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Introduction
Embryonic development is a fine-tuned interplay of rapid cell 
growth and differentiation. It is governed by signaling processes 
that are coordinated in a spatiotemporal manner through inter-
actions with cytoskeletal and scaffold proteins such as keratins 
in epithelia. However, the function of keratins in spatiotemporal 
scaffolding and signaling control is unclear. K7, -8, -18, and -19 
represent the first keratins during mouse development and begin 
to form a primary cytoskeleton at nascent desmosomes in the 
trophectoderm (Jackson et al., 1980). From then on, these kera-
tins are present in all embryonic and extraembryonic epithelia. 
Owing to their redundancy, it has not been possible to assign and 
discriminate their mechanical and signaling functions during 
embryo development and in tissue homeostasis (Hesse et al., 2000; 

Tamai et al., 2000; Jaquemar et al., 2003). The former is high-
lighted by previous gene knockout (KO) studies, which have ar-
rived at contradictory results (Baribault et al., 1993; Magin et al., 
1998; Hesse et al., 2000; Tamai et al., 2000; Jaquemar et al., 
2003). Deletion of K8 caused an embryonic lethal phenotype at 
embryonic day (E) 12.5, which is associated with placental mal-
functions caused by maternal TNF-induced apoptosis (Baribault 
et al., 1993; Jaquemar et al., 2003). Deletion of K18 permitted 
normal development because of the presence of K19, illustrat-
ing functional redundancy, at least for these two keratins (Magin 
et al., 1998). The combined deletion of K18/K19 and of K8/K19, 
which eliminated redundancy, caused fragility of giant tropho
blast cells followed by extensive hemorrhages, which led to 
death at E10 (Hesse et al., 2000; Tamai et al., 2000). This was 
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keratins, embryonic epithelia suffer no cytolysis and 
maintain apical polarity but display mislocalized desmo­
somes. All keratin-null embryos die from severe growth 
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brane in embryonic epithelia, which subsequently acti­
vates the energy sensor adenosine monophosphate 
kinase (AMPK). Analysis of the mammalian target of 
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tion upstream of mTOR signaling via GLUT localization 
and have implications for pathomechanisms and therapy 
approaches for keratin disorders and the analysis of 
other gene families.

Keratins regulate protein biosynthesis through 
localization of GLUT1 and -3 upstream of AMP 
kinase and Raptor

Preethi Vijayaraj,1,2,4 Cornelia Kröger,1,2 Ursula Reuter,1,2 Reinhard Windoffer,3 Rudolf E. Leube,3  
and Thomas M. Magin1,2

1Abteilung für Zellbiochemie, Institut für Biochemie und Molekularbiologie and 2Bonner Forum Biomedizin, Universität Bonn, 53115 Bonn, Germany
3Institut für Molekulare und Zelluläre Anatomie, Rheinisch-Westfälische Technische Hochschule Aachen Universität, 52074 Aachen, Germany
4Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215

© 2009 Vijayaraj et al.  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publica-
tion date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/187/2/175/1900514/jcb_200906094.pdf by guest on 02 D

ecem
ber 2025



JCB • VOLUME 187 • NUMBER 2 • 2009� 176

Figure 1.  Constitutive deletion of KtyII/ keratin gene locus. (A) Schematic representation of the keratin type II cluster. Green arrowheads identify type II  
keratin genes oriented in the direction of the tip. The pink arrowhead identifies the only type I keratin (Krt18) at the end of type II cluster. (B) 5-targeting 
vector (MHPN117k13; Adams et al., 2004). (C) 3-targeting vector (MHPP322c09; Adams et al., 2004). Gaps [GR] are introduced into the region of 
homology before targeting. (D) During homologous recombination, the gap is repaired. PCR primers to identify homologous recombinants spanned the gap 
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and the proximal vector sequences (Table S1). (E) Cre-mediated recombination between loxP sites in cis leading to deletion of the keratin cluster. Southern 
probes are indicated as bold bars in B–E. (F) Southern blot analysis of ES cell clones targeted at the 5 (i) and the 3 end (ii) with a probe that distinguishes 
BsrGI (B) and HincII (Hi) fragments in the WT and targeted allele, respectively. (G) Southern blot analysis of ES cells after Cre-mediated recombination 
using unique probes spanning the 5 and 3 hprt. Probes distinguish double-targeted 8.3-kb and recombined 4.9-kb HinDIII (H) fragments using the  
5 hprt probe (i) and double-targeted 14.3-kb and recombined 10.5-kb EcoRI (E) fragments using the 3 hprt probe (ii). (H) mRNA expression of keratins 
and vimentin (Vim) in E9.5 WT and mutant embryos. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a normalization control. (I) Immuno-
fluorescence of K8/ K18 desmoplakin (DP) on sections of E9.5 WT and KO embryos. Bars, 10 µm.

