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Introduction
Cell migration is a complex and heterogeneous process exe-
cuted by all nucleated cell types at a given time window of their 
development. For most cells, including epithelial, stromal, and 
neuronal cells, migration phases are confined to morphogene-
sis and cease with terminal differentiation toward intact tissue 
to become reactivated only for tissue regeneration or neoplastic 
processes. For other cell types, such as leukocytes, migration is 
integral to their function and maintained throughout their life 
span. Some cell types migrate only in the context of a defined 
substrate, such as epithelial cells moving along a basement 
membrane but not through interstitial tissues, whereas other 
cell types, including leukocytes, are versatile, as they interact 
with and migrate within virtually any substrate present in the 
body. Thus, although the same basic process is executed (i.e., 
cell translocation along or through tissue structures), each cell  
type exerts migration in different contexts using distinct  
molecular repertoires and extracellular guidance cues. We here 

summarize extra- and intracellular molecular parameters that 
regulate cell migration and integrate them into a parameter 
“matrix” to better classify how cell migration modes are being 
both achieved and modulated.

The modes of cell migration
The mode of cell migration was originally classified based on 
the morphology of migration patterns. This terminology was 
then extended to include molecular parameters, such as cyto-
skeletal organization, the type of cell–matrix interaction and 
force generation, and the modification of the tissue structure 
imposed by migrating cells (Friedl et al., 1998b; Thiery, 2002; 
Friedl, 2004; Lämmermann and Sixt, 2009; Sanz-Moreno and 
Marshall, 2009). As main categories, cell move either individu-
ally (amoeboid or mesenchymal) or collectively (the migration 
of cohesive multicellular units; Fig. 1 and Table I; Friedl, 
2004). Although these terms are arguably arbitrary and the mo-
lecular discrimination between the certain modes is incom-
plete, they help to simplify and categorize an otherwise diffuse 
literature and allow dissection of the molecular machineries 
underlying each mode.

Amoeboid migration commonly refers to the move-
ment of rounded or ellipsoid cells that lack mature focal adhe-
sions and stress fibers (Friedl et al., 2001; Lämmermann and 
Sixt, 2009). There are two subtypes of amoeboid movement. 
The first is the rounded, blebby migration of cells that do not  
adhere or pull on substrate but rather use a propulsive, pushing 
migration mode (Fackler and Grosse, 2008; Sanz-Moreno and 
Marshall, 2009). The second occurs in slightly more elongated 
amoeboid cells that generate actin-rich filopodia at the leading 
edge that engage in poorly defined, weak adhesive interaction 
with the substrate (Fig. 1; Yoshida and Soldati, 2006; Smith  
et al., 2007). In a special case of amoeboid movement, terminally 
matured nonadhesive dendritic cells produce dynamic actin-rich  
dendrites, instead of blebs, at their leading edge that cause these 
cell to become entangled with the ECM substrate during migra-
tion (Gunzer et al., 1997; Lämmermann et al., 2008). Individual 
cells with high levels of attachment and cytoskeletal contrac-
tility develop mesenchymal migration, which involves focal-
ized cell–matrix interactions and movement in a fibroblast-like  
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yielding varying migration speeds, such as the fast migratory 
scanning of single leukocytes, the relatively slow invasive  
migration of fibroblasts into provisorial wound matrix, or, at 
the slowest end, the collective migration during organ forma-
tion (Table I; Friedl et al., 1998b).

Single-cell and collective migration modes serve mutually 
exclusive purposes during morphogenesis, tissue regeneration, 
and in pathological conditions. Collective cell migration is  
essential in building, shaping, and remodeling complex tissues 
and tissue compartments, such as epithelia, ducts, glands, and 
vessels, but also contributes to cancer progression by local inva-
sion (Alexander et al., 2008; Friedl and Gilmour, 2009). In con-
trast, single-cell migration allows cells either to cover local 
distances and integrate into tissues, such as neural crest cell mi-
gration, or to move from one location in the body to another and 
fulfill effector functions, such as immune cell trafficking (Friedl, 
2004; Teddy and Kulesa, 2004; Lämmermann and Sixt, 2009). 
The latter process is recapitulated during cancer metastasis to 
distant sites (Thiery, 2002). Although not all molecular determi-
nants of each migration mode are fully understood, some key 
parameters have been identified as “checkpoints” to either 
maintain a given migration type, or, by an increase or decrease 
of activity, initiate transitions.

