCherry-vinculin. mCherry-vinculin was expressed alone (control) or together with EGFP conjugates of wild-type or Y31/118E paxillin 
in untreated cells or cells treated with 20 µM blebbistatin (+Blebb), and FRAP was performed of the mCherry vinculin fraction in adhesions. Half-times of 
mCherry vinculin fluorescence recovery. Means are shown above each plot. n = number of adhesions. (J) Immunoblots of lysates of blebbistatin-treated (B) 
or untreated (C) cells that had been mock transfected or transfected with the EGFP-paxillin mutants and probed with antibodies to paxillin, pY31 paxillin, or 
tubulin. (K) Anti-GFP immunoprecipitates from MEFs expressing EGFP-tagged paxillins and either untreated (C) or treated with 20 µM blebbistatin (B) and 
probed by immunoblotting with antibodies to vinculin and GFP. Quantification of blots is shown below. WB, Western blot. *, P < 0.02. Error bars indicate 
95% confidence interval of the mean. (C, G, and H) n = number of blebbistatin-treated cells/number of control cells.
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results suggest that paxillin may be a critical protein, possibly 
in addition to talin, in the myosin II–dependent recruitment of 
vinculin to adhesions in cells.

This study also reveals a currently unknown role for 
paxillin phosphorylation in regulation of its interaction with 
vinculin in cells. We found that that in addition to vinculin, 
paxillin’s interactions with FAK and Crk are promoted by 
myosin II activity, protein interactions specific to regulation 
by paxillinY31/118 phosphorylation (Turner, 2000). This sug-
gests the interesting possibility that Crk signaling through 
paxillin to regulate transcription may be mechanosensitive. 
We also found that myosin II activity promotes phosphory-
lation of an activating tyrosine on FAK, which mediates the 
myosin II–dependent phosphorylation of paxillin on Y31 and 
Y118. Although reduction of contractility did not completely 
abrogate paxillin phosphorylation in adhesions, the phos-
phorylation of these residues is sufficient to promote paxillin- 
mediated recruitment of vinculin because phosphatase inhibi-
tion or overexpression of a phosphomimic promoted the paxillin– 
vinculin interaction and vinculin recruitment to adhesions 
independent of myosin II activity. We suggest that in nascent, 
low contractility adhesions, paxillin phosphorylation may be 
below a threshold required to accumulate substantial vinculin, 
with its labile binding to these sites as shown by FRAP (Fig. 8 I).  
As actomyosin contractility begins to mature adhesions, the 
increased FAK activity it promotes may amplify paxillin phos-
phorylation to the point that even low affinity vinculin binding 
is sufficient for visible adhesion accumulation.

Our results, together with those of others, support a 
speculative two-step “hand-off” model for myosin II–mediated 
vinculin adhesion recruitment and its role in adhesion matura-
tion. We suggest that nascent adhesions form by myosin II– 
independent talin recruitment to and activation of 1 inte
grin (Fig. 2; Tadokoro et al., 2003), which together with talin’s  
actin-binding activity (Jones et al., 1989) may promote for-
mation of initial ECM–integrin–talin–actin linkages (Jiang 
et al., 2003). Paxillin is also recruited to nascent, myosin II– 
independent adhesions by an unknown mechanism (Fig. 2; 
Webb et al., 2004; Choi et al., 2008), and paxillin/Hic5 and 
talin are all required for formation of adhesion clusters (Fig. 7;  
Zhang et al., 2008). Myosin II activity in an -actinin cross-
linked cytoskeleton (Choi et al., 2008) generates tension that 
is transmitted to nascent adhesions. Tension across the ECM– 
integrin–talin–actin linkage promotes engagement of second-
ary binding sites between 1 integrin and fibronectin to induce 
recruitment and activation of FAK (Friedland et al., 2009), 
which is coupled to FAK/Src-dependent phosphorylation of 
paxillin Y31/118 (Fig. 6; Zaidel-Bar et al., 2007b). pY31/118 
paxillin, with its newly revealed vinculin-binding site (Fig. 5), 
may cycle between adhesion-bound and cytosolic fractions, 
inducing labile vinculin recruitment to adhesions (Fig. 8). 
Subsequent to adhesion recruitment, activation of vinculin’s  
actin-binding activity by simultaneous proximity to talin, actin, 
and acidic phospholipids (Chen et al., 2006) induces activation 
and hand off of vinculin from labile paxillin binding to these 
other partners, enhancing vinculin’s binding stability to adhe-
sions (Figs. 3 and 8) and reinforcing the cytoskeleton–ECM  