 

interpreted to indicate a primary mechanical function of kera-
tins, which is analogous to that seen in skin epidermis (Fuchs and 
Cleveland, 1998; Hesse et al., 2000; Tamai et al., 2000; Kim and 
Coulombe, 2007; Magin et al., 2007).

To systematically analyze keratin functions during em-
bryo development, we exploited the genomic organization of 
keratin genes. The mouse type I and II keratin families are clus-
tered on two contigs, which are located on chromosomes 11 and 
15, respectively (Hesse et al., 2001, 2004; Schweizer et al., 
2006). In this study, we describe mice lacking the type II gene 
cluster. Given that the assembly of keratin filaments from hetero
dimers requires one member from each family and that keratins 
are rapidly degraded in the absence of a dimerization partner, 
mice lacking the type II gene cluster should be devoid of the 
entire keratin multiprotein family.

Results and discussion
To test current hypotheses on keratin function in mouse devel-
opment, we used the Cre-loxP system (Ramírez-Solis et al., 
1995) to flox the type II keratin gene cluster spanning 0.68 Mb 
of the genome in mouse embryonic stem (ES) cells (Fig. 1 A; 
Hesse et al., 2004). Targeting constructs from the Mutagenic 
Insertion and Chromosome Engineering Resource (MICER; 
Adams et al., 2004) were engineered with gaps to aid in inser-
tional targeting (Fig. 1, B and C; and Fig. S1 A). Southern blot-
ting confirmed correct targeting at a frequency of 8% (Fig. 1,  
F and G; and Fig. S1 A). Empty 3 and 5 hprt vectors labeled for 
in situ hybridization against spread chromosomes from double-
targeted ES cell clones identified double-targeted clones in cis 
(Fig. S1 B). The floxed gene cluster contained all type II kera-
tins and the type I keratin Krt18, which with K8 forms the first 
keratin pair during embryonic development (Fig. 1 A; Lu et al., 
2005), but no other known genes, including microRNA genes.

Cre-mediated deletion of the keratin type II cluster (Fig. 1,  
D and E) did not affect ES cell pluripotency, and mice with a 
constitutive deletion of the keratin type II cluster (KtyII/) 
were generated. Deletion of all 27 keratin genes was confirmed 
by RT-PCR and immunofluorescence microscopy (Fig. 1, H and I; 
and Fig. 2). Consistent with the proteolytic sensitivity of type I 
keratins in the absence of their type II keratin binding partners, 
the sole embryonic type I keratin K19 was expressed at the 
mRNA but not at the protein level (Fig. 1 H and Fig. S1 D; 
Magin et al., 2007). Therefore, our mice lack all 54 mammalian 
keratins (Fig. 1 H). The type III intermediate filament protein 
vimentin, which is frequently up-regulated during epithelial-
mesenchymal transition after loss of keratin expression (Thiery, 
2002; Yang and Weinberg, 2008), was not up-regulated at the 
transcript or protein level, indicating that deletion of the KtyII/ 

cluster did not grossly perturb epithelial cell morphology or 
function (Fig. S2). In support, the expression of the constitutive 
chaperone Hsc70, which can bind keratins (Liao et al., 1997; 
Betz et al., 2006), was unaltered. The stress-inducible Hsp70 
was not detectable (see Fig. 4 A). Furthermore, activity of MAPK, 
as examined by Western blotting of candidate target proteins, 
appeared largely unchanged (see Fig. 4 C).