Determinants of cell migration
The common process underlying all migration modes of nucle-
ated mammalian cells is polarized actomyosin-driven shape 
change of the cell body (Lauffenburger and Horwitz, 1996; 
Ridley et al., 2003; Keren et al., 2008). This basic program is 
regulated and “shaped” by several distinct yet interdependent 
physical and molecular parameters of the tissue and the cell  
itself that together determine how a cell migrates (Fig. 2). The 
extracellular environment strongly impacts migration type and 
efficiency by providing ECM ligands of different macromo-
lecular and structural organization, which includes dimension, 
density, stiffness, and orientation. In response to environmental 
determinants, the actomyosin cytoskeleton adapts in a dynamic 
manner and generates different geometries in space and time, 
ranging from flat and spread out to roundish, elongated, or multi
polar shapes (Grinnell, 2008; Keren et al., 2008). To transmit 
actomyosin-driven forces to surrounding tissue structures, the 
cell either develops actin-polymerization–driven protrusions 
that bind to adhesion sites of the tissue through adhesion recep-
tors (Yamada et al., 2003), or it utilizes poorly adhesive inter-
calation and propulsion (Paluch et al., 2006a). In both cases, 
subsequent to leading edge protrusion, actomyosin contraction 
leads to retraction of the cell rear and translocation of the cell 
body (Paluch et al., 2006a; Lämmermann and Sixt, 2009). The 
cyclic repetition of protrusion, interaction with the extracellular 
environment, and retraction of the cell rear result in cell move-
ment that, depending on the molecular repertoire of the cell, 
yields distinct migratory modes (Lauffenburger and Horwitz, 
1996; Friedl and Wolf, 2009). Additional parameters impacting 
the type and efficiency of cell migration are the availability of 
surface proteases that remodel the surrounding tissue (Wolf and 
Friedl, 2009), and whether the cells retain stringent, loose, or no 
cell–cell junctions (Friedl and Gilmour, 2009).

manner (Kaye et al., 1971; Maaser et al., 1999; Grinnell, 2008). 
The migration of individual cells that transiently form and  
resolve cell–cell contacts while moving along a common 
track is termed chain migration or cell streaming (Davis and 
Trinkaus, 1981; Teddy and Kulesa, 2004). Finally, the main-
tenance of stringent cell–cell adhesions can lead to partial or 
complete silencing of migration activity in cells inside a group 
yet supports cytoskeletal activity at outward edges or at basal 
cell–substrate contacts. The resulting collective migration occurs 
in the form of multicellular tubes, strands, irregularly shaped 
masses, or sheets (Vaughan and Trinkaus, 1966; Friedl et al., 
1995; Farooqui and Fenteany, 2005).

Most migration modes, although they can be observed in 
(mostly experimental) 2D environments, occur in vivo in the 
context of 3D tissue environments (Even-Ram and Yamada, 
2005). Conversely, in vivo, some migration modes are dedi-
cated exclusively to 2D environments. Epithelial keratocytes 
and keratinocytes migrate across flat 2D substrate using rapid 
spread-out cell gliding (Keren et al., 2008) that, if cell–cell 
junctions between the cells remain intact, form a collectively 
migrating 2D cell sheet (Vaughan and Trinkaus, 1966;  
Farooqui and Fenteany, 2005). In different cell types, these 
modes of migration are associated with different efficiencies 

Figure 1.  Cell morphologies, migration modes, and transitions. The  
nomenclature of interstitial migration modes is based on typical cell mor-
phology (rounded or spindle-shaped) and pattern (individual, loosely 
connected, or collective). Each migration mode is governed by a set of 
molecular mechanisms (see details in Table I and Fig. 2), the regulation of 
which can change the style of migration. Most widely studied examples for 
alterations of migration mode are the mesenchymal-to-amoeboid transition 
or the collective-to-individual transition. The thick gray arrows indicate the 
direction of migration.
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accommodate small tissue gaps or executes remodeling of the 
ECM structure by pericellular proteolysis (Maaser et al., 1999; 
Wolf et al., 2003a; Jiang and Grinnell, 2005).