paxillin–vinculin interaction and induction of a specific, labile 
association of vinculin with immature adhesions independent 
of myosin II activity.

Because our results showed that FAK is critical for 
Y31/118 paxillin phosphorylation, we finally sought to deter-
mine whether FAK activation is necessary or sufficient to  
induce the vinculin–paxillin interaction or vinculin recruit-
ment to adhesions independent of myosin II activity. Unfor-
tunately, this was difficult to assess because constitutively 
active FAK (1–100 FAK) does not target to adhesions and 
causes cell rounding (Schlaepfer and Hunter, 1996), whereas 
inhibition of FAK affects adhesion turnover (Ilić et al., 1995; 
Webb et al., 2004). Indeed, treatment of cells with FAKi did 
not alter coprecipitation of vinculin with paxillin or recruit-
ment of vinculin to paxillin-containing adhesions (Fig. S5). 
This is not surprising because inhibition of FAK or myosin II 
induces opposite adhesion phenotypes: FAK inhibition causes 
long-lived large adhesions (Fig. S5; Ilić et al., 1995), whereas  
myosin II inhibition promotes rapid turnover of tiny adhe-
sions (Fig. 1; Webb et al., 2004; Choi et al., 2008). Thus,  
although the myosin II–dependent vinculin–paxillin inter
action correlates with phosphorylation of FAK-regulated sites 
on paxillin, there are additional FAK-independent pathways 
to recruit vinculin to large and stable adhesions in the pres-
ence of cellular contractility.

Discussion
Our study has uncovered an important physiological role in 
adhesion maturation for paxillin in its interaction with the 
cytoskeletal adapter protein vinculin. To understand tension- 
mediated FA maturation, we sought proteins recruited to FAs in 
a myosin II–dependent manner and examined the mechanism of 
their myosin II–sensitive FA association. Using pharmacologi-
cal inhibition of myosin II and ECM compliance to modulate 
cellular tension, we show that paxillin, talin, and 1 integrin 
recruitment to adhesions is independent of myosin II activity, 
whereas adhesion association of FAK, zyxin, -actinin, and vin-
culin is promoted by myosin II contraction. We focused on the  
myosin II–dependent recruitment of vinculin to adhesions, show-
ing that it is reversible and occurs across a range of cell types and 
in the physiologically relevant contexts of myosin II–induced 
adhesion maturation during cell migration and ECM stiffness 
mechanosensing. Although previous studies correlated vincu-
lin accumulation to sites of applied tension on cells (Galbraith  
et al., 2002; Möhl et al., 2009), we show the first demonstra-
tion of myosin II–dependent vinculin adhesion association. By  
assessing the myosin II sensitivity of vinculin’s protein inter
actions in cell lysates, we show that the vinculin–paxillin 
interaction is promoted by signaling induced by myosin II 
contractility, whereas we did not detect myosin II–dependent 
changes in the vinculin–talin interaction. It was recently shown 
that stretching talin promotes increased vinculin binding in vitro 
(del Rio et al., 2009). The IPs used in our study bias detection 
of myosin-dependent changes that are preserved in cell lysates, 
such as covalent phosphorylation of paxillin, whereas cell lysis 
would clearly disrupt stretch activation of talin. However, our 
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and 1:20,000, respectively) for 1 h. Blots were washed three times with 
TBS-T. Protein bands were visualized using an ECL detection system (Milli-
pore) or fluorescent-labeled antibodies and imaging on a gel imaging  
system (Odyssey; LI-COR Biosciences). For analysis of ECL, digital images 
of Western blot bands were quantified with MetaMorph software (MDS  
Analytical Technologies) after performing local background subtraction 
around bands of interest.