All KtyII/ mice died at E9.5 (Fig. S1 E). Because kera
tins maintain tissue integrity by interacting with desmosomes 
to provide intercellular adhesion, we investigated the gross  
appearance and histology of E9.5 embryos. Unlike previous single 
or double keratin KO mice, which suffered from cytolysis and 
hemorrhages (Baribault et al., 1993; Hesse et al., 2000; Tamai 
et al., 2000), KtyII/ embryos had intact embryonic and extra
embryonic epithelia (Fig. 3, A–F). These findings suggest 
that keratins have no essential mechanical function until this 
stage of mouse development and that the phenotype of previous 
keratin KOs may result from dominant-negative effects. Yet, the 
desmosomes in KtyII/ embryos were smaller and partially 
mislocalized (Figs. 1 I and 2, A and B), which is consistent with 
the involvement of keratins in desmosome assembly (Godsel 
et al., 2005). During epidermal differentiation, desmoplakin 
was reported to regulate microtubule organization through  
ninein (Lechler and Fuchs, 2005). Staining for ninein revealed a 
prominent localization along the plasma membrane of yolk sac 
tissue (not depicted) and at centrosomes in embryonic epithe-
lia (Fig. 2 C). Ninein-positive centrosomes retained their apical 
position in KtyII/ embryos (Fig. 2 C), which is in agree-
ment with unaltered -tubulin staining (not depicted). This is 
in contrast to a previous study (Ameen et al., 2001), indicating  
other and possibly compensatory mechanisms involved in centro-
some positioning. The localization of the adherens junction 
protein epithelial cadherin (E-cadherin) and the tight junction– 
associated proteins ZO-1 and occludin were highly similar 
in both genotypes of embryos, indicating that actin-associated 
adhesion complexes and the actin cytoskeleton (not depicted) 
maintain epithelial integrity and polarity (Fig. 2, D–F).

KtyII/ embryos exhibited a striking growth retardation, 
which started at E8.5 and was fully apparent 1 d later (Fig. 3, 
G–J). Before the onset of placenta formation at E9.5, the em-
bryo is fully dependent on the yolk sac for nutrient supply. The 
mammalian target of rapamycin (mTOR) C1 complex regulates 
protein synthesis by integrating growth factor signals and nutri-
ents. Stimulation of the mTORC1 complex up-regulates protein 
synthesis by phosphorylation of its downstream targets ribo-
somal protein S6 kinase (S6K) and eukaryotic initiation factor 
4E-binding protein 1 (4E-BP1; Wullschleger et al., 2006). We 
hypothesized that the embryonic mortality was caused by de-
fective energy metabolism in the yolk sac.
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more detailed analysis. Given that limited glucose supply is 
known to severely restrict embryo growth and to increase 
apoptosis (Schmidt et al., 2009) and that mTORC1 is nutri-
ent sensitive (Shaw and Cantley, 2006), we were prompted 
to investigate upstream regulators of mTORC1 that might 
depend on keratins.

Limited nutrition represses growth and protein bio
synthesis, and early mouse embryos predominantly rely on 
glycolysis (Pantaleon and Kaye, 1998). Therefore, we analyzed 
the AMP kinase (AMPK), the cellular energy sensor which is 
phosphorylated when AMP levels are elevated (Hardie, 2007). 
Phosphorylated (P) AMPK inhibits the mTORC1 complex  
through its binding partner Raptor (Gwinn et al., 2008). Using 
phosphospecific antibodies, we found increases of 20% in 

In a metabolic labeling experiment, analysis of 35S-labeled 
Met/Cys incorporation showed that protein biosynthesis was 
reduced by 48% in the yolk sac and by 45% in the em-
bryonic tissue of KtyII/ embryos (Fig. 3 K). Moreover, 
phosphorylation of the mTORC1 targets S6K and 4E-BP1 
was reduced (Fig. 4 D), and eIF2- phosphorylation was in-
creased (Fig. 4 B). mTORC1 activity is regulated by several 
mechanisms, among them sequestration through 14-3-3 pro-
teins. Previously, the skin keratin K17 was found to posi-
tively regulate protein biosynthesis and keratinocyte growth 
through 14-3-3–-mediated mTOR sequestration, suggest-
ing a distinct role of certain keratins in wound repair (Kim 
et al., 2006). Although we detected sufficient 14-3-3 protein 
by Western blotting, the small size of embryos prevented a 