ECM density and gap size. In vivo, interstitial tis-
sues greatly vary in structural organization, such as collagen 
content, fibrillar texture, fiber bundle thickness, and interfiber 
porosity. In vivo, migration efficiency is optimal at pore diame-
ters that match or range slightly below the diameter of polarized 
cells. If the tissue gaps exceed the cell size, migration rates  
decrease (Haston et al., 1982; Harley et al., 2008) because of a 
loss of most cell–fiber interactions until only very few or even a 
single fiber remain engaged with the cell body; the latter is 
termed “1D” migration (Doyle et al., 2009). Conversely, if pores 
range below the cell diameter, cells slow down and eventually 
may become trapped due to the physical hindrance (unpublished 
data; Haston et al., 1982; Harley et al., 2008). In response to 
extracellular confinement, migrating cells elongate to a spindle-
like shape and thereby stretch and reduce their cell diameter, 
whereas large pore sizes favor cell rounding, a hallmark of 
amoeboid migration (unpublished data; Fig. 2).

The deformability of the cell and its most rigid compart-
ment, the nucleus, is controlled by nuclear lamins A/C, which 
mechanically stabilize the nuclear membrane and potentially 
impact the minimum tissue gaps that can be transmigrated 
(Lammerding et al., 2006; Dahl et al., 2008). Besides shape 

ECM determinants
The ECM provides a structural and molecular frame for the 
moving cell body and thereby impacts the mode and efficiency 
of cell migration.

ECM dimension. Extracellular tissue structures en-
countered by migrating cells are either flat 2D sheets or 3D 
tissue networks. Cell migration across 2D surfaces occurs dur-
ing reepithelialization of wounds or the scanning of leukocytes 
along the inner blood vessel wall or inner epithelial surfaces 
(Farooqui and Fenteany, 2005). Hallmarks of 2D migration are 
the requirement of unilateral adhesion to the substrate, which 
provides stable-enough but transient attachment; a flattened, 
spread-out cell morphology guided by a leading lamellipod; 
and, due to the flat geometry of the substrate, a largely barrier-
free migration (Ridley et al., 2003; Farooqui and Fenteany, 
2005; Keren et al., 2008; Vitorino and Meyer, 2008). In con-
trast, when cells move through 3D interstitial tissue consisting 
of a network of interwoven collagen fibers, which impose space 
limitations against the moving cell body, their morphology un-
dergoes characteristic changes. First, spread-out morphology is 
abandoned in favor of a spindle-like shape; second, instead of 
lamellipodia formation, with its unilateral polarization to the 
underlying substrate, leading edge protrusion occurs by for-
mation of thin tiplike cylindrical pseudopodia that orient in 
three dimensions; and third, the cell either deforms its shape to  

Table I.  Different migration modes and selected determinants

Migration mode Cell types ECM determinants Cell determinants Related transitions References

Single
  Amoeboid, 

blebby
Zebrafish macrophage, 

some stem cells
Poorly adhesive; soft 
embryonic connective 

tissue; obligate 3D

Asymmetric bleb-rich cortical 
actomyosin cytoskeleton, low 
polarity; low migration speed 

(below 1 µm/min)

Blebby-to-pseudopodal 
transitions

Blaser et al., 2006; 
Yoshida and Soldati, 

2006

  Amoeboid,  
pseudopodal

Leukocytes, including  
dendritic cells; 
Dictyostelium  
discoideum

Loose primordial or  
mature connective tissue;  

2D or 3D

Poorly adhesive, no formation 
of focal adhesions; Rac-driven 

anterior protrusion with counter
balance by Rho/ROCK in other 

cell parts; relatively rapid  
migration (10 µm/min)

Amoeboid-to- 
mesenchymal  

transition

Yoshida and Soldati, 
2006; Lämmermann  

et al., 2008

  Mesenchymal Fibroblasts, neural crest 
cells, sarcoma cells, 

dedifferentiated cancer 
cells of different origin

Loose or dense primor-
dial or mature  

connective tissue;  
usually associated with 

fibrin or collagen  
remodeling

Moderately to highly adhesive; 
focal interactions with ECM; 

high contractility; high anterior 
Rac activity counterbalanced  

by Rho in other cell parts; slow  
migration (0.1–1 µm/min)

Mesenchymal-to- 
amoeboid transition; 

mesenchymal-to-
epithelial/collective 

transition

Wolf et al., 2003a, 
2007; Grinnell, 2008; 
Paňková et al., 2009; 