IPs
MEF cells were plated in 15-cm tissue culture plates precoated with 5 µg/ml  
fibronectin and supplemented with 10% FBS for 16 h. Cells were treated 
with myosin II inhibitors (20 µM blebbistatin) for 1 h. For EGFP-paxillin 
mutants, EGFP-positive cells were cell sorted and collected by flow cytom-
etry and replated in dishes precoated with 5 µg/ml fibronectin after trans-
fection. Cells were harvested in lysis buffer, clarified by centrifugation, 
and protein in supernatants was quantified by the Bradford assay. For IP, 
supernatants (1.0 mg total protein for untransfected cells and 500 µg for 
EGFP-transfected cells) were precleared with anti–mouse or anti–rabbit 
IgG IP beads (TrueBlot; eBioscience), preclearing beads were pelleted, 
and supernatants were incubated with 1 µg primary antibody and rotated  
overnight at 4°C. The following day, the solution was incubated with  
30 µl protein A sepharose beads (TrueBlot) with rotation at 4° for 1 h. 
Beads were washed three times with lysis buffer and resuspended in 30 µl  
2× Laemmli sample buffer. Samples were analyzed by Western blotting 
using the appropriate antibodies.

Polyacrylamide substrates
Flexible polyacrylamide substrates were generated as previously described 
(Pelham and Wang, 1997). In brief, 22-mm coverslips were activated by 
treatment with 50% 3-aminopropyltrimethyloxysilane and 0.5% glutaralde-
hyde, and each treatment was followed by extensive double-distilled H2O 
washing. Activated coverslips were inverted on a freshly mixed solution 
of 0.04% bis/7.5% acrylamide to give an adhered gel with a stiffness of 
1.0 kPa. 8 µl of acrylamide solution was sufficient to obtain a 15–20-µm-
thick gel. Coverslips with attached gel substrates were washed in double- 
distilled H2O and spun dry using a custom-made coverslip spinner. To bind 
fibronectin, gel substrates were activated by 2 mg/ml sulfo-SANPAH with 
two 8-min UV exposures one inch from two 10-W, 254-nm UV bulbs (UVP). 
Activated, gel-bound coverslips were coated with 5 µg/ml fibronectin 
(EMD) incubated for 2 h at 37°C and washed three times with PBS.

Immunofluorescence
Coverslips with bound cells were fixed/permeabilized for 1 min at 37°C 
in 0.01% Triton X-100, 0.25% paraformaldehyde (Electron Microscopy 
Science), and 1 mg/ml phalloidin in cytoskeleton buffer (CB; 10 mM 
MES, 3 mM MgCl2, 138 mM KCl, and 2 mM EGTA) and fixed in 3% 
paraformaldehyde in CB for 20 min at 37°C. After fixation, cells were 
permeabilized with 0.25% Triton X-100 in CB. Free aldehydes were  
reacted with 0.1 M glycine for 5 min, and cells were washed three times 
for 10 min in TBS and blocked in blocking solution (2% BSA IgG free and 
protease free; Jackson ImmunoResearch Laboratories, Inc.) in TBS-T con-
taining Alexa Fluor 488 phalloidin (1:400; Invitrogen) for at least 1 h. 
Coverslips were incubated with primary antibodies diluted in blocking 
solution overnight in a humid chamber at 4°C. After primary antibody in-
cubation, cells were washed four times for 10 min in TBS-T and incubated 
with fluorophore-conjugated secondary antibodies (Jackson Immuno
Research Laboratories, Inc.) diluted 1:250 in blocking solution for 1 h, 
washed again, and mounted on a slide in mounting media (Dako) and 
sealed with nail polish.