Figure 2.  KtyII/ embryos show reduced and mislocalized desmoplakin, whereas adherens junctions and cell polarity are unaltered. (A and B) Double 
immunolabeling of keratin and desmoplakin (DP) on yolk sac indicates altered distribution and size of desmosomes in the presence (A) and absence (B) of 
keratins in yolk sac tissue. (C) Ninein part of the microtubule-organizing center complex at the centrosomes is located apically in WT (C) and KO embryonic 
intestine (C). (D) Note the apical localization of occludin, a transmembrane protein of tight junctions. (E) Antibody staining of the tight junction marker ZO-1 
in the yolk sac revealed no changes in WT (E) compared with KtyII/ (E) E9.5 embryos. (D and E) ZO-1 and occludin are located at the apical plasma 
membrane of the yolk sac and the intestine, respectively, indicating normal cell polarity. (F) Intact adherens junctions in mutants (F) and their WT littermates 
(F), as demonstrated by staining for E-cadherin (E-cad) in yolk sac tissues of E9.5 embryos. lu, lumen. Bars: (A–B and E–F) 10 µm; (C–D) 2 µm.

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/187/2/175/1900514/jcb_200906094.pdf by guest on 02 D

ecem
ber 2025



179KERATINS REGULATE TRANSLATION VIA GLUT AND AMPK • Vijayaraj et al.

These findings confirmed our hypothesis that nutrient short-
age, which can signal through AMPK, reduced protein syn-
thesis in KtyII/ embryos.

P-AMPK and 30% in P-Raptor (Fig. 4, E and F). Further-
more, we detected no change in phosphorylation of Akt, 
which is a positive regulator of mTOR signaling (Fig. 4 E).  

Figure 3.  KtyII/ embryos exhibit severe growth retardation and apoptosis, resulting from reduced protein biosynthesis, but maintain tissue integrity. 
(A–F) Semithin sections through WT (A–C) and mutant (D–F) embryos were stained with H&E. Note the tissue integrity in overview sections through complete 
E9.5 embryo in the WT (A) and the KO (D) mice. Higher magnifications of the visceral yolk sac (B and E) and embryonic intestine (C and F) from WT and 
KO embryos at E9.5 confirmed tissue integrity. (G–J) Whole mount photographs of WT (G and I) and mutant (H and J) embryos dissected from the yolk 
sac at E8.5 (G and H) and E9.5 (I and J). KtyII/ embryos were growth retarded by 50%. (K) Metabolic labeling of dissected WT and KtyII/ embryos 
and corresponding yolk sac tissues with 35S-labeled Met/Cys. (L) FACS analysis of apoptotic cells in WT and KO embryos. Apoptosis was analyzed with 
cleaved poly(ADP-ribose) polymerase (cPARP) staining, and epithelial cells were detected with E-cadherin (E-cad) labeling. Subsequently, the percentage of 
apoptotic epithelia cells was determined to be 10-fold increased in KO compared with WT embryos. *, P < 0.05; **, P < 0.005 (two-tailed t test). Error 
bars represent SEM. eb, embryonic blood; lu, lumen; m, mesothelium; ve, visceral endoderm. Bars: (A, D, and G–J), 100 µm; (B, C, E, and F), 10 µm.
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ever, KtyII/ embryos failed to respond to either treatment, 
indicating an unsuccessful rescue. Their P-AMPK levels were 
similar to those of deoxyglucose-treated WT embryos, and 
their total AMPK levels were unchanged (Fig. 4 G). These 
findings strongly suggest that keratins participate in the regu-
lation of cellular glucose uptake.