Thiery, 2002

Multicellular
  Chain migration, 

cell streaming
Neural crest cells,  

fibroblasts
Joint ECM tracks? Individual cells with temporary 

tiplike cell-cell contacts
Migration arrest and 

integration into  
terminal tissue

Davis and Trinkaus, 
1981; Kulesa and 

Fraser, 2000
  Collective Dictyostelium at slug 

stage, lateral line  
(zebrafish), border cells 
(Drosophila egg cham-
ber), sprouting vessels, 

many epithelial and 
other cancer types

Any 2D and 3D ECM 
environment, resulting  
in cohesive sheets or  
3D strands, tubes,  

clusters or amorphous 
masses

Intact and stable cell–cell  
adhesions; coordination of 
multicellular leading edge 

protrusion and rear retraction; 
cell–cell communication  

during migration

Collective-to-single cell 
transitions (epithelial/

collective-to-mesen-
chymal; collective-to-

amoeboid)

Hegerfeldt et al., 
2002; Thiery, 2002; 

Alexander et al., 2008; 
Friedl and Gilmour, 

2009

  Keratocyte-like Keratinocytes Obligate 2D surface  
or tissue

Persistent gliding-type  
migration of spread-out cells  

with broad continuous  
leading lamella cadherin-based 

cell–cell junctions

Not known Keren et al., 2008
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et al., 1994; Provenzano et al., 2008; Petrie et al., 2009).  
Although aligned fiber orientation in collagen-rich ECM does 
not seemingly impact cell shape (Provenzano et al., 2008), it 
favors multicellular streaming in chainlike patterns in 3D tissue 
(Friedl and Wolf, 2009) and migration of 2D cell sheets along 
tissue clefts (unpublished data).

In summary, different ECM environments provide an  
array of interconnected input parameters that modulate cell  
adhesion and cytoskeletal organization, and directly impact 
cell shape, guidance, and mode of migration.

Cell determinants
Cell–cell adhesion. A key determinant of how cells 

move is whether cell–cell junctions are retained or not, re-
sulting in either collective or single-cell migration, respec-
tively (Vitorino and Meyer, 2008; Friedl and Gilmour, 2009). 
Cell–cell adhesion is mainly mediated by cadherins, including  
E-cadherin in epithelial cells, VE-cadherin in endothelial cells, 
and N-cadherin in stromal cells (Ewald et al., 2008; Vitorino 
and Meyer, 2008; Friedl and Gilmour, 2009). As opposed to 
individually migrating cells, during collective migration, the 
rear of the front cell retains intact cell–cell junctions to the suc-
cessor cell, thereby mechanically holding the cells together and 
augmenting the efficiency of paracrine cell–cell signaling and 
multicellular coordination (Fig. 1). Coordinated cycles of pro-
trusion and rear retraction of the front cells as well as of cells 
inside the group that engage with underlying substrate lead to 
movement as a multicellular unit (Farooqui and Fenteany, 2005; 
Blanchard et al., 2009). If cell–cell junctions are intermittent or 
less stable, multicellular streaming in a loose tail-to-head fash-
ion results in the coordinated but individual migration of many 
cells through the tissue, with repetitive short-lived contacts 
between cells that are resolved and reestablished upon further 
migration (Fig. 1; Teddy and Kulesa, 2004). Lastly, if cell–cell 
contacts are absent, cells move independently in both speed and 
direction (Hegerfeldt et al., 2002). Thus, the presence of stable 
or transient cell–cell junctions, or their absence, determines 

adaptation, cells that can proteolytically cleave ECM struc-
tures counteract physical hindrance by enlarging pores and 
forming trails of variable caliber so they match their own  
diameters (Wolf et al., 2007). Thus, the ability of the cell to 
deform relative to the available space and to remodel tissues 
through proteolysis determines both the mode and efficiency 
of migration in 3D ECM.