Microscopy and image analysis
Fixed and immunolabeled cells were imaged on an inverted microscope  
system (Eclipse TE-300; Nikon; Wittmann et al., 2003) with a cooled charge-
coupled device (CCD; Orca II; Hamamatsu Photonics) using a 60× 1.4 NA 
Plan Apo PH objective lens (Nikon) for cells plated on glass or a 60× 1.2 NA  
Plan Apo violet-corrected objective lens (WI; Nikon) for cells plated on poly-
acrylamide substrates. Time-lapse imaging of cell migration was performed 
at 37°C on the same microscope using a 10× 0.5 NA PH Plan objective lens 
(Nikon) and 0.52 NA condenser (LWD; Nikon), and images were captured 
at 5-min intervals for 24 h. Dual-color time-lapse TIRF microscopy of EGFP 
and mCherry- or mApple-tagged proteins in living MEFs was performed at 
37°C in DME without Phenol red and supplemented with 10% FBS, 25 mM 
Hepes, and 10 U/ml oxyrase using a 100× 1.49 NA Plan objective lens 
(Nikon; Shin et al., 2010) and an inverted microscope system (TE2000E2; 
Nikon) with an evanescent field depth of 150 nm.

linkage. The now matured adhesion can transmit stronger 
forces (Galbraith et al., 2002) to promote adhesion turnover 
in cell migration (Webb et al., 2004; Zaidel-Bar et al., 2007b). 
High forces across the cytoskeleton–integrin link may induce a 
parallel pathway for vinculin recruitment by stretch activation 
of vinculin-binding sites in talin (del Rio et al., 2009).

Questions remain about the paxillin-mediated recruitment 
of vinculin to adhesions. Because vinculin does not contain  
PY-binding SH2 domains, it is not clear how paxillin phosphory
lation induces its interaction with vinculin or whether this inter-
action is direct. pY31/Y118 could induce a conformational 
change in paxillin that unmasks adjacent LD1 and LD2 domains 
involved in vinculin binding (Bertolucci et al., 2008). Addition-
ally, the alternate pathways for vinculin adhesion recruitment 
that occur when FAK is inhibited (Fig. S5) remain unknown. 
Future studies may help to clarify these and other questions.

Materials and methods
Cell culture, transfection, and reagents
MEFs were obtained from American Type Culture Collection and main-
tained in DME supplemented with 10% FBS (Invitrogen) at 5% CO2. For 
experiments, cells were plated on 22 × 22–mm #1.5 coverslips that had 
been coated with 5 µg/ml fibronectin (EMD) in PBS for 2 h at 37°C. Cells 
were plated at a low confluency (30–40%) for 16 h before experimental 
manipulations. Cells were transfected by nucleofector (Lonza) by using 
MEF1 solution and program T20. The following pharmacological inhibitors 
were used: 20 µM blebbistatin (Toronto Research Chemicals), 10 µM  
Y-27632 ROCK inhibitor (EMD), 10 µM Src inhibitor PP2 (EMD), 100 µM 
FAKi PF-271 (Roberts et al., 2008), 100 µM Na3VO4 (Sigma-Aldrich), and 
10 µM phenylarsine oxide (Sigma-Aldrich). The following antibodies were 
used: rabbit anti–pY118-paxillin, rabbit anti–pY31-paxillin, rabbit anti–
pY397-FAK, mouse anti-FAK, and rabbit anti–pY273-paxillin (Invitrogen); 
mouse anti-Hic5, mouse antipaxillin, and mouse anti-Crk (BD); rabbit anti-
paxillin (Santa Cruz Biotechnology, Inc.); mouse antitalin clone 84d, mouse 
antivinculin clone 4505, and mouse anti–-actinin (Sigma-Aldrich); anti-PY 
clone 4G10 (Millipore); rabbit anti–Src-pY527 (Signal Transduction); 
mouse anti-Src (provided by J. Brugge, Harvard University, Cambridge, 
MA); rabbit antizyxin (provided by M. Beckerle, Huntsman Cancer Insti-
tute, Salt Lake City, UT); mouse anti–-Pix (Millipore); and rabbit anti-GFP 
(Abcam). The following expression constructs were used: sources of EGFP 
conjugates of -actinin, talin, paxillin, FAK, and zyxin were described pre-
viously (Hu et al., 2007). EGFP-paxillin was obtained from R. Horwitz 
(University of Virginia, Charlottesville, VA) and mApple-paxillin, EGFP  
vinculin, and mCherry vinculin were provided by M. Davidson (Florida 
State University, Tallahassee, FL). The EGFP conjugates of paxillin and pax-
illin mutants were based on the original sequence for avian paxillin-EGFP  
(Laukaitis et al., 2001) but were generated by synthesis (Blue Heron  
Biotechnology) and included mutations rendering dead an internal transla-
tion site of avian paxillin as described previously (Tumbarello et al., 2005;  
Schneider et al., 2009).