Next, we performed a biochemical rescue experiment in 
which glucose was added to isolated KtyII/ and wild-type 
(WT) embryos in ex vivo culture; the metabolic inhibitor 
deoxyglucose served as a negative control. In WT embryos,  
P-AMPK levels were decreased by 10% in 5 mM glucose and 
increased by 52% in deoxyglucose medium (Fig. 4 G). How-

Figure 4.  Depletion of keratins activates AMPK and Raptor as the result of impaired glucose transport. (A and C) 14-3-3, chaperones Hsc70/Hsp70 (A), 
and P (Thr)-MAPK/Cdk substrate levels (C) were found to be similar, comparing protein lysates of keratin WT and KtyII/ E9.5 embryos by immunoblot-
ting. (B and D) Detection of total and phosphorylated (P) proteins in protein lysates of keratin WT and KtyII/ E9.5 embryos by immunoblotting of three 
independent pools of embryo lysates. (E and F) E9.5 lysates were analyzed by Western blotting for changes in P-AMPK and Raptor in both genotypes. 
Total protein and phosphoprotein levels of AMPK and Raptor were quantified by densitometry and normalized to tubulin (n = 3; F). (G) E9.5 embryos were 
incubated at 37°C for 10 min in M2 medium containing 5.5 mM glucose or 5.5 mM deoxyglucose or left untreated. E9.5 lysates were Western blotted 
for changes in the phosphoprotein levels of AMPK in KtyII/ and WT littermates. Total phosphoprotein levels of AMPK were quantified by densitometry 
and normalized to tubulin (n = 3). *, P < 0.05 (two-tailed t test). Error bars represent SEM.
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Figure 5.  Keratins regulate AMPK activity through localization of GLUT1 and -3. (A and B) Double immunofluorescence of keratins and GLUT1 and -3 
(A and B) in WT yolk sac tissue. (A, A, B, and B) Yolk sacs of E9.5 WT and KtyII/ embryos were analyzed for GLUT1 (A and A) and -3 (B and B) 
localization. Insets show enlargement of the region encompassing the plasma membrane. (C) mRNA expression of GLUT transporters in E9.5 WT and 
mutants. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a normalization control. (D) Total GLUT1 and -3 protein levels in protein  
lysates of E9.5 keratin WT and KtyII/ embryos. Error bars represent SEM. G, GLUT; T, tubulin. (E) Model for function of apical keratins in GLUT localiza-
tion. Our model suggests that full activation of mTORC1 depends on the correct localization of GLUT1 and -3 by subapical keratins in the mouse embryo. 
Bars, 10 µm.
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Glucose transport is mainly performed by energy- 
independent facilitative transporters of the GLUT family, which 
are expressed during blastocyst formation when embryos switch 
from pyruvate to glucose as the major energy source (Barbehenn 
et al., 1974). In early embryos, GLUT1 and -3 are the main 
transporters that regulate glucose distribution, and their KO 
causes severe growth retardation with increased apoptosis dur-
ing embryo development (Wang et al., 2006; Ganguly et al., 
2007; Schmidt et al., 2009). FACS sorting of trypsinized KtyII/ 
embryos confirmed a 10-fold increase in apoptotic cells, indi-
cating a nutrition defect (Fig. 3 L). To analyze this further, dou-
ble immunofluorescence analysis with GLUT1 and -3 and 
K8/K18 antibodies were performed. This showed that GLUT1 
and -3 were predominantly localized to the apical plasma mem-
brane of the yolk sac. In WT yolk sacs, K8/K18 keratins were 
confined in the subapical region (Figs. 1 I and 5, A and B). Of 
note, subapical intermediate filament organization is evolution-
arily conserved down to Caenorhabditis elegans, where it is re-
quired for gut epithelial organization (Hüsken et al., 2008). 
In KtyII/ embryos, GLUT1 and -3 levels at the apical plasma 
membrane of the yolk sac were markedly reduced, causing 
redistribution of the transporters throughout endodermal cells 
(Fig. 5, A, A, B, and B). In line with AMPK activation, their 
total transcript and protein levels were unaltered (GLUT1) or 
slightly elevated (GLUT3; Fig. 5, C and D). Our data lead to a 
model in which full activation of mTORC1 depends on the cor-
rect localization of GLUT1 and -3 by subapical keratins in the 
mouse embryo (Fig. 5 E).