Stiffness. ECM stiffness (synonymous with rigidity) or 
elasticity (synonymous with pliability), which can be measured 
as elastic modulus, depends on molecular properties of the  
tissue, including collagen content, fiber thickness, and the extent 
of intrafibrillar cross-links, which define the stability and de-
formability of the tissue scaffold (Shoulders and Raines, 2009). 
Cells detect matrix rigidity via integrin-mediated adhesions and 
downstream mechanosensor protein signaling (i.e., via talin and 
p130CAS; Giannone and Sheetz, 2006). Increased substrate 
stiffness reinforces cell protrusions at outward edges so that focal  
adhesions form and become reinforced by RhoA-mediated acto-
myosin contraction, ultimately leading to cell spreading, the 
generation of high-traction force, and elongated cell movement 
(Peyton et al., 2008; Ulrich et al., 2009). Conversely, soft matrix 
does not reinforce focal adhesion formation and cytoskeletal 
contractility; rather, it supports cell rounding (Ulrich et al., 
2009). Consequently, matrix rigidity stimulates directed cell  
migration, similar to chemotaxis, so that cells tend to migrate  
toward substrate of greater stiffness, a process termed durotaxis 
(Lo et al., 2000; Li et al., 2005; Isenberg et al., 2009).

Orientation. Connective tissue comprises a range of 
physical textures, ranging from loose and random to highly 
aligned structures (Petrie et al., 2009; Wolf et al., 2009). All 
mobile cells show a tendency to align in parallel along oriented 
structural discontinuities, such as at interfaces of muscle fibers, 
blood vessels, or ECM fiber strands and patterns created by the 
cells themselves (Provenzano et al., 2008; Petrie et al., 2009). 
Contact guidance along such structures is mediated by mecha-
nosensory integrins that, together with Rho/ROCK-mediated 
cytoskeletal stiffening, provide directional persistence (Dickinson  

Figure 2.  The tuning model of cell migration. An integrated multiscale model to combine multiple interdependent parameters that impact migration mode. 
Each parameter is experimentally testable individually; however, in most cases they are interconnected with others (see text for details). Approximated 
parameter profiles of selected migration modes are indicated (colored lines). Modulation by increasing or decreasing the magnitude of any parameter may 
impact the resulting migration mode as well as the input strength of coregulated parameters. The format of the tuning model mimics the popular display 
of a graphic equalizer, which is integral to modern media display programs (e.g., Windows Media Player or QuickTime); the graphic interface serves to 
adjust the intensity of different wavelengths of the phono output independently to modify the sound profile.
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filopodia, and lamellipodia that adhere to cell and ECM sub-
strates is directed by the small GTPases Rac and Cdc42 (Nobes 
and Hall, 1999; Sanz-Moreno and Marshall, 2009). Conse-
quently, high Rac activity conveys leading edge extension, 
elongated morphology, focal integrin engagement, and mesen-
chymal migration (Nobes and Hall, 1999; Sahai and Marshall, 
2003; Sanz-Moreno et al., 2008). Second, bleb-like protrusions 
that contain cortical actin filaments are nonadhesive or poorly 
adhesive but contribute to lateral anchoring (“elbowing”) of the 
cell to tissue structures during actomyosin-mediated rear retrac-
tion (Paluch et al., 2006a,b; Fackler and Grosse, 2008). In most 
cells, Rac-mediated protrusion of the leading edge is counter-
balanced by Rho/ROCK signaling, which controls actomyosin-
mediated retraction of the trailing edge. Together, they form 
a cyclic balance in distinct regions of the cell and contribute, 
concurrently, to the migration cycle (Ridley et al., 2003; Sanz-
Moreno and Marshall, 2009). High Rac activity generates cell 
elongation and mesenchymal migration, whereas active Rho in 
the presence of little or no Rac activity supports rounded cell  
shapes associated with amoeboid pseudopodal or blebbing  
migration, respectively (Sahai and Marshall, 2003; Sanz-
Moreno et al., 2008). Besides inducing cell protrusions, active 
Rac negatively regulates Rho/ROCK signaling and inhibits cell 
rounding, whereas active Rho/ROCK limits Rac, which inhibits 
cell extension and elongation (Sanz-Moreno et al., 2008).

The formation and elongation of cell protrusions during 
migration are further controlled by tubulins. Posttranslational 
tubulin acetylation supports high microtubule stability and is 
associated with mesenchymal movement, whereas microtubules 
composed of deacetylated tubulin are subject to enhanced depo-
lymerization by the microtubule-destabilizing factor stathmin 
and therefore support a rounded, amoeboid migration mode 
(Piperno et al., 1987; Belletti et al., 2008; Berton et al., 2009). 
Whether tubulin stability dictates cell shape by modulating to 
the balance between Rac and Rho activity or by other mecha-
nisms, such as delivery of cargo or a direct mechanical function, 
is unknown.