Western blot analysis
Whole cell extracts from MEF cells were prepared in lysis buffer containing 
50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM EDTA, 5% glycerol, 1% Triton 
X-100, 25 mM NaF, and 2 mM NaVO4 supplemented with 1× protease  
inhibitor cocktail (Roche) and phosphatase inhibitor cocktails I and II 
(Sigma-Aldrich). Cells were freeze thawed twice in liquid nitrogen and 
clarified by centrifugation at 16,000 g. Proteins from supernatants were 
quantified by the Bradford method. 10 µg of proteins were mixed with an 
equal volume of 2× Laemmli sample buffer and separated by SDS-PAGE. 
After electrophoresis, proteins were electrotransferred to an immobilon-P 
membrane. For protein detection, membranes were blocked for 1 h at 
room temperature with 5% nonfat dry milk (wt/vol) or 3% BSA for tyrosine 
phosphorylation blots in TBS-T buffer (20 mM Tris, pH 7.6, 137 mM NaCl2, 
and 0.1% Tween-20 [vol/vol]) and incubated overnight at 4°C with the  
indicated antibodies. After primary antibody incubation, blots were 
washed three times with TBS-T (10 min each) and incubated with appropri-
ate HRP-conjugated or fluorescent-labeled secondary antibodies (1:5,000 
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1 integrin, zyxin, vinculin, -actinin, pY397 FAK, pY118 paxillin, or 
pY31 paxillin) of the same cell. The mean intensity of the fluorescence in 
FAs was background subtracted and averaged over several cells. 95% con-
fidence intervals were calculated for paxillin (or PY) and the FA proteins in  
control and blebbistatin-treated cells. The mean paxillin (or PY) or FA pro-
tein intensity of the adhesions in blebbistatin-treated cells was divided by 
the mean intensity of the same protein in adhesions in control cells to gener-
ate the fractional FA immunofluorescence signal change after blebbistatin 
treatment as reported in the figures. For vanadate treatment experiments, 
mean FA protein intensity in adhesions in the blebbistatin-treated cells was 
divided by the mean FA protein intensity in cells treated with both bleb-
bistatin and vanadate. Statistical significance (P < 0.02) was measured by 
a two-tailed Student’s t test between control and blebbistatin-treated cells. 
The metric that was tested for significance was the background-subtracted 
intensity of the FA component divided by the background-subtracted  
intensity of paxillin (or PY).

Online supplemental material
Fig. S1 shows that substrate compliance causes reduction of vinculin and 
FAK in adhesions and reduction of FAK phosphorylation. Fig. S2 shows 
FRAP analysis of EGFP-tagged adhesion proteins. Fig. S3 shows that 
myosin II–mediated vinculin recruitment to adhesions is cell type indepen-
dent. Fig. S4 shows that -Pix localization to adhesions is myosin II in-
dependent. Fig. S5 shows that pharmacological inhibition of FAK does 
not inhibit vinculin binding to paxillin or localization to adhesions. Video 1 
shows time-lapse TIRF images of EGFP-paxillin and mCherry-vinculin in 
an adhesion forming and growing at the leading edge of a migrating 
MEF cell. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200906012/DC1.
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