These findings reveal a novel regulatory mechanism by 
which keratins coordinate cell growth and protein synthesis at the 
level of GLUT transporters. The highly regulated expression and 
subcellular organization of keratins strongly suggest their in-
volvement in growth regulation and protein targeting beyond 
embryo development, as demonstrated for K17 in skin wound 
healing and K8 in colonic epithelia (Toivola et al., 2004; Kim 
et al., 2006). Although the molecular mechanisms are not yet 
known, it is well established that the correct localization of cell 
adhesion proteins depends on keratins and vimentin (Godsel 
et al., 2005; Toivola et al., 2005; Nieminen et al., 2006). Possibly, 
keratins and vimentin orchestrate the local interaction of 14-3-3 
proteins with their multiple binding partners during organelle 
transport, cell polarity, and signaling. Furthermore, our data have 
far-ranging implications for the analysis of other large mamma-
lian gene families as they suggest that some of the previous single 
and double keratin KOs may represent gain-of-toxic-function 
phenotypes (Hesse et al., 2000; Tamai et al., 2000; Jaquemar 
et al., 2003; Magin et al., 2004). This implicates that the patho
mechanisms underlying skin keratin disorders not only result 
from mechanical fragility but from disturbed regulation of cell 
growth and signaling, opening new therapeutic opportunities (Kim 
et al., 2006; Kerns et al., 2007; Roth et al., 2009).

Materials and methods
Targeting the 5 end of the keratin type II cluster
The 5 hprt vector clone MHPN117k13 (Adams et al., 2004) was used 
to target the 5 end of the type II keratin cluster. This contained an insert 
of 6.0 kb spanning 101,202,450–101,208,417 bp on chromosome 15. 

A gap of 1.5 kb was generated with unique restriction sites, NheI and 
Bsp119I, to yield 2.0- and 2.4-kb arms of homology (Figs. 1 A and S1 A). 
NotI linkers were introduced at the cut sites to obtain a NotI restriction 
site. The plasmid was linearized with NotI before targeting and trans-
fected (200 µg) into AB2.2 cells (gift from A. Bradley, Wellcome Trust 
Sanger Institute, Cambridge, England, UK) at 3 µF and 800 V. G418 
selection was initiated 24 h after targeting at 350 µg/ml. Neomycin-
resistant colonies were screened for homologous recombination; the plas-
mid without the gap served as a positive control. PCR primers spanned the 
gap region and vector backbone (Table S1). Eight clones that were PCR 
positive for the homologous recombination event were further confirmed 
by Southern blotting with a probe specific to the gap region (Table S1). 
Five were positive for the homologous recombination at the 5 end of the 
keratin type II cluster. Clone 2 was used to target the 3 end of the keratin 
type II cluster.

Targeting the 3 end of the keratin type II cluster
The insert from the MICER 5 hprt clone MHPN322c09 (Adams et al., 
2004) was excised from the vector at the AscI sites flanking the insert, 
cloned into an empty 3 hprt vector, and named MHPP322c09. This con-
tained a 6.9-kb insert spanning 101,876,016–101,882,964 bp on 
chromosome 15. A gap of 1.4 kb was generated with SacI restriction 
sites to yield 3.0- and 2.4-kb arms of homology (Fig. 1 B and Fig. S1 A). 
SacI was used to linearize the plasmid to target into the aforementioned 
clone 2. ES cells were targeted as described in the previous section and 
selected in 3 µg/ml puromycin 24 h after electroporation. 8 of 96 picked 
clones showed homologous recombination, as determined by PCR with 
primers spanning the gap region and vector backbone (Table S1). These 
clones were confirmed by Southern blot analysis with a 487-bp probe 
designed within the gap region (Table S1). All PCR-positive clones were 
correctly recombined at the 3 end of the keratin type II cluster, as con-
firmed by Southern blot analysis.

Identification of double-targeted cis ES clones by fluorescence  
in situ hybridization
Metaphase chromosome spreads on slides were performed as previously 
described (Henegariu et al., 2001). Empty 3 and 5 hprt vectors were la-
beled with biotin and digoxigenin, respectively, by nick translation and 
used for chromosomal in situ hybridization against spread chromosomes 
from double-targeted ES cell clones according to a standard protocol 
(Wrehlke et al., 1999). Red and green signals (or a yellow overlap) on a 
single chromosome confirmed the double targeting in cis (Fig. S1 B). One 
of the three double-targeted clones tested by fluorescence in situ hybridiza-
tion was confirmed to have the targeted constructs in cis. This clone was 
subjected to Cre expression.