Mode of force generation. The force required to 
move a cell body forward is generated by two principal and 
often interdependent physical mechanisms: cell propulsion, 
which leads to forward pushing of the cell body; or traction 
force generated by pulling of an ECM substrate. A phase of actin  
polymerization–driven forward pushing of the plasma membrane 
is indispensible for leading edge protrusion, so it is included in 
most migration types (Lauffenburger and Horwitz, 1996). In 
adhesive cells, pushing then leads to local adhesion, cytoskel-
etal anchorage, and, in a second phase, focal adhesion matura-
tion and pulling on ECM substrate by actomyosin contraction 
(Ridley et al., 2003; Zhang et al., 2008). Pulling is proportional 
to adhesion strength and cytoskeletal contractility, such as in 
fibroblasts and myoblasts, to generate forces sufficient for sub-
strate contraction (Beningo et al., 2001; Miron-Mendoza et al., 
2008). In contrast, if leading edge protrusion is coupled to low 
adhesion force, amoeboid pseudopodal migration occurs at very 
low traction force, as in moving neutrophils (Smith et al., 2007; 
Wang, Y.-L., personal communication). On the very low end of 
adhesion and force generation, amoeboid blebbing cells tend to 

whether collective translocation, cell streaming, or single-cell 
migration, respectively, is being generated.

Cell–matrix adhesion. Cell adhesions to ECM ligands 
are predominantly generated by integrins via coupling to cyto-
skeletal and signaling proteins. The strength and turnover rates 
of cell attachments to the extracellular environment determine 
which cell shapes and forces are being generated during migra-
tion (Ridley et al., 2003). Distinct cell types use adhesive 
strength over different magnitudes, ranging from strong adhe-
sion by stromal fibroblasts or myoblasts (Huttenlocher et al., 
1996), to moderate adhesion of epithelial and endothelial cells 
(Zhang et al., 2006; Schober et al., 2007), to weak adhesion 
forces of rapidly gliding fish keratocytes and crawling leuko-
cytes (Friedl et al., 1998b; Keren et al., 2008; Lämmermann  
et al., 2008). High integrin expression levels are mandatory for 
high-attachment forces, but are also associated with relatively 
slow turnover of adhesion sites (Friedl et al., 1998b; Mc Henry 
et al., 2008) and, consequently, associated with slow migration 
(Palecek et al., 1997). As an underlying mechanism, integrins 
and downstream mechanotransducing adaptors, such as 
p130CAS, become activated with increased mechanical tension 
and, in turn, further strengthen focal adhesions and actin stress 
fiber formation (Tamada et al., 2004; Sawada et al., 2006). 
Strong cell–substrate adhesions thus promote cell contractility 
and the formation of elongated spread-out (2D) or spindle-
shaped (3D) morphologies in many cell types, including fibro-
blasts, smooth muscle cells, and neoplastic cells (Lauffenburger 
and Horwitz, 1996; Friedl et al., 1998b; Maaser et al., 1999;  
Jiang and Grinnell, 2005).

If cell adhesion is reduced to a moderate or low level, such 
as by interfering with the integrin-talin axis, focal adhesions and 
stress fibers do not form or do not reach full maturation (Zhang 
et al., 2008). As a consequence, the cells convert to a less elon-
gated or spread-out morphology, generate smaller lamellipodia 
and pseudopodia, and transmit limited adhesion strength toward 
the substrate (Zhang et al., 2008). Rapidly moving lymphocytes 
and neutrophils that still adhere to ECM and other ligands but 
do not form focal adhesions or stress fibers constitutively use 
the pseudopodal amoeboid type of movement (Friedl et al., 
1998a; Smith et al., 2007). 

At the very low end of cell adhesion strength, cells are 
unable to form unilateral attachments to 2D ECM substrate 
and thus fail to spread out, form lamellipodia, and move, 
whereas in a 3D environment, they move by amoeboid bleb-
bing or dendritic intercalation (Haston et al., 1982; Fackler and 
Grosse, 2008; Lämmermann and Sixt, 2009). Given such 
low adhesion capability, the mechanisms that generate force 
in this blebby (or dendritic) amoeboid translocation remain 
to be shown. Likely, the irregular cell shape maintained by 
cortical actin provides high cytoskeletal rigidity locally, 
which allows mechanical intercalation between anterior parts 
of the cell with the surrounding tissue while the rear part of 
the cell retracts (Blaser et al., 2006; Paluch et al., 2006a;  
Lämmermann and Sixt, 2009).

Cell protrusion and rounding. Cell protrusions 
control leading edge dynamics and the migration mode in at 
least two distinct ways. First, the protrusion of pseudopodia, 
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a discrete “on” or “off” manner. By increasing or decreasing 
their input, they “tune” how moving cells polarize and engage 
with encountered tissue substrate. Because all parameters act 
concurrently but at a different strength, each parameter profile 
(Fig. 2, colored lines) then generates a different type of migra-
tion. Whereas most molecular studies tend to address isolated 
parameters, the tuning model integrates several denominators 
in context and may help to understand cell migration as a multi
modal cell function.

Each component, although experimentally amenable as an 
individual parameter, is interdependent and positively or nega-
tively coregulated with other determinants. The density of  
fibrillar ECM is positively interconnected with stiffness and in-
versely proportional to pore size, so alterations of either param-
eter impacts the overall tissue geometry (unpublished data). 
Accordingly, integrin-mediated cell attachment to a deformable 
yet rigid substrate, but not to a soft substrate, enhances substrate 
tension and stiffness, which reinforces Rho-mediated traction 
force generation (Paszek et al., 2005; Peyton et al., 2008; Ulrich 
et al., 2009). Likewise, traction force generation requires suffi-
cient adhesion mediated by integrins, some Rac-mediated pro-
trusion, and Rho-mediated cytoskeletal contraction (Rhee and 
Grinnell, 2006). The physical tissue geometry is interdependent 
with protease acitivity of the cells; consequently, collective  
migration in 3D tissue depends on sufficiently high a priori po-
rosity or the cell-mediated proteolytic generation of macrotracks 
(Wolf et al., 2007). Therefore, alteration of a given parameter has 
likely consequences for other interconnected determinants.

Plasticity: tuning the mode of migration
At a given differentiation state, each cell type preferentially  
employs a particular “default” migration type, such as leuko-
cytes using amoeboid migration, stromal cells moving by a mes-
enchymal mode, or epithelial cell sheets moving collectively 
(Friedl, 2004). However, in recent years, it has become clear 
that naturally occurring or experimentally induced modifica-
tions of either the environment or cell properties may result 
in striking adaptation reactions that alter the migration mode 
rather than abrogating migration per se. Because any parameter 
may become altered in the course of migration—such as the 
transition from dense to loose connective tissue, modulation of 
adhesion receptor expression, or the availability of cytoskeletal  
adaptor proteins due to altered gene expression—each altera-
tion of parameter may prompt such secondary alteration of  
migration mode.

Because cell–cell junctions can form de novo and resolve 
again, individual and collective migration modes are intercon-
vertible (Friedl and Gilmour, 2009). If multicellular cohesion is 
weakened by the down-modulation of cell–cell junctions, indi-
vidual cells detach from the multicellular unit which, dependent 
on the molecular repertoire and environment encountered, dis-
seminate individually. Epithelial-to-mesenchymal transition is 
involved in many developmental processes and in invasive 
cancers, and leads to the delamination of spindle-shaped cells 
that use integrin-mediated force generation for tissue invasion 
either as single cells or by multicellular streaming (Thiery, 
2002; Carmona-Fontaine et al., 2008). Collective-to-amoeboid  

lack any attachment to 2D surfaces but rather float and oscillate 
on the spot (unpublished data; Paluch et al., 2006a). However, 
if included in a loose 3D ECM, such as a collagen matrix or 
matrigel, blebby cells that are deficient in pseudopodia or filo-
podia are still able to connect to the 3D substrate and generate 
movement, despite negligible attachment forces (Blaser et al., 
2006; Sanz-Moreno et al., 2008). Thus, whereas mesenchymal 
migration depends on alternating pushing/pulling cycles, amoe-
boid migration is mechanically equally complex and comprises 
stronger pushing combined with a small or completely absent 
phase of adhesive pulling of the substrate.