Cre-mediated deletion of the keratin type II cluster
The double-targeted clone in cis was transiently transfected with 200 µg 
of CrePac vector (Taniguchi et al., 1998) using the identical conditions 
described in Targeting the 5 end of the keratin type II cluster. Selection 
with 1× hypoxanthine and thymine was initiated 24 h after transfection for 
10 d. 96 colonies were screened for deletion of the keratin cluster with 
primers specific to the 3 and 5 hprt regions. This was further confirmed 
by Southern blot analysis with probes specific to the 3 and 5 hprt regions. 
Two independent clones positive for the deleted cluster were used to gener-
ate male chimeras by blastocyst injections (gift from R. Maniu, Universität 
Bonn, Bonn, Germany). Male chimeras were outbred to C57BL/6 WT 
females to generate mice heterozygous for the keratin type II deletion. 
Heterozygous progeny were inbred to generate KtyII/ mice.

RT-PCR and Western blotting
Total RNA was isolated from E9.5 embryos and yolk sacs with RNeasy 
Micro kits (QIAGEN). Reverse transcription was performed with RevertAid 
First Strand cDNA Synthesis kits (Fermentas). The primers and PCR condi-
tions have been described previously (Tonack et al., 2004; Lu et al., 2005). 
For vimentin cDNA synthesis, 2 µg of total RNA was reverse transcribed in 
a volume of 20 µl. PCR with Platinum Taq polymerase (Invitrogen) was per-
formed in 25-µl reactions containing 0.1 µl of template cDNA, according 
to the manufacturer’s protocol. PCR reactions were performed as follows: 
35 cycles at 94°C for 30 s, 65°C for 30 s, and 72°C for 20 s. The se-
quences of the primer pairs are outlined in Table S1.

Western blotting was performed as follows. Total protein was ex-
tracted in SDS-PAGE sample buffer (50 mM Na phosphate, pH 6.8, 5% 
SDS, 40 mM DTT, 5 mM EDTA, 5 mM EGTA, and 15% glycerol). The sam-
ples were heated for 5 min at 95°C, sonicated three times for 30 s and, in 
between intervals, kept for 30 s at 95°C; the procedure was repeated, and 
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Metabolic labeling
E9.5 embryos and yolk sacs were dissected from the uterus, and the head 
was retained for genotyping. Embryos and yolk sac were incubated sepa-
rately in Met-free Dulbecco’s modified Eagle’s medium (Invitrogen) contain-
ing 25 mM Hepes buffer, 10% dialyzed fetal calf serum, 1% nonessential 
amino acids, 1× Na pyruvate, and 1% Glutamax (all Invitrogen) at 37°C 
for 15 min to remove endogenous Met. The medium was discarded, and 
tissues were labeled with 100 µl of 35S-labeled Met/Cys (1,000 Ci/mmol; 
0.1 mCi/ml) in Met-free Dulbecco’s modified Eagle’s medium for 1 h at 
37°C. The medium was aspirated, and tissues were washed in ice-cold 
PBS. Proteins were precipitated with 10% trichloroacetic acid, and in-
corporated radioactivity was measured by liquid scintillation. The rate of  
35S-labeled Met/Cys incorporation per minute per milligram of protein was 
calculated using the Bradford reagent (Bradford, 1976).

Glucose assay
E9.5 embryos and yolk sacs were dissected from the uterus. Embryos 
and yolk sac together were incubated in M2 medium (94.59 mM NaCl,  
4.78 mM KCl, 1.19 mM KH2PO4, 1.19 MgSO4, 1.71 mM CaCl2, 4.0 mM 
NaHCO3, 21 mM Hepes, and 4 g/liter albumin bovine fraction V; all from 
Sigma-Aldrich) without glucose or its metabolites, with 5.5 mM glucose 
(Sigma-Aldrich), or with 5.5 mM deoxyglucose (Sigma-Aldrich) for 10 min 
at 37°C. Subsequently, embryos were lysed in boiling Laemmli buffer and 
analyzed by Western blotting for total and P-AMPK levels.

Online supplemental material
Fig. S1 shows additional characterizations of the genetic engineer-
ing at the keratin type II gene locus. Fig. S2 demonstrates that the de-
letion of keratins does not induce vimentin. Tables S1 and S2 provide 
the details of the primers and the antibodies, respectively, used in this 
study. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200906094/DC1.
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