Protease functions. Depending on the deformability 
of the migrating cell and the size of gaps and trails available in 
the 3D tissue, cells proteolytically remodel surrounding ECM 
and generate gaps, a hallmark of mesenchymal migration; 
otherwise, they move without engaging proteases by filling 
available spaces with their cell body (Friedl and Wolf, 2003a, 
2009). In interstitial tissues, MT1-MMP is rate-limiting for 
collagen degradation, as it executes pericellular proteolysis of 
collagen fibers that physically impede the moving cell (Wolf 
et al., 2007; Sabeh et al., 2009). After cleavage, collagen  
fibers become displaced and realigned, which generates tube-
like matrix gaps and trails of least resistance (Friedl and Wolf, 
2008). In collagen-rich interstitial tissue, MT1-MMP is fur-
ther involved in the remodeling of already existing trails to 
even larger macrotracks, which then accommodate the collec-
tive invasion of multicellular strands (Wolf et al., 2007).

In contrast to mesenchymal cells that are usually large, 
smaller amoeboid leukocytes employ much faster movement 
that lacks signs of pericellular proteolysis of the 3D interstitial 
substrate (Friedl and Wolf, 2003a). A mechanism of coping with 
narrow trails is cell deformation and squeezing through the pores 
so that extracellular structures imprint into the cell body and 
form local zones of cell compression (Wolf et al., 2003b). If tis-
sue densities are high, such as in basement membranes or dense 
connective tissue, inhibition of pericellular proteolysis cannot be 
compensated by shape change; instead, cell bodies get stuck in 
narrow pores (Sabeh et al., 2004, 2009). Likewise, if proteolytic 
macropatterning is prevented by protease inhibition, collective 
cell invasion is ablated and only individual amoeboid dissemina-
tion persists (Wolf et al., 2007). Thus, proteolytic ECM remodel-
ing is obligatory in tissues in which cell caliber and deformability 
fail to match available gaps and trails.

The tuning model
Because of its physical and molecular modularity, cell migration 
must be viewed as a consequence of a continuum of states that 
are determined by cell mechanics and signaling events. These 
cellular properties are integrated by the cell or cell groups in a 
given tissue environment. The tuning model predicts that several 
parameters simultaneously control how a cell migrates and that 
their combined magnitudes impact which migration type a cell 
adopts (Fig. 2). With the exception of ECM dimension, which 
is either 2D or 3D, all other parameters are scalar; i.e., they 
can be absent or at low, intermediate, or high levels. Therefore, 
these parameters are assumed to be tunable and thereby control 
the migration mode and efficiency in a continuous rather than 
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yet they are also relevant to cell migration and function in 
physiological contexts, such as the delamination of cells dur-
ing morphogenesis and the distribution of stem cells or leuko-
cytes in tissues and organs (Blaser et al., 2006; Lämmermann  
and Sixt, 2009).

Outlook
The multiparameter tuning model integrates observations from 
many different cell types and experimental models. The model 
thus may be helpful to understand and experimentally test the 
adaptability of cell movement and its consequence for tissue 
formation and remodeling, particularly in morphogenesis and 
cancer metastasis. The model may further be a useful starting 
point for computational modeling of cell migration in differ-
ent contexts. Although the parameters and migration modes 
discussed here are best established for interstitial migration 
of cells in fibrillar collagen-rich tissues, they likely fail to  
sufficiently represent the movement of other cell types and 
tissue contexts. This may be the case particularly for cells of 
neural origin that predominantly move along scaffold tracks 
formed by other cells, rather than ECM, or cell trafficking 
across basement membrane during transendothelial migra-
tion or the early invasion of epithelial cancer. Likewise, com-
plex movements in ductal gland or vessel formation represent  
special cases with complex topography, such as lumen for-
mation and deposition of a basement membrane, which may 
require the inclusion of additional modules. Besides integrin-
mediated adhesion structures, special cases of cell–substrate  
interaction include cadherin- or ephrin-based cell–cell junctions 
that guide cell migration along cell scaffolds, and podosomes 
and invadopodia that degrade ECM underneath the cell body 
but not at leading edges. The contribution of these structures 
to force generation and the mode of migration remain to be  
established and, potentially, included in the model. Ultimately, 
although each parameter has its own contribution to how  
efficiently cells migrate, the model still lacks prioritization; that 
is, the importance of each input parameter relative to others still 
remains undefined. Therefore, future wet-laboratory and com-
putational studies will not only have to integrate additional or 
exclude existing determinants for special migration modes and 
contexts, but they also should take coregulated synergistic or 
antagonistic multiparameter modules into account.